Skip to main content
Log in

Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.)

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

The deterioration in the quality of ex situ conserved seed over time reflects a combination of both physical and chemical changes. Intraspecific variation for longevity is, at least in part, under genetic control. Here, the grain of 183 bread wheat accessions maintained under low-temperature storage at the IPK-Gatersleben genebank over some decades have been tested for their viability, along with that of fresh grain subjected to two standard artificial ageing procedures. A phenotype–genotype association analysis, conducted to reveal the genetic basis of the observed variation between accessions, implicated many regions of the genome, underling the genetic complexity of the trait. Some, but not all, of these regions were associated with variation for both natural and experimental ageing, implying some non-congruency obtains between these two forms of testing for longevity. The genes underlying longevity appear to be independent of known genes determining dormancy and pre-harvest sprouting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Agacka M, Nagel M, Doroszewska T, Lewis RS and Börner A 2015 Mapping quantitative trait loci determining seed longevity in tobacco (Nicotiana tabacum L.). Euphytica 202 479–486

    Article  Google Scholar 

  • Bailly C, El-Maarouf-Bouteau H and Corbineau F 2008 From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biol. 331 806–814

    Article  CAS  PubMed  Google Scholar 

  • Bartosz G 1981 Non-specific reactions: molecular basis of ageing. J. Theor. Biol. 91 233–235

    Article  CAS  PubMed  Google Scholar 

  • Bentsink L, Alonso-Blanco C, Vreugdenhil D, Tesnier K, Groot SPC and Koornneef M 2000 Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 124 1595–1604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Black M, Bewley JD and Halmer 2006 The encyclopedia of seeds: science, technology and uses (Wallingford, UK: CAB International)

    Google Scholar 

  • Börner A, Schumann E, Fürste A, Cöster H, Leithold B, Röder MS and Weber WE 2002 Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105 921–936

    Article  PubMed  Google Scholar 

  • Börner A, Khlestkina EK, Chebotar S, Nagel M, Rehman Arif MA, Kobiljski B, Lohwasser and Röder MS 2014 Molecular markers in management of ex situ PGR - a case study. J. Biosci. 37 871–877

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y and Buckler ES 2007 TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23 2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Clerkx EJM, Blankestijn-De VH, Ruys GJ, Groot SPC and Koornneef M 2004a Genetic differences in seed longevity of various Arabidopsis mutants. Physiol. Plant. 121 448–461

    Article  CAS  Google Scholar 

  • Clerkx EJM, El-Lithy ME, Vierling E, Ruys GJ, Blankestijn-De VH, Groot SPC, Vreugdenhil D and Koornneef M 2004b Analysis of natural allelic variation of Arabidopsis seed germination and seed longevity traits between the accessions Landsberg erecta and Shakdara, using a new recombinant inbred line population. Plant Physiol. 135 432–443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Contreras S, Bennett MA, Tay D and Metzger JD 2008 Maternal light environment during seed development affects lettuce seed weight, germinability, and storability. Hortic. Sci. 43 845–852

    Google Scholar 

  • Contreras S, Bennet MA, Metzger JD, Tay D and Nerson H 2009 Red to far-red ratio during seed development affects lettuce seed germinability and longevity. Hortic. Sci. 44 130–134

    Google Scholar 

  • Coolbear P 1995 Mechanisms of seed deterioration; in Seed Quality: Basic mechanisms and agricultural implications (eds) AS Basra (Food Product Press, New York) pp 223–277

  • Davies MJ 2005 The oxidative environment and protein damage. Biochim. Biophys. Acta 1703 93–109

    Article  CAS  PubMed  Google Scholar 

  • Debeaujon I, Léon-Kloosterzie KM and Koornneef M 2000 Influence of the testa on seed dormancy, germination and longevity in Arabidopsis. Plant Physiol. 122 403–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dickson MH 1980 Genetic aspects of seed quality. Hortic. Sci. 15 771–774

    Google Scholar 

  • FAO 2010 The second report on the state of the world’s plant genetic resources for food and agriculture (Rome: Commission on Genetic Resources for Food and Agriculture, Food and Agriculture Organization of the United Nations)

    Google Scholar 

  • Faris JD, Li WL, Liu DJ, Chen PD and Gill BS 1999 Candidate gene analysis of quantitative disease resistance in wheat. Theor. Appl. Genet. 9 219–225

    Google Scholar 

  • Francki GM, Walker E, Crawford AC, Broughton S, Ohm HW, Barclay I, Wilson RE and McLean R 2009 Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol. Gen. Genomics 281 181–191

    Article  CAS  Google Scholar 

  • Gulen H and Eris A 2004 Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Sci. 166 739–744

  • Hai-Chun J, Bayon C, Kostya K, Berry S, Wenzl P, Huttner E, Kilian A and Hammond-Kosack KE 2009 DArT markers: diversity analyses, genomes comparison, mapping and integration with SSR markers in Triticum monococcum. BMC Genomics 10 458

    Article  Google Scholar 

  • Houde M, Belcaid M, Ouellet F, Danyluk J, Monroy AF, Dryanova A, Gulick P, Bergeron A, et al. 2006 Wheat EST resources for functional genomics for abiotic stress. BMC Genomics 7 149

    Article  PubMed  PubMed Central  Google Scholar 

  • ISTA 2008 International rules for seed testing (Bassersdorf: International Seed Testing Association)

    Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckermann D, Daly MJ and Eskin E 2008 Efficient control of population structure in model organism association mapping. Genetics 178 1709–1723

    Article  PubMed  PubMed Central  Google Scholar 

  • Kato-Noguchi H 2001 Wounding stress induces alcohol dehydrogenase in maize and lettuce seedlings. Plant Growth Regul. 35 285–288

  • Kulwal PL, Kumar N, Gaur A, Khurana P, Khurana JP, Tyagi AK, Balyan HS and Gupta PK 2005 Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor. Appl. Genet. 111 1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Landjeva S, Lohwasser U and Börner A 2010 Genetic mapping within the wheat D genome reveals QTLs for germination, seed vigour and longevity, and early seedling growth. Euphytica 171 129–143

    Article  Google Scholar 

  • Li WL, Fairs JD, Chitoor JM, Leach JE, Hullbert SH, Liu DJ, Chen PD and Gill BS 1999 Genomic mapping of defense response genes in wheat. Theor. Appl. Genet. 98 226–233

    Article  CAS  Google Scholar 

  • Li G, Na YW, Kwon SW and Park YJ 2014 Association analysis of seed longevity in rice under conventional and high-temperature germination conditions. Plant Syst. Evol. 300 389–402

    Article  CAS  Google Scholar 

  • Lohwasser U, Röder MS and Börner A 2005 QTL mapping for the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143 247–249

    Article  CAS  Google Scholar 

  • Lohwasser U, Rehman Arif MA and Börner A 2013 Discovery of loci determining pre-harvest sprouting and dormancy in wheat and barley applying segregation and association mapping. Biol. Plant. 57 663–674

    Article  CAS  Google Scholar 

  • Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Catizone I, Wenzl P, Thomson B, Carling J, et al. 2008 An integrated DArT-SSR linkage map of durum wheat. Mol. Breed. 22 629–648

    Article  CAS  Google Scholar 

  • Mares DJ, Rathjen J, Mrva K and Cheong J 2009 Genetic and environmental control of dormancy in white-grained wheat (Triticum aestivum L.). Euphytica 168 311–318

    Article  CAS  Google Scholar 

  • McDonald MB 1999 Seed deterioration: physiology, repair and assessment. Seed Sci. Technol. 27 177–237

    Google Scholar 

  • Miura K, Lyn SY, Yano M and Nagamine T 2002 Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theor. Appl. Genet. 104 981–986

    Article  CAS  PubMed  Google Scholar 

  • Nagel M, Vogel H, Landjeva S, Buck-Sorlin G, Lohwasser U, Scholz U and Börner A 2009 Seed conservation in ex situ genebanks - genetic studies on longevity in barley. Euphytica 170 5–14

    Article  CAS  Google Scholar 

  • Nagel M, Rosenhauer M, Willner E, Snowdon RJ, Friedt W and Börner A 2011 Seed longevity in oilseed rape (Brassica napus L.) - genetic variation and QTL mapping. Plant Genet. Res. 9 260–263

    Article  CAS  Google Scholar 

  • Nagel M, Kranner I, Neumann K, Rolletschek H, Seal CE, Colville L and Fernández‐Marín BA 2015 Genome‐wide association mapping and biochemical markers reveal that seed ageing and longevity are intricately affected by genetic background and developmental and environmental conditions in barley. Plant Cell Environ. 38 1011–1022

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M and Donnelly P 2000 Inference of population structure using multilocus genotypic data. Genetics 155 945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajjou L, Lovigny Y, Groot SPC, Belghazi M, Job C and Job D 2008 Proteome-wide characterization of seed aging in Arabidopsis: a comparison between artificial and natural aging protocols. Plant Physiol. 148 620–641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao NK, Roberts EH and Ellis RH 1987 Loss of viability in lettuce seeds and the accumulation of chromosome damage under different storage conditions. Ann. Bot. 60 85–96

    Article  Google Scholar 

  • Rehman Arif MA, Nagel M, Neumann K, Kobiljski B, Lohwasser U and Börner A 2012a Genetic studies of seed longevity in hexaploid wheat using segregation and association mapping approaches. Euphytica 186 1–13

    Article  Google Scholar 

  • Rehman Arif MA, Neumann K, Nagel M, Kobiljski B, Lohwasser U and Börner A 2012b An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica. 188 409–417

    Article  CAS  Google Scholar 

  • Revilla P, Butrón A, Rodríguez VM, Malvar RA and Ordás A 2009 Identification of genes related to germination in aged maize seed by screening natural variability. J. Exp. Bot. 60 4151–4157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Fukuta Y and Sato T 2005 Mapping of quantitative trait loci controlling seed longevity of rice (Oryza sativa L.) after various periods of seed storage. Plant Breed. 124 361–366

    Article  Google Scholar 

  • Sasaki K, Takeuchi Y, Miura K, Yamaguchi T, Ando T, Ebitani T, Higashitani A, Yamaya T, et al. 2015 Fine mapping of major quantitative trait locus, qLG-9, that controls seed longevity in rice. (Oryza sativa L.). Theor. Appl. Genet. 128 769–778

    Article  CAS  PubMed  Google Scholar 

  • Schwember AR and Bradford KJ 2010 Quantitative trait loci associated with longevity of lettuce seeds under conventional and controlled deterioration storage conditions. J. Exp. Bot. 61 4423–4436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semagn K, Bjørnstad Å, Skinnes H, Marøy AG, Tarkegne Y and William M 2006 Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome. 49 545–555

    Article  CAS  PubMed  Google Scholar 

  • Siddique SB, Seshu DV and Pardee WD 1988 Rice cultivar variability in tolerance for accelerated ageing of seed. IRRI Research Paper Series. 131 2–7

    Google Scholar 

  • Simpson GM 1990 Seed dormancy in grasses (New York: Cambridge University Press)

    Book  Google Scholar 

  • Singh RK, Raipuria RK, Bhatia VS, Rani A, Pushpendra HSM, Chauhan D, Chauhan GS and Mohopatra T 2008 SSR markers associated with seed longevity in soybean. Seed Sci. Technol. 36 162–167

    Article  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis ID, Kouvarakis A, Papadakis AK, Stephanou EG and Roubelakis-Angelakis KA 2006 Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18 2767–2781

  • SPSS Inc. 1999 SPSS Base 10.0 for Windows User's Guide. SPSS Inc., Chicago, Illinois

  • Stein N, Prasad M, Scholy U, Thiel T, Zhang H, Wolf M, Kota R, Varshney R, et al. 2007 A 1,000-loci transcript map of the barley genome: new anchoring points for integrative grass genomics. Theor. Appl. Genet. 114 823–839

    Article  CAS  PubMed  Google Scholar 

  • Strand E 1965 Studies on seed dormancy in barley. Meldinger fra Norges Landbrukshogskole Hoegskole. 44 1–23

    Google Scholar 

  • Sunkar R, Bartels D and Kirch H 2003 Overexpression of a stress-inducible aldehyde dehydrogenase gene from Arabidopsis thaliana in transgenic plants improves stress tolerance. Plant J. 35 452–464

  • Swofford D 2002 Paup*: Phylogenetic analysis using parsimony (*and others methods), version 4 (Sunderland: Sinuauer Associates)

    Google Scholar 

  • Walters C 1998 Understanding the mechanisms and kinetics of seed ageing. Seed Sci. Res. 8 223–244

    Article  CAS  Google Scholar 

  • Xue Y, Zhang SQ, Yao QH, Peng RH, Xiong AS, Li X, Zhu WM, Zhu YY, et al. 2008 Identification of quantitative trait loci for seed storability in rice (Oryza sativa L.). Euphytica 164 739–744

    Article  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Bi IV, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, et al. 2006 A unified mixed-model for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38 203–208

    Article  CAS  PubMed  Google Scholar 

  • Zeng DL, Guo LB, Xu YB, Yasukumi K, Zhu LH and Qian Q 2006 QTL analysis of seed storability in rice. Plant Breed. 125 57–60

    Article  CAS  Google Scholar 

  • Zhu C, Gore M, Buckler ES and Yu J 2008 Status and prospects of association mapping in plants. Plant Genome. 1 5–20

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Börner.

Additional information

[Arif MAR, Nagel M, Lohwasser U and Börner A 2017 Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J. Biosci.]

Supplementary materials pertaining to this article are available on the Journal of Biosciences Website.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary tables

(DOCX 48.7 kb)

Supplementary figures

(PPTX 765 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arif, M.A.R., Nagel, M., Lohwasser, U. et al. Genetic architecture of seed longevity in bread wheat (Triticum aestivum L.). J Biosci 42, 81–89 (2017). https://doi.org/10.1007/s12038-016-9661-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-016-9661-6

Keywords

Navigation