Skip to main content
Log in

Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis

  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Hpa1 is a harpin protein produced by Xanthomonas oryzae, an important bacterial pathogen of rice, and has the growth-promoting activity in plants. To understand the molecular basis for the function of Hpa1, we generated an inactive variant protein, Hpa1ΔNT, by deleting the nitroxyl-terminal region of the Hpa1 sequence and compared Hpa1ΔNT with the full-length protein in terms of the effects on vegetative growth and related physiological responses in Arabidopsis. When Hpa1 was applied to plants, it acted to enhance the vegetative growth but did not affect the floral development. Enhanced plant growth was accompanied by induced expression of growth-promoting genes in plant leaves. The growth-promoting activity of Hpa1 was further correlated with a physiological consequence shown as promoted leaf photosynthesis as a result of facilitated CO2 conduction through leaf stomata and mesophyll cells. On the contrary, plant growth, growth-promoting gene expression, and the physiological consequence changed little in response to the Hpa1ΔNT treatment. These analyses suggest that Hpa1 requires the nitroxyl-terminus to facilitate CO2 transport inside leaf cells and promote leaf photosynthesis and vegetative growth of the plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Alfano JR and Collmer A 1997 The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J. Bacteriol. 179 5655–5662

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ausubel FM 2005 Are innate immune signaling pathways in plants and animals conserved. Nat. Immunol. 6 973–979

    Article  CAS  PubMed  Google Scholar 

  • Ayadi M, Cavez D, Miled N, Chaumont F and Masmoudi K 2011 Identification and characterization of two plasma membrane aquaporins in durum wheat (Triticum turgidum L. subsp. durum) and their role in abiotic stress tolerance. Plant Physiol. Biochem. 49 1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Bae EK, Lee H, Lee JS and Noh EW 2011 Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba×P. tremula var. glandulosa). Gene 483 43–48

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Qian J, Qu S, Long J, Yin Q, Zhang C, Wu X, Sun F, Wu T, Hayes M, Beer SV and Dong H 2008a Identification of specific fragments of HpaGXooc, a harpin from Xanthomonas oryzae pv. oryzicola that induce disease resistance and enhance growth in plants. Phytopathology 98 781–791

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhang SS, Qu SP, Long JY, Yin Q, Qian J, Sun F, Zhang SJ, et al. 2008b A selected fragment of HpaGXooc, a harpin protein from Xanthomonas oryzae pv. oryzicola, affects disease reduction and grain yield of rice in extensive grower plantings. Phytopathology 98 792–802

    Article  PubMed  Google Scholar 

  • Cox MC, Benschop JJ, Vreeburg RA, Wagemaker CA, Moritz T, Peeters AJ and Voesenek LA 2004 The roles of ethylene, auxin, abscisic acid, and gibberellin in the hyponastic growth of submerged Rumex palustris petioles. Plant Physiol. 136 2948–2960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Groot BL and Hub JS 2011 A decade of debate: significance of CO2 permeation through membrane channels still controversial. ChemPhysChem 12 1021–1022

    Article  PubMed  Google Scholar 

  • Deng BL, Deng S, Sun F, Zhang S and Dong H 2011 Down-regulation of free riboflavin content induces hydrogen peroxide and a pathogen defense in Arabidopsis. Plant Mol. Biol. 77 185–201

    Article  CAS  PubMed  Google Scholar 

  • Dong H, Delaney TP, Bauer DW and Beer SV 1999 Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20 207–215

    Article  CAS  PubMed  Google Scholar 

  • Dong HP, Peng J, Bao Z, Meng X, Bonasera JM, Chen G, Beer SV and Dong H 2004 Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol. 136 3628–3638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dong HP, Yu H, Bao Z, Guo X, Peng J, Yao Z, Chen G and Dong H 2005 The ABI2-dependent abscisic acid signalling controls HrpN-induced drought tolerance in Arabidopsis. Planta 221 313–327

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B and Terashima I 2009 Resistances along the CO2 diffusion pathway inside leaves. J. Exp. Bot. 60 2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, et al. 2012 Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci. 193–194 70–84

    Article  PubMed  Google Scholar 

  • Flexas J, Ortuño MF, Ribas-Carbo M, Diaz-Espejo A, Flórez-Sarasa ID and Medrano H 2007 Mesophyll conductance to CO2 in Arabidopsis thaliana. New Phytol. 175 501–511

    Article  CAS  PubMed  Google Scholar 

  • Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H and Chaumont F 2009 Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Bioch. Biophy. Acta 1788 1213–1228

    Article  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G and Sharkey TD 1992 Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol. 98 1429–1436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • He SY 1998 Type III protein secretion systems in plant and animal pathogenic bacteria. Annu. Rev. Phytopathol. 36 363–392

    Article  CAS  PubMed  Google Scholar 

  • Heckwolf M, Pater D, Hanson DT and Kaldenhoff R 2011 The Arabidopsis thaliana aquaporin AtPIP1;2 is a physiologically relevant CO2 transport facilitator. Plant J. 67 795–804

    Article  CAS  PubMed  Google Scholar 

  • Jacobi V, Dufour J, Bouvet GF, Aoun M and Bernier L 2010 Identification of transcripts up-regulated in asexual and sexual fruiting bodies of the Dutch elm disease pathogen Ophiostoma novo-ulmi. Can. J. Microbiol. 56 697–705

    Article  CAS  PubMed  Google Scholar 

  • Kaldenhoff R 2012 Mechanisms underlying CO2 diffusion in leaves. Curr. Opin. Plant Biol. 15 276–281

    Article  CAS  PubMed  Google Scholar 

  • Kim JF and Beer SV 2000 hrp genes and harpins of Erwinia amylovora: A decade of discovery; in Fire blight and its causative agent, Erwinia amylovora (ed) JL Vanneste (Wallingford, UK: CAB International) pp 141–162

    Chapter  Google Scholar 

  • Kwack MS, Kim EN, Lee H, Kim J-W, Chun S-C and Kim KD 2005 Digital image analysis to measure lesion area of cucumber anthracnose by Colletotrichum orbiculare. J. Gen. Plant Pathol. 71 418–421

    Article  Google Scholar 

  • Lee SH, Chung GC, Jang JY, Ahn SJ and Zwiazek JJ 2012 Overexpression of PIP2;5 aquaporin alleviates effects of low root temperature on cell hydraulic conductivity and growth in Arabidopsis. Plant Physiol. 159 479–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Liu H, Jia Q, Wu X, Guo X, Zhang S, Song F and Dong H 2006 The internal glycine-rich motif and cysteine suppress several effects of the HpaGXooc protein in plants. Phytopathology 96 1052–1059

    Article  CAS  PubMed  Google Scholar 

  • Maurel C 2007 Plant aquaporins: Novel functions and regulation properties. FEBS Lett. 581 2227–2236

    Article  CAS  PubMed  Google Scholar 

  • Miao W, Wang X, Li M, Song C, Wang Y, Hu D and Wang J 2010a Genetic transformation of cotton with a harpin-encoding gene hpa Xoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol. 10 67

    Article  PubMed Central  PubMed  Google Scholar 

  • Miao W, Wang X, Song C, Wang Y, Ren Y and Wang J 2010b Transcriptome analysis of Hpa1 Xoo transformed cotton revealed constitutive expression of genes in multiple signalling pathways related to disease resistance. J. Exp. Bot. 61 4263–4275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh CS and Beer SV 2007 AtHIPM, an ortholog of the apple HrpN-interacting protein, is a negative regulator of plant growth and mediates the growth-enhancing effect of HrpN in Arabidopsis. Plant Physiol. 145 426–436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Peng J, Bao Z, Ren H, Wang J and Dong H 2004 Expression of harpinXoo in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 94 1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Peng JL, Dong H, Dong HP, Delaney TP, Bonasera BM and Beer SV 2003 Harpin-elicited hypersensitive cell death and pathogen resistance requires the NDR1 and EDS1 genes. Physiol. Mol. Plant Pathol. 62 317–326

    Article  CAS  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbo M and Brugnoli E 2009 Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J. Exp. Bot. 60 2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Postaire O, Tournaire-Roux C, Grondin A, Boursiac Y, Morillon R, Schäffner AR and Maurel C 2010 A PIP1 aquaporin contributes to hydrostatic pressure-induced water transport in both the root and rosette of Arabidopsis. Plant Physiol. 152 1418–1430

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren H, Gu G, Long J, Qian J, Wu T, Song T, Zhang S, Chen Z and Dong H 2006a Combinative effects of a bacterial type-III effector and a biocontrol bacterium on rice growth and disease resistance. J. Biosci. 31 617–627

    Article  CAS  PubMed  Google Scholar 

  • Ren H, Song T, Wu T, Sun L, Liu Y, Yang F, Chen Z and Dong H 2006b Effects of a biocontrol bacterium on growth and defence of transgenic rice plants expressing a bacterial type-III effector. Ann. Microbiol. 56 281–287

    Article  CAS  Google Scholar 

  • Ren X, Zhang C, Bao Z, Chen L, Wu X and Dong H 2008 Root growth of Arabidopsis thaliana is regulated by ethylene and abscisic acid signaling interaction in response to HrpNEa, a bacterial protein of harpin group. Plant Mol. Biol. Rep. 31 617–627

    Google Scholar 

  • Rivers RL, Dean RM, Chandy G, Hall JE, Roberts DM and Zeidel ML 1997 Functional analysis of nodulin 26, an aquaporin in soybean root nodule symbiosomes. J. Biol. Chem. 272 16256–16261

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lozano JM, del Mar Alguacil M, Bárzana G, Vernieri P and Aroca R 2009. Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol. Biol. 70 565–579

    Google Scholar 

  • Sang S, Li X, Gao R, You Z, Lü B, Liu P, Ma Q and Dong H 2012 Apoplastic and cytoplasmic location of harpin protein Hpa1Xoo plays different roles in H2O2 generation and pathogen resistance in Arabidopsis. Plant Mol. Biol. 79 375–391

    Article  CAS  PubMed  Google Scholar 

  • Shao M, Wang J, Dean RA, Lin Y, Gao X and Hu S 2008 Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol. J. 6 73–81

    CAS  PubMed  Google Scholar 

  • Sloan J, Backhaus A, Malinowski R, McQueen-Mason S and Fleming AJ 2009 Phased control of expansin activity during leaf development identifies a sensitivity window for expansin-mediated induction of leaf growth. Plant Physiol. 151 1844–1854

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun F, Liu P, Xu J and Dong H 2010 Mutation in RAP2.6L, a transactivator of the ERF transcription factor family, enhances Arabidopsis resistance to Pseudomonas syringae. Physiol. Mol. Plant Pathol. 74 295–302

    CAS  Google Scholar 

  • Taiz L and Zeiger E 2010 Plant physiology (Sunderland, MA: Sinauer Associates)

    Google Scholar 

  • Torres MA 2010 ROS in biotic interactions. Plant Physiol. 138 414–429

    Article  CAS  Google Scholar 

  • Uehlein N, Sperling H, Heckwolf M and Kaldenhoff R 2012 The Arabidopsis aquaporin PIP1;2 rules cellular CO2 uptake. Plant Cell Environ. 35 1077–1083

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Gao Y, Wang J, Yang L, Song R, Li X and Shi J 2011 Overexpression of two cambium-abundant Chinese fir (Cunninghamia lanceolata) α-expansin genes ClEXPA1 and ClEXPA2 affect growth and development in transgenic tobacco and increase the amount of cellulose in stem cell walls. Plant Biotechnol. J. 9 486–502

    Article  CAS  PubMed  Google Scholar 

  • Wang XY, Song CF, Miao WG, Ji ZL, Wang X, Zhang Y, Zhang JH, Hu JS, Borth W and Wang JS 2008 Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechnol. 81 359–369

    Article  CAS  PubMed  Google Scholar 

  • Wei ZM, Laby RJ, Zumoff CH, Bauer DW, He SY, Collmer A and Beer SV 1992 Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257 85–88

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Wu T, Long J, Yin Q, Zhang Y, Chen L, Liang Y, Liu R, Gao T and Dong H 2007 Productivity and biochemical properties of green tea in response to a bacterial type-III effector protein and its variants. J. Biosci. 32 1119–1132

    Article  CAS  PubMed  Google Scholar 

  • Zabaleta E, Martin MV and Braun HP 2012 A basal carbon concentrating mechanism in plants. Plant Sci. 187 97–104

    Article  CAS  PubMed  Google Scholar 

  • Zawoznik MS, Ameneiros M, Benavides MP, Vázquez S and Groppa MD 2011 Response to saline stress and aquaporin expression in Azospirillum-inoculated barley seedlings. Appl. Microbiol. Biotechnol. 90 1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Bao Z, Liang Y, Yang X, Wu X, Hong X and Dong H 2007 Abscisic acid mediates Arabidopsis drought tolerance induced by HrpNEa in the absence of ethylene signaling. Plant Mol. Biol. Rept. 25 94–114

    Google Scholar 

  • Zhang L, Xiao SS, Li WQ, Feng W, Li J, Wu ZD, Gao XW, Liu FQ and Shao M 2011 Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J. Exp. Bot. 62 4129–4138

    Google Scholar 

  • Zhu WG, Magbanua MM and White FF 2000 Identification of two novel hpaG-associated genes in the hpaG gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 182 1844–1853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our university colleague Professor Shiwei Guo for assistance with Li-6400XT and chlorophyll fluorescence analyser. This study was supported by Natural Science Foundation (31272072) and Novel Transgenic Organisms Breeding Project (2013ZX08002001-007) of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunling Zhang.

Additional information

Corresponding editor: R GEETA

[Li X, Han L, Zhao Y, You Z, Dong H and Zhang C 2013 Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J. Biosci. 39 1–11] DOI 10.1007/s12038-013-9408-6

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Han, L., Zhao, Y. et al. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J Biosci 39, 127–137 (2014). https://doi.org/10.1007/s12038-013-9408-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12038-013-9408-6

Keywords

Navigation