Skip to main content
Log in

Biochemical, Biomarker, and Behavioral Characterization of the GrnR493X Mouse Model of Frontotemporal Dementia

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the GrnR493X mouse model has not been characterized completely. Additionally, while homozygous GrnR493X and Grn knockout mice have been extensively studied, data from heterozygous mice is still limited. Here, we performed more in-depth characterization of heterozygous and homozygous GrnR493X knockin mice, which includes biochemical assessments, behavioral studies, and analysis of fluid biomarkers. In the brains of homozygous GrnR493X mice, we found increased phosphorylated TDP-43 along with increased expression of lysosomal genes, markers of microgliosis and astrogliosis, pro-inflammatory cytokines, and complement factors. Heterozygous GrnR493X mice did not have increased TDP-43 phosphorylation but did exhibit limited increases in lysosomal and inflammatory gene expression. Behavioral studies found social and emotional deficits in GrnR493X mice that mirror those observed in Grn knockout mouse models, as well as impairment in memory and executive function. Overall, the GrnR493X knockin mouse model closely phenocopies Grn knockout models. Lastly, in contrast to homozygous knockin mice, heterozygous GrnR493X mice do not have elevated levels of fluid biomarkers previously identified in humans, including neurofilament light chain (NfL) and glial fibrillary acidic protein (GFAP) in both plasma and CSF. These results may help to inform pre-clinical studies that use this Grn knockin mouse model and other Grn knockout models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All relevant data are within the paper and its Supplementary Information files.

References

  1. Petkau TL, Leavitt BR (2014) Progranulin in neurodegenerative disease. Trends Neurosci 37(7):388–398. https://doi.org/10.1016/j.tins.2014.04.003

    Article  CAS  PubMed  Google Scholar 

  2. Bateman A, Cheung ST, Bennett HPJ (2018) A brief overview of progranulin in health and disease. Methods Mol Biol 1806:3–15. https://doi.org/10.1007/978-1-4939-8559-3_1

    Article  CAS  PubMed  Google Scholar 

  3. Cenik B, Sephton CF, Kutluk Cenik B, Herz J, Yu G (2012) Progranulin: a proteolytically processed protein at the crossroads of inflammation and neurodegeneration. J Biol Chem 287(39):32298–32306. https://doi.org/10.1074/jbc.R112.399170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kao AW, McKay A, Singh PP, Brunet A, Huang EJ (2017) Progranulin, lysosomal regulation and neurodegenerative disease. Nat Rev Neurosci 18(6):325–333. https://doi.org/10.1038/nrn.2017.36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nguyen AD, Nguyen TA, Martens LH, Mitic LL, Farese RV Jr (2013) Progranulin: at the interface of neurodegenerative and metabolic diseases. Trends Endocrinol Metab 24(12):597–606. https://doi.org/10.1016/j.tem.2013.08.003

    Article  CAS  PubMed  Google Scholar 

  6. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, Snowden J, Adamson J et al (2006) Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature 442(7105):916–919. https://doi.org/10.1038/nature05016

    Article  CAS  PubMed  Google Scholar 

  7. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, Rademakers R, Vandenberghe R et al (2006) Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature 442(7105):920–924. https://doi.org/10.1038/nature05017

    Article  CAS  PubMed  Google Scholar 

  8. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, Crook R, Melquist S et al (2006) Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet 15(20):2988–3001. https://doi.org/10.1093/hmg/ddl241

    Article  CAS  PubMed  Google Scholar 

  9. Miller B, Llibre Guerra JJ (2019) Frontotemporal dementia. Handb Clin Neurol 165:33–45. https://doi.org/10.1016/b978-0-444-64012-3.00003-4

    Article  PubMed  Google Scholar 

  10. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T et al (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. https://doi.org/10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  11. Bevan-Jones WR, Cope TE, Jones PS, Kaalund SS, Passamonti L, Allinson K, Green O, Hong YT et al (2020) Neuroinflammation and protein aggregation co-localize across the frontotemporal dementia spectrum. Brain 143(3):1010–1026. https://doi.org/10.1093/brain/awaa033

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rohrer JD, Woollacott IOC, Dick KM, Brotherhood E, Gordon E, Fellows A, Toombs J, Druyeh R et al (2016) Serum neurofilament light chain protein is a measure of disease intensity in frontotemporal dementia. Neurology 87(13):1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Meeter LH, Dopper EG, Jiskoot LC, Sanchez-Valle R, Graff C, Benussi L, Ghidoni R, Pijnenburg YA et al (2016) Neurofilament light chain: a biomarker for genetic frontotemporal dementia. Ann Clin Transl Neurol 3(8):623–636. https://doi.org/10.1002/acn3.325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhu N, Santos-Santos M, Illán-Gala I, Montal V, Estellés T, Barroeta I, Altuna M, Arranz J et al (2021) Plasma glial fibrillary acidic protein and neurofilament light chain for the diagnostic and prognostic evaluation of frontotemporal dementia. Transl Neurodegener 10(1):50. https://doi.org/10.1186/s40035-021-00275-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Suárez-Calvet M, Dols-Icardo O, Lladó A, Sánchez-Valle R, Hernández I, Amer G, Antón-Aguirre S, Alcolea D et al (2014) Plasma phosphorylated TDP-43 levels are elevated in patients with frontotemporal dementia carrying a C9orf72 repeat expansion or a GRN mutation. J Neurol Neurosurg Psychiatry 85(6):684–691. https://doi.org/10.1136/jnnp-2013-305972

    Article  PubMed  Google Scholar 

  16. Foulds P, McAuley E, Gibbons L, Davidson Y, Pickering-Brown SM, Neary D, Snowden JS, Allsop D et al (2008) TDP-43 protein in plasma may index TDP-43 brain pathology in Alzheimer’s disease and frontotemporal lobar degeneration. Acta Neuropathol 116(2):141–146. https://doi.org/10.1007/s00401-008-0389-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foulds PG, Davidson Y, Mishra M, Hobson DJ, Humphreys KM, Taylor M, Johnson N, Weintraub S et al (2009) Plasma phosphorylated-TDP-43 protein levels correlate with brain pathology in frontotemporal lobar degeneration. Acta Neuropathol 118(5):647–658. https://doi.org/10.1007/s00401-009-0594-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Heller C, Foiani MS, Moore K, Convery R, Bocchetta M, Neason M, Cash DM, Thomas D et al (2020) Plasma glial fibrillary acidic protein is raised in progranulin-associated frontotemporal dementia. J Neurol Neurosurg Psychiatry 91(3):263–270. https://doi.org/10.1136/jnnp-2019-321954

    Article  PubMed  Google Scholar 

  19. Rojas JC, Wang P, Staffaroni AM, Heller C, Cobigo Y, Wolf A, Goh SM, Ljubenkov PA et al (2021) Plasma neurofilament light for prediction of disease progression in familial frontotemporal lobar degeneration. Neurology 96(18):e2296–e2312. https://doi.org/10.1212/wnl.0000000000011848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, Rossi G, Pareyson D et al (2012) Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet 90(6):1102–1107. https://doi.org/10.1016/j.ajhg.2012.04.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Almeida M, Macario M, Ramos L, Baldeiras I, Ribeiro M, Santana I (2016) Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation. Neurobiol Aging 41(200):e201–e205. https://doi.org/10.1016/j.neurobiolaging.2016.02.019

    Article  CAS  Google Scholar 

  22. Huin V, Barbier M, Bottani A, Lobrinus JA, Clot F, Lamari F, Chat L, Rucheton B et al (2020) Homozygous GRN mutations: new phenotypes and new insights into pathological and molecular mechanisms. Brain 143(1):303–319. https://doi.org/10.1093/brain/awz377

    Article  PubMed  Google Scholar 

  23. Martens LH, Zhang J, Barmada SJ, Zhou P, Kamiya S, Sun B, Min SW, Gan L et al (2012) Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest 122(11):3955–3959. https://doi.org/10.1172/JCI63113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, Gregg J, Lu G et al (2012) Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis 45(2):711–722. https://doi.org/10.1016/j.nbd.2011.10.016

    Article  CAS  PubMed  Google Scholar 

  25. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, Ma X, Ma Y et al (2010) Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med 207(1):117–128. https://doi.org/10.1084/jem.20091568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kayasuga Y, Chiba S, Suzuki M, Kikusui T, Matsuwaki T, Yamanouchi K, Kotaki H, Horai R et al (2007) Alteration of behavioural phenotype in mice by targeted disruption of the progranulin gene. Behav Brain Res 185(2):110–118. https://doi.org/10.1016/j.bbr.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  27. Fujita K, Chen X, Homma H, Tagawa K, Amano M, Saito A, Imoto S, Akatsu H et al (2018) Targeting Tyro3 ameliorates a model of PGRN-mutant FTLD-TDP via tau-mediated synaptic pathology. Nat Commun 9(1):433. https://doi.org/10.1038/s41467-018-02821-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nguyen AD, Nguyen TA, Zhang J, Devireddy S, Zhou P, Xu X, Karydas AM, Miller BL, Rigo F et al (2018) Murine knockin model for progranulin-deficient frontotemporal dementia with nonsense-mediated mRNA decay. Proc Natl Acad Sci USA 115(12):E2849–E2858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanaka Y, Chambers JK, Matsuwaki T, Yamanouchi K, Nishihara M (2014) Possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice. Acta Neuropathol Commun 2:78

    Article  PubMed  PubMed Central  Google Scholar 

  30. Götzl JK, Mori K, Damme M, Fellerer K, Tahirovic S, Kleinberger G, Janssens J, van der Zee J et al (2014) Common pathobiochemical hallmarks of progranulin-associated frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis. Acta Neuropathol 127(6):845–860. https://doi.org/10.1007/s00401-014-1262-6

    Article  CAS  PubMed  Google Scholar 

  31. Chang MC, Srinivasan K, Friedman BA, Suto E, Modrusan Z, Lee WP, Kaminker JS, Hansen DV et al (2017) Progranulin deficiency causes impairment of autophagy and TDP-43 accumulation. J Exp Med 214(9):2611–2628. https://doi.org/10.1084/jem.20160999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Lui H, Zhang J, Makinson S, Cahill M, Kelley K, Huang H, Shang Y, Oldham M et al (2016) Progranulin deficiency promotes circuit-specific synaptic pruning by microglia via complement activation. Cell 165(4):921–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ward ME, Chen R, Huang HY, Ludwig C, Telpoukhovskaia M, Taubes A, Boudin H, Minami SS et al (2017) Individuals with progranulin haploinsufficiency exhibit features of neuronal ceroid lipofuscinosis. Sci Transl Med 9(385). https://doi.org/10.1126/scitranslmed.aah5642

  34. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, Yu X, Wuertzer CA et al (2010) Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol 177(1):311–324. https://doi.org/10.2353/ajpath.2010.090915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filiano AJ, Martens LH, Young AH, Warmus BA, Zhou P, Diaz-Ramirez G, Jiao J, Zhang Z et al (2013) Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice. J Neurosci 33(12):5352–5361. https://doi.org/10.1523/JNEUROSCI.6103-11.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, Beal MF, Nathan C et al (2010) Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J 24(12):4639–4647. https://doi.org/10.1096/fj.10-161471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Frew J, Nygaard HB (2021) Neuropathological and behavioral characterization of aged Grn R493X progranulin-deficient frontotemporal dementia knockin mice. Acta Neuropathol Commun 9(1):57. https://doi.org/10.1186/s40478-021-01158-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Arrant A, Filiano A, Warmus B, Hall A, Roberson E (2016) Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test. Genes Brain Behav 15(6):588–603

    Article  CAS  PubMed  Google Scholar 

  39. Krabbe G, Minami SS, Etchegaray JI, Taneja P, Djukic B, Davalos D, Le D, Lo I et al (2017) Microglial NFκB-TNFα hyperactivation induces obsessive-compulsive behavior in mouse models of progranulin-deficient frontotemporal dementia. Proc Natl Acad Sci USA 114(19):5029–5034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ghoshal N, Dearborn JT, Wozniak DF, Cairns NJ (2012) Core features of frontotemporal dementia recapitulated in progranulin knockout mice. Neurobiol Dis 45(1):395–408. https://doi.org/10.1016/j.nbd.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  41. Deacon R (2012) Assessing burrowing, nest construction, and hoarding in mice. J Vis Exp 59:e2607

    Google Scholar 

  42. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, Piven J, Crawley JN (2004) Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav 3(5):287–302. https://doi.org/10.1111/j.1601-1848.2004.00076.x

    Article  CAS  PubMed  Google Scholar 

  43. Farr SA, Niehoff ML, Kumar VB, Roby DA, Morley JE (2019) Inhibition of glycogen synthase kinase 3beta as a treatment for the prevention of cognitive deficits after a traumatic brain injury. J Neurotrauma 36(11):1869–1875. https://doi.org/10.1089/neu.2018.5999

    Article  PubMed  Google Scholar 

  44. Farr SA, Banks WA, La Scola ME, Flood JF, Morley JE (2000) Permanent and temporary inactivation of the hippocampus impairs T-maze footshock avoidance acquisition and retention. Brain Res 872(1-2):242–249. https://doi.org/10.1016/s0006-8993(00)02495-1

    Article  CAS  PubMed  Google Scholar 

  45. Kraeuter AK, Guest PC, Sarnyai Z (2019) The Y-maze for assessment of spatial working and reference memory in mice. Methods Mol Biol 1916:105–111. https://doi.org/10.1007/978-1-4939-8994-2_10

    Article  CAS  PubMed  Google Scholar 

  46. Hammond RS, Tull LE, Stackman RW (2004) On the delay-dependent involvement of the hippocampus in object recognition memory. Neurobiol Learn Mem 82(1):26–34. https://doi.org/10.1016/j.nlm.2004.03.005

    Article  PubMed  Google Scholar 

  47. Ben Abdallah NM, Fuss J, Trusel M, Galsworthy MJ, Bobsin K, Colacicco G, Deacon RM, Riva MA et al (2011) The puzzle box as a simple and efficient behavioral test for exploring impairments of general cognition and executive functions in mouse models of schizophrenia. Exp Neurol 227(1):42–52. https://doi.org/10.1016/j.expneurol.2010.09.008

    Article  PubMed  Google Scholar 

  48. O'Connor AM, Burton TJ, Leamey CA, Sawatari A (2014) The use of the puzzle box as a means of assessing the efficacy of environmental enrichment. J Vis Exp 94:52225. https://doi.org/10.3791/52225

    Article  Google Scholar 

  49. Nicholson A, Finch N, Almeida M, Perkerson R, van Blitterswijk M, Wojtas A, Cenik B, Rotondo S et al (2016) Prosaposin is a regulator of progranulin levels and oligomerization. Nat Commun 7:11992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Arai T, Hasegawa M, Akiyama H, Ikeda K, Nonaka T, Mori H, Mann D, Tsuchiya K et al (2006) TDP-43 is a component of ubiquitin-positive tau-negative inclusions in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Biochem Biophys Res Commun 351(3):602–611. https://doi.org/10.1016/j.bbrc.2006.10.093

    Article  CAS  PubMed  Google Scholar 

  51. Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, Cuijt I, Joris G et al (2012) Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol 228(1):67–76. https://doi.org/10.1002/path.4043

    Article  CAS  PubMed  Google Scholar 

  52. Zhang J, Velmeshev D, Hashimoto K, Huang YH, Hofmann JW, Shi X, Chen J, Leidal AM et al (2020) Neurotoxic microglia promote TDP-43 proteinopathy in progranulin deficiency. Nature 588(7838):459–465. https://doi.org/10.1038/s41586-020-2709-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Weskamp K, Tank EM, Miguez R, McBride JP, Gómez NB, White M, Lin Z, Gonzalez CM et al (2020) Shortened TDP43 isoforms upregulated by neuronal hyperactivity drive TDP43 pathology in ALS. J Clin Invest 130(3):1139–1155. https://doi.org/10.1172/jci130988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ling JP, Pletnikova O, Troncoso JC, Wong PC (2015) TDP-43 repression of nonconserved cryptic exons is compromised in ALS-FTD. Science 349(6248):650–655. https://doi.org/10.1126/science.aab0983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Melamed Z, López-Erauskin J, Baughn MW, Zhang O, Drenner K, Sun Y, Freyermuth F, McMahon MA et al (2019) Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration. Nat Neurosci 22(2):180–190. https://doi.org/10.1038/s41593-018-0293-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ma XR, Prudencio M, Koike Y, Vatsavayai SC, Kim G, Harbinski F, Briner A, Rodriguez CM et al (2022) TDP-43 represses cryptic exon inclusion in the FTD-ALS gene UNC13A. Nature 603(7899):124–130. https://doi.org/10.1038/s41586-022-04424-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Brown AL, Wilkins OG, Keuss MJ, Hill SE, Zanovello M, Lee WC, Bampton A, Lee FCY et al (2022) TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature 603(7899):131–137. https://doi.org/10.1038/s41586-022-04436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Prudencio M, Humphrey J, Pickles S, Brown AL, Hill SE, Kachergus JM, Shi J, Heckman MG et al (2020) Truncated stathmin-2 is a marker of TDP-43 pathology in frontotemporal dementia. J Clin Invest 130(11):6080–6092. https://doi.org/10.1172/jci139741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, Barro C, Kappos L et al (2018) Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol 14(10):577–589. https://doi.org/10.1038/s41582-018-0058-z

    Article  CAS  PubMed  Google Scholar 

  60. Arrant AE, Filiano AJ, Unger DE, Young AH, Roberson ED (2017) Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia. Brain 140(5):1447–1465. https://doi.org/10.1093/brain/awx060

    Article  PubMed  PubMed Central  Google Scholar 

  61. Chiba S, Matsuwaki T, Yamanouchi K, Nishihara M (2009) Alteration in anxiety with relation to the volume of the locus ceruleus in progranulin-deficient mice. J Reprod Dev 55(5):518–522. https://doi.org/10.1262/jrd.20239

    Article  PubMed  Google Scholar 

  62. Petkau TL, Hill A, Leavitt BR (2016) Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds. Neuroscience 315:175–195. https://doi.org/10.1016/j.neuroscience.2015.12.006

    Article  CAS  PubMed  Google Scholar 

  63. Handley SL, McBlane JW (1993) An assessment of the elevated X-maze for studying anxiety and anxiety-modulating drugs. J Pharmacol Toxicol Methods 29(3):129–138. https://doi.org/10.1016/1056-8719(93)90063-k

    Article  CAS  PubMed  Google Scholar 

  64. Sestakova N, Puzserova A, Kluknavsky M, Bernatova I (2013) Determination of motor activity and anxiety-related behaviour in rodents: methodological aspects and role of nitric oxide. Interdiscip Toxicol 6(3):126–135. https://doi.org/10.2478/intox-2013-0020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Benussi A, Premi E, Gazzina S, Brattini C, Bonomi E, Alberici A, Jiskoot L, van Swieten JC et al (2021) Progression of behavioral disturbances and neuropsychiatric symptoms in patients with genetic frontotemporal dementia. JAMA Netw Open 4(1):e2030194. https://doi.org/10.1001/jamanetworkopen.2020.30194

    Article  PubMed  PubMed Central  Google Scholar 

  66. Hodges JR, Davies RR, Xuereb JH, Casey B, Broe M, Bak TH, Kril JJ, Halliday GM (2004) Clinicopathological correlates in frontotemporal dementia. Ann Neurol 56(3):399–406. https://doi.org/10.1002/ana.20203

    Article  PubMed  Google Scholar 

  67. Possin KL, Feigenbaum D, Rankin KP, Smith GE, Boxer AL, Wood K, Hanna SM, Miller BL et al (2013) Dissociable executive functions in behavioral variant frontotemporal and Alzheimer dementias. Neurology 80(24):2180–2185. https://doi.org/10.1212/WNL.0b013e318296e940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rosen HJ, Allison SC, Schauer GF, Gorno-Tempini ML, Weiner MW, Miller BL (2005) Neuroanatomical correlates of behavioural disorders in dementia. Brain 128(Pt 11):2612–2625. https://doi.org/10.1093/brain/awh628

    Article  PubMed  Google Scholar 

  69. van der Ende EL, Heller C, Sogorb-Esteve A, Swift IJ, McFall D, Peakman G, Bouzigues A, Poos JM et al (2022) Elevated CSF and plasma complement proteins in genetic frontotemporal dementia: results from the GENFI study. J Neuroinflammation 19(1):217. https://doi.org/10.1186/s12974-022-02573-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Boland S, Swarup S, Ambaw YA, Malia PC, Richards RC, Fischer AW, Singh S, Aggarwal G et al (2022) Deficiency of the frontotemporal dementia gene GRN results in gangliosidosis. Nat Commun 13(1):5924. https://doi.org/10.1038/s41467-022-33500-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Logan T, Simon MJ, Rana A, Cherf GM, Srivastava A, Davis SS, Low RLY, Chiu CL et al (2021) Rescue of a lysosomal storage disorder caused by Grn loss of function with a brain penetrant progranulin biologic. Cell 184(18):4651–4668.e4625. https://doi.org/10.1016/j.cell.2021.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roberson ED (2012) Mouse models of frontotemporal dementia. Ann Neurol 72(6):837–849. https://doi.org/10.1002/ana.23722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Petkau TL, Life B, Lu G, Yang J, Fornes O, Wasserman W, Simpson EM, Leavitt BR (2021) Human progranulin-expressing mice as a novel tool for the development of progranulin-modulating therapeutics. Neurobiol Dis 153:105314. https://doi.org/10.1016/j.nbd.2021.105314

    Article  CAS  PubMed  Google Scholar 

  74. Chien HF, Rodriguez RD, Bonifati V, Nitrini R, Pasqualucci CA, Gelpi E, Barbosa ER (2021) Neuropathologic findings in a patient with juvenile-onset levodopa-responsive parkinsonism due to ATP13A2 mutation. Neurology 97(16):763–766. https://doi.org/10.1212/wnl.0000000000012705

    Article  PubMed  Google Scholar 

  75. Takahashi K, Nelvagal HR, Lange J, Cooper JD (2022) Glial dysfunction and its contribution to the pathogenesis of the neuronal ceroid lipofuscinoses. Front Neurol 13:886567. https://doi.org/10.3389/fneur.2022.886567

    Article  PubMed  PubMed Central  Google Scholar 

  76. Nakanishi H, Zhang J, Koike M, Nishioku T, Okamoto Y, Kominami E, von Figura K, Peters C et al (2001) Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci 21(19):7526–7533. https://doi.org/10.1523/jneurosci.21-19-07526.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Partanen S, Haapanen A, Kielar C, Pontikis C, Alexander N, Inkinen T, Saftig P, Gillingwater TH et al (2008) Synaptic changes in the thalamocortical system of cathepsin D-deficient mice: a model of human congenital neuronal ceroid-lipofuscinosis. J Neuropathol Exp Neurol 67(1):16–29. https://doi.org/10.1097/nen.0b013e31815f3899

    Article  CAS  PubMed  Google Scholar 

  78. Kashyap SN, Boyle NR, Roberson ED (2023) Preclinical interventions in mouse models of frontotemporal dementia due to progranulin mutations. Neurotherapeutics 20(1):140–153. https://doi.org/10.1007/s13311-023-01348-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Robert Farese, Jr., Tobias Walther, John Morley, and Thi Nguyen for helpful discussions, the Bluefield Project to Cure FTD for progranulin antibodies and Grn mouse plasma, Yuna Ayala for advice about TDP-43 analysis, Sami Barmada for qPCR primer sequences for sTDP-43 isoforms, the NeuroBehavior Laboratory at the Harvard NeuroDiscovery Center, the Quanterix Accelerator Lab, and Millipore Sigma for plasma NfL measurements using the SMC platform

Funding

This work was supported by grants from the National Institutes of Health (AG047339 and AG064069) and the Bluefield Project to Cure FTD to ADN. Research reported in this publication was also supported by the Washington University Institute of Clinical and Translational Sciences grant UL1TR002345 from the National Center for Advancing Translational Sciences (NCATS) of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

D. M. Smith performed experiments, analyzed data, and prepared figures. G. Aggarwal performed experiments. M. L. Niehoff performed experiments. S. A. Jones performed experiments. S. Banerjee performed experiments. S. A. Farr performed experiments, analyzed data, and prepared figures. A. D. Nguyen designed the study, analyzed data, prepared figures, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Andrew D. Nguyen.

Ethics declarations

Ethics Approval

All methods and animal procedures were approved by the Institutional Animal Care and Use Committee at Saint Louis University or the Harvard Medical Area Standing Committee on Animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(ZIP 29286 kb)

ESM 2

(DOCX 14 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, D.M., Aggarwal, G., Niehoff, M.L. et al. Biochemical, Biomarker, and Behavioral Characterization of the GrnR493X Mouse Model of Frontotemporal Dementia. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04190-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04190-9

Keywords

Navigation