Skip to main content
Log in

The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson’s Disease

  • Review
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is a complex neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons, leading to motor and non-motor symptoms. Emerging research has shed light on the role of gut microbiota in the pathogenesis and progression of PD. Nutraceuticals such as curcumin, berberine, phytoestrogens, polyphenols (e.g., resveratrol, EGCG, and fisetin), dietary fibers have been shown to influence gut microbiota composition and function, restoring microbial balance and enhancing the gut-brain axis. The mechanisms underlying these benefits involve microbial metabolite production, restoration of gut barrier integrity, and modulation of neuroinflammatory pathways. Additionally, probiotics and prebiotics have shown potential in promoting gut health, influencing the gut microbiome, and alleviating PD symptoms. They can enhance the gut’s antioxidant capacity of the gut, reduce inflammation, and maintain immune homeostasis, contributing to a neuroprotective environment. This paper provides an overview of the current state of knowledge regarding the potential of nutraceuticals and gut microbiota modulation in the prevention and management of Parkinson’s disease, emphasizing the need for further research and clinical trials to validate their effectiveness and safety. The findings suggest that a multifaceted approach involving nutraceuticals and gut microbiota may open new avenues for addressing the challenges of PD and improving the quality of life for affected individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Chiang PL, Chen HL, Lu CH, Chen PC, Chen MH, Yang IH et al (2017) White matter damage and systemic inflammation in Parkinson’s disease. BMC Neurosci 18(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  2. Paolini Paoletti F, Simoni S, Parnetti L, Gaetani L (2021) The contribution of small vessel disease to neurodegeneration: focus on Alzheimer’s disease, Parkinson’s disease and multiple sclerosis. Int J Mol Sci 22(9):4958. https://doi.org/10.3390/ijms22094958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jellinger KA (2014) Neuropathology of Parkinson’s disease. Inflamm Parkinson’s Dis: Sci Clin Asp. Springer, pp 25–74

    Chapter  Google Scholar 

  4. Kachidian P, Gubellini P (2021) Genetic models of Parkinson’s disease. Clin Trials Parkinson's Dis 37–84

  5. Djaldetti R, Lev N, Melamed E (2009) Lesions outside the CNS in Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 24(6):793–800

    Article  Google Scholar 

  6. Sulzer D, Surmeier DJ (2013) Neuronal vulnerability, pathogenesis, and Parkinson’s disease. Mov Disord 28(6):715–724

    Article  PubMed  Google Scholar 

  7. Lashuel HA, Mahul-Mellier A-L, Novello S, Hegde RN, Jasiqi Y, Altay MF et al (2022) Revisiting the specificity and ability of phospho-S129 antibodies to capture alpha-synuclein biochemical and pathological diversity. npj Parkinson’s Dis 8(1):136

    Article  CAS  Google Scholar 

  8. Sian-Hulsmann J, Monoranu C, Strobel S, Riederer P (2015) Lewy bodies: a spectator or salient killer? CNS Neurol Disord-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders) 14(7):947–55

    CAS  Google Scholar 

  9. Harsanyiova J, Buday T, Kralova TA (2020) Parkinson’s disease and the gut: future perspectives for early diagnosis. Front Neurosci 14:626

    Article  PubMed  PubMed Central  Google Scholar 

  10. Berg D, Borghammer P, Fereshtehnejad S-M, Heinzel S, Horsager J, Schaeffer E et al (2021) Prodromal Parkinson disease subtypes—key to understanding heterogeneity. Nat Rev Neurol 17(6):349–361

    Article  PubMed  Google Scholar 

  11. Bhidayasiri R, Rattanachaisit W, Phokaewvarangkul O, Lim TT, Fernandez HH (2019) Exploring bedside clinical features of parkinsonism: a focus on differential diagnosis. Parkinsonism Relat Disord 59:74–81

    Article  PubMed  Google Scholar 

  12. Koga S, Aoki N, Uitti RJ, Van Gerpen JA, Cheshire WP, Josephs KA et al (2015) When DLB, PD, and PSP masquerade as MSA: an autopsy study of 134 patients. Neurology 85(5):404–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schiesling C, Kieper N, Seidel K, Krüger R (2008) Familial Parkinson’s disease–genetics, clinical phenotype and neuropathology in relation to the common sporadic form of the disease. Neuropathol Appl Neurobiol 34(3):255–271

    Article  CAS  PubMed  Google Scholar 

  14. Domingo A, Klein C (2018) Genetics of Parkinson disease. Handb Clin Neurol 147:211–27 (Elsevier)

    Article  PubMed  Google Scholar 

  15. Gao H-M, Hong J-S (2011) Gene–environment interactions: key to unraveling the mystery of Parkinson’s disease. Prog Neurobiol 94(1):1–19

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ghatak S, Trudler D, Dolatabadi N, Ambasudhan R (2018) Parkinson’s disease: what the model systems have taught us so far. J Genet 97:729–751

    Article  CAS  PubMed  Google Scholar 

  17. Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R (2007) How common are the “common” neurologic disorders? Neurology 68(5):326–337

    Article  CAS  PubMed  Google Scholar 

  18. Kim SD, Allen NE, Canning CG, Fung VSC (2018) Chapter 11 - Parkinson disease. In: Day BL, Lord SR, editors. Handb Clin Neurol 159: 173–93 Elsevier

  19. Elbaz A, Carcaillon L, Kab S, Moisan F (2016) Epidemiology of Parkinson’s disease. Revue neurologique 172(1):14–26

    Article  CAS  PubMed  Google Scholar 

  20. WHO. Parkinson disease 2023 [Available from: https://www.who.int/news-room/fact-sheets/detail/parkinson-disease

  21. Gazerani P (2019) Probiotics for Parkinson’s disease. Int J Mol Sci 20(17):4121. https://doi.org/10.3390/ijms20174121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang K, Wu Z, Long J, Li W, Wang X, Hu N et al (2023) White matter changes in Parkinson’s disease. NPJ Parkinson’s Dis 9(1):150

    Article  Google Scholar 

  23. Romano S, Savva GM, Bedarf JR, Charles IG, Hildebrand F, Narbad A (2021) Meta-analysis of the Parkinson’s disease gut microbiome suggests alterations linked to intestinal inflammation. NPJ Parkinson’s Dis 7(1):27

    Article  CAS  Google Scholar 

  24. Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC (2022) Guts imbalance imbalances the brain: a review of gut microbiota association with neurological and psychiatric disorders. Front Med 9:813204

    Article  Google Scholar 

  25. Baldini F, Hertel J, Sandt E, Thinnes CC, Neuberger-Castillo L, Pavelka L et al (2020) Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol 18(1):62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hou K, Wu Z-X, Chen X-Y, Wang J-Q, Zhang D, Xiao C et al (2022) Microbiota in health and diseases. Signal Transduct Target Ther 7(1):135

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fujio-Vejar S, Vasquez Y, Morales P, Magne F, Vera-Wolf P, Ugalde JA et al (2017) The gut microbiota of healthy chilean subjects reveals a high abundance of the phylum verrucomicrobia. Front Microbiol 8:1221

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ochoa-Repáraz J, Kasper LH (2016) The second brain: is the gut microbiota a link between obesity and central nervous system disorders? Curr Obes Rep 5:51–64

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G et al (2020) Intestinal flora and disease mutually shape the regional immune system in the intestinal tract. Front Immunol 11:575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chakrabarti A, Geurts L, Hoyles L, Iozzo P, Kraneveld AD, La Fata G et al (2022) The microbiota–gut–brain axis: pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell Mol Life Sci 79(2):80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dos Santos JCC, Lima MPP, de Castro Brito GA, de Barros Viana GS (2022) Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis. Ageing Res Rev 101812. https://doi.org/10.1016/j.arr.2022.101812

  32. Moustafa SA, Mohamed S, Dawood A, Azar J, Elmorsy E, Rizk NA et al (2021) Gut brain axis: an insight into microbiota role in Parkinson’s disease. Metab Brain Dis 36(7):1545–1557

    Article  PubMed  Google Scholar 

  33. Zeisel SH (1999) Regulation of “nutraceuticals.” Am Assoc Adv Sci 285(5435):1853–1855

    CAS  Google Scholar 

  34. Girija AR (2018) 6 - Peptide nutraceuticals. In: Koutsopoulos S, editor. Peptide Appl Biomed Biotechnol Bioeng: Woodhead Publishing 157–81

  35. Enciu A-M, Codrici E, Mihai S, Manole E, Pop S, Codorean E et al (2018) Role of nutraceuticals in modulation of gut-brain axis in elderly persons. Gerontology 247:248–265

    Google Scholar 

  36. Maiti P, Manna J, Dunbar GL (2017) Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener 6:1–35

    Article  Google Scholar 

  37. Caminiti SP, Presotto L, Baroncini D, Garibotto V, Moresco RM, Gianolli L et al (2017) Axonal damage and loss of connectivity in nigrostriatal and mesolimbic dopamine pathways in early Parkinson’s disease. NeuroImage: Clin 14:734–40

    Article  PubMed  Google Scholar 

  38. Korczyn AD, Balash Y, Gurevich T (2017) Parkinson’s disease. In: Quah SR (ed) International Encyclopedia of Public Health, 2nd edn. Academic Press, Oxford, pp 409–415

    Chapter  Google Scholar 

  39. Grinberg LT, Rueb U, di Lorenzo Alho AT, Heinsen H (2010) Brainstem pathology and non-motor symptoms in PD. J Neurol Sci 289(1–2):81–88

    Article  PubMed  Google Scholar 

  40. Pasquini J, Brooks DJ, Pavese N (2021) The cholinergic brain in Parkinson’s disease. Mov Disord Clin Pract 8(7):1012–1026

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hornykiewicz O (1998) Biochemical aspects of Parkinson’s disease. Neurology 51(2 Suppl 2):S2–S9

    CAS  PubMed  Google Scholar 

  42. Humbert J, Beyer K, Carrato C, Mate JL, Ferrer I, Ariza A (2007) Parkin and synphilin-1 isoform expression changes in Lewy body diseases. Neurobiol Dis 26(3):681–687

    Article  CAS  PubMed  Google Scholar 

  43. Castonguay A-M, Gravel C, Lévesque M (2021) Treating Parkinson’s disease with antibodies: Previous studies and future directions. J Parkinsons Dis 11(1):71–92

    Article  PubMed  PubMed Central  Google Scholar 

  44. Schneider SA, Alcalay RN (2017) Neuropathology of genetic synucleinopathies with parkinsonism: review of the literature. Mov Disord 32(11):1504–1523

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sato S, Uchihara T, Fukuda T, Noda S, Kondo H, Saiki S et al (2018) Loss of autophagy in dopaminergic neurons causes Lewy pathology and motor dysfunction in aged mice. Sci Rep 8(1):2813

    Article  PubMed  PubMed Central  Google Scholar 

  46. Braak H, Del Tredici K, Rüb U, De Vos RA, Steur ENJ, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  47. Galvin JE, Uryu K, Lee VM-Y, Trojanowski JQ (1999) Axon pathology in Parkinson’s disease and Lewy body dementia hippocampus contains α-, β-, and γ-synuclein. Proc Natl Acad Sci 96(23):13450–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62(1):63–88

    Article  CAS  PubMed  Google Scholar 

  49. Bartels AL, Leenders KL (2009) Parkinson’s disease: the syndrome, the pathogenesis and pathophysiology. Cortex 45(8):915–921

    Article  PubMed  Google Scholar 

  50. Flash T, Henis E (1991) Arm trajectory modifications during reaching towards visual targets. J Cogn Neurosci 3(3):220–230

    Article  CAS  PubMed  Google Scholar 

  51. Paul M, Graybiel A, David J, Robertson H (1992) D1-like and D2-like dopamine receptors synergistically activate rotation and c-fos expression in the dopamine-depleted striatum in a rat model of Parkinson’s disease. J Neurosci 12(10):3729–3742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Espay AJ, Morgante F, Merola A, Fasano A, Marsili L, Fox SH et al (2018) Levodopa-induced dyskinesia in Parkinson disease: current and evolving concepts. Ann Neurol 84(6):797–811

    Article  PubMed  Google Scholar 

  53. Blum D, Torch S, Lambeng N, Nissou M-F, Benabid A-L, Sadoul R et al (2001) Molecular pathways involved in the neurotoxicity of 6-OHDA, dopamine and MPTP: contribution to the apoptotic theory in Parkinson’s disease. Prog Neurobiol 65(2):135–172

    Article  CAS  PubMed  Google Scholar 

  54. Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2(3):484–494

    Article  PubMed  PubMed Central  Google Scholar 

  55. Smeyne RJ, Jackson-Lewis V (2005) The MPTP model of Parkinson’s disease. Mol Brain Res 134(1):57–66

    Article  CAS  PubMed  Google Scholar 

  56. Dexter D, Carayon A, Javoy-Agid F, Agid Y, Wells F, Daniel S et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(4):1953–1975

    Article  PubMed  Google Scholar 

  57. Hagemeier J, Geurts JJ, Zivadinov R (2012) Brain iron accumulation in aging and neurodegenerative disorders. Expert Rev Neurother 12(12):1467–1480

    Article  CAS  PubMed  Google Scholar 

  58. Shen T, Yue Y, He T, Huang C, Qu B, Lv W et al (2021) The association between the gut microbiota and Parkinson’s disease, a meta-analysis. Front Aging Neurosci 13:40

    Article  Google Scholar 

  59. Pant A, Bisht KS, Aggarwal S, Maiti TK (2022) Human gut microbiota and Parkinson’s disease. Prog Mol Biol Transl Sci 192(1):281–307

    Article  CAS  PubMed  Google Scholar 

  60. Dogra N, Mani RJ, Katare DP (2022) The gut-brain axis: two ways signaling in Parkinson’s disease. Cell Mol Neurobiol 42(2):315–332

    Article  CAS  PubMed  Google Scholar 

  61. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R et al (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6(2):603

    Article  PubMed  PubMed Central  Google Scholar 

  62. Cao DW, Jiang CM, Wan C, Zhang M, Zhang QY, Zhao M et al (2018) Upregulation of MiR-126 delays the senescence of human glomerular mesangial cells induced by high glucose via Telomere-p53-p21-Rb signaling pathway. Curr Med Sci 38(5):758–764

    Article  CAS  PubMed  Google Scholar 

  63. Dong S, Sun M, He C, Cheng H (2022) Brain-gut-microbiota axis in Parkinson’s disease: a historical review and future perspective. Brain Res Bull 183:84–93

    Article  CAS  PubMed  Google Scholar 

  64. Volpicelli-Daley LA, Luk KC, Patel TP, Tanik SA, Riddle DM, Stieber A et al (2011) Exogenous α-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72(1):57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Fishbein I, Kuo Y-M, Giasson BI, Nussbaum RL (2014) Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation. Brain 137(12):3235–3247

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    Article  CAS  PubMed  Google Scholar 

  67. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF et al (2021) Gut microbial ecosystem in Parkinson disease: new clinicobiological insights from multi-omics. Ann Neurol 89(3):546–559

    Article  CAS  PubMed  Google Scholar 

  68. Hill JH, Round JL (2021) SnapShot: microbiota effects on host physiology. Cell 184(10):2796-e1

    Article  CAS  PubMed  Google Scholar 

  69. Cryan JF, O’Riordan KJ, Cowan CS, Sandhu KV, Bastiaanssen TF, Boehme M et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013

    Article  CAS  PubMed  Google Scholar 

  70. Agirman G, Hsiao EY (2021) SnapShot: The microbiota-gut-brain axis. Cell 184(9):2524-e1

    Article  CAS  PubMed  Google Scholar 

  71. Collins SM, Surette M, Bercik P (2012) The interplay between the intestinal microbiota and the brain. Nat Rev Microbiol 10(11):735–742

    Article  CAS  PubMed  Google Scholar 

  72. Brzozowski B, Mazur-Bialy A, Pajdo R, Kwiecien S, Bilski J, Zwolinska-Wcislo M et al (2016) Mechanisms by which stress affects the experimental and clinical inflammatory bowel disease (IBD): role of brain-gut axis. Curr Neuropharmacol 14(8):892–900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zheng S-Y, Li H-X, Xu R-C, Miao W-T, Dai M-Y, Ding S-T et al (2021) Potential roles of gut microbiota and microbial metabolites in Parkinson’s disease. Ageing Res Rev 69:101347

    Article  CAS  PubMed  Google Scholar 

  74. Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (2018) Current understanding of the human microbiome. Nat Med 24(4):392–400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gerhardt S, Mohajeri MH (2018) Changes of colonic bacterial composition in Parkinson’s disease and other neurodegenerative diseases. Nutrients 10(6):708

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhang F, Yue L, Fang X, Wang G, Li C, Sun X et al (2020) Altered gut microbiota in Parkinson’s disease patients/healthy spouses and its association with clinical features. Parkinsonism Relat Disord 81:84–88

    Article  PubMed  Google Scholar 

  77. Wallen ZD, Appah M, Dean MN, Sesler CL, Factor SA, Molho E et al (2020) Characterizing dysbiosis of gut microbiome in PD: evidence for overabundance of opportunistic pathogens. npj Parkinson’s Dis 6(1):11

    Article  CAS  Google Scholar 

  78. Dalmasso M, Hill C, Ross RP (2014) Exploiting gut bacteriophages for human health. Trends Microbiol 22(7):399–405

    Article  CAS  PubMed  Google Scholar 

  79. Tetz G, Brown SM, Hao Y, Tetz V (2018) Parkinson’s disease and bacteriophages as its overlooked contributors. Sci Rep 8(1):10812

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pisa D, Alonso R, Carrasco L (2020) Parkinson’s disease: a comprehensive analysis of fungi and bacteria in brain tissue. Int J Biol Sci 16(7):1135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nuzum ND, Loughman A, Szymlek-Gay EA, Hendy A, Teo W-P, Macpherson H (2020) Gut microbiota differences between healthy older adults and individuals with Parkinson’s disease: a systematic review. Neurosci Biobehav Rev 112:227–241

    Article  PubMed  Google Scholar 

  82. Wu G, Jiang Z, Pu Y, Chen S, Wang T, Wang Y et al (2022) Serum short-chain fatty acids and its correlation with motor and non-motor symptoms in Parkinson’s disease patients. BMC Neurol 22(1):13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Duan WX, Wang F, Liu JY, Liu CF (2023) Relationship between short-chain fatty acids and Parkinson’s disease: a review from pathology to clinic. Neurosci Bull. https://doi.org/10.1007/s12264-023-01123-9

    Article  PubMed  PubMed Central  Google Scholar 

  84. Zhu M, Liu X, Ye Y, Yan X, Cheng Y, Zhao L et al (2022) Gut microbiota: a novel therapeutic target for Parkinson’s disease. Front Immunol 13:937555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE et al (2016) Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167(6):1469–80. e12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Liu J, Wang F, Liu S, Du J, Hu X, Xiong J et al (2017) Sodium butyrate exerts protective effect against Parkinson’s disease in mice via stimulation of glucagon like peptide-1. J Neurol Sci 381:176–181

    Article  CAS  PubMed  Google Scholar 

  87. Paiva I, Pinho R, Pavlou MA, Hennion M, Wales P, Schütz AL et al (2017) Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum Mol Genet 26(12):2231–2246

    Article  CAS  PubMed  Google Scholar 

  88. Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA et al (2011) Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS one 6(12):e28032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, Borghammer P (2016) Pathological α-synuclein in gastrointestinal tissues from prodromal P arkinson disease patients. Ann Neurol 79(6):940–949

    Article  CAS  PubMed  Google Scholar 

  90. Ulusoy A, Phillips RJ, Helwig M, Klinkenberg M, Powley TL, Di Monte DA (2017) Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections. Acta Neuropathol 133:381–393

    Article  CAS  PubMed  Google Scholar 

  91. Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG (2020) The gut microbiome in neurological disorders. Lancet Neurol 19(2):179–194

    Article  CAS  PubMed  Google Scholar 

  92. Kalia LV, Lang AE (2015) Parkinson’s disease. Lancet 386(9996):896–912

    Article  CAS  PubMed  Google Scholar 

  93. Chen H, Zhao EJ, Zhang W, Lu Y, Liu R, Huang X et al (2015) Meta-analyses on prevalence of selected Parkinson’s nonmotor symptoms before and after diagnosis. Transl Neurodegener 4(1):1–8

    Article  PubMed  PubMed Central  Google Scholar 

  94. Caputi V, Giron MC (2018) Microbiome-gut-brain axis and toll-like receptors in Parkinson’s disease. Int J Mol Sci 19(6):1689

    Article  PubMed  PubMed Central  Google Scholar 

  95. Perez-Pardo P, Dodiya HB, Engen PA, Forsyth CB, Huschens AM, Shaikh M et al (2019) Role of TLR4 in the gut-brain axis in Parkinson’s disease: a translational study from men to mice. Gut 68(5):829–843

    Article  CAS  PubMed  Google Scholar 

  96. Houser MC, Tansey MG (2017) The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinson’s Dis 3(1):3

    Article  Google Scholar 

  97. Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA et al (2014) Progression of intestinal permeability changes and alpha-synuclein expression in a mouse model of Parkinson’s disease. Mov Disord 29(8):999–1009

    Article  CAS  PubMed  Google Scholar 

  98. Kouli A, Horne C, Williams-Gray C (2019) Toll-like receptors and their therapeutic potential in Parkinson’s disease and α-synucleinopathies. Brain Behav Immun 81:41–51

    Article  CAS  PubMed  Google Scholar 

  99. Pålsson-McDermott EM, O’Neill LA (2004) Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113(2):153–162

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stefanova N, Fellner L, Reindl M, Masliah E, Poewe W, Wenning GK (2011) Toll-like receptor 4 promotes α-synuclein clearance and survival of nigral dopaminergic neurons. Am J Pathol 179(2):954–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Lema Tomé CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P (2013) Inflammation and α-synuclein’s prion-like behavior in Parkinson’s disease—is there a link? Mol Neurobiol 47:561–574

    Article  PubMed  Google Scholar 

  102. Keshavarzian A, Engen P, Bonvegna S, Cilia R (2020) The gut microbiome in Parkinson’s disease: A culprit or a bystander? Prog Brain Res 252:357–450

    Article  PubMed  Google Scholar 

  103. Ma L-Y, Liu G-L, Wang D-X, Zhang M-M, Kou W-Y, Feng T (2019) Alpha-synuclein in peripheral tissues in Parkinson’s disease. ACS Chem Neurosci 10(2):812–823

    Article  CAS  PubMed  Google Scholar 

  104. Rani L, Mondal AC (2021) Unravelling the role of gut microbiota in Parkinson’s disease progression: pathogenic and therapeutic implications. Neurosci Res 168:100–112

    Article  CAS  PubMed  Google Scholar 

  105. Uemura N, Yagi H, Uemura MT, Hatanaka Y, Yamakado H, Takahashi R (2018) Inoculation of α-synuclein preformed fibrils into the mouse gastrointestinal tract induces Lewy body-like aggregates in the brainstem via the vagus nerve. Mol Neurodegener 13(1):1–11

    Article  Google Scholar 

  106. Lai F, Jiang R, Xie W, Liu X, Tang Y, Xiao H et al (2018) Intestinal pathology and gut microbiota alterations in a methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. Neurochem Res 43:1986–1999

    Article  CAS  PubMed  Google Scholar 

  107. Chen SG, Stribinskis V, Rane MJ, Demuth DR, Gozal E, Roberts AM et al (2016) Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci Rep 6(1):34477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bhattacharyya D, Mohite GM, Krishnamoorthy J, Gayen N, Mehra S, Navalkar A et al (2019) Lipopolysaccharide from gut microbiota modulates α-synuclein aggregation and alters its biological function. ACS Chem Neurosci 10(5):2229–2236

    Article  CAS  PubMed  Google Scholar 

  109. Yshii LM, Denadai-Souza A, Vasconcelos AR, Avellar MCW, Scavone C (2015) Suppression of MAPK attenuates neuronal cell death induced by activated glia-conditioned medium in alpha-synuclein overexpressing SH-SY5Y cells. J Neuroinflammation 12:1–8

    Article  Google Scholar 

  110. Chen C-M, Yen C-Y, Chen W-L, Lin C-H, Wu Y-R, Chang K-H et al (2021) Pathomechanism characterization and potential therapeutics identification for Parkinson’s disease targeting neuroinflammation. Int J Mol Sci 22(3):1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rolli-Derkinderen M, Leclair-Visonneau L, Bourreille A, Coron E, Neunlist M, Derkinderen P (2020) Is Parkinson’s disease a chronic low-grade inflammatory bowel disease? J Neurol 267(8):2207–2213

    Article  PubMed  Google Scholar 

  112. Shandilya S, Kumar S, Jha NK, Kesari KK, Ruokolainen J (2022) Interplay of gut microbiota and oxidative stress: perspective on neurodegeneration and neuroprotection. J Adv Res 38:223–244

    Article  CAS  PubMed  Google Scholar 

  113. Rutsch A, Kantsjö JB, Ronchi F (2020) The gut-brain axis: how microbiota and host inflammasome influence brain physiology and pathology. Front Immunol 11:604179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park S, Kim J, Chun J, Han K, Soh H, Kang EA et al (2019) Patients with inflammatory bowel disease are at an increased risk of Parkinson’s disease: a South Korean nationwide population-based study. J Clin Med 8(8):1191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Villumsen M, Aznar S, Pakkenberg B, Jess T, Brudek T (2019) Inflammatory bowel disease increases the risk of Parkinson’s disease: a Danish nationwide cohort study 1977–2014. Gut 68(1):18–24

    Article  CAS  PubMed  Google Scholar 

  116. Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H et al (2013) Colonic inflammation in Parkinson’s disease. Neurobiol Dis 50:42–48

    Article  CAS  PubMed  Google Scholar 

  117. Rahman MM, Wang X, Islam MR, Akash S, Supti FA, Mitu MI et al (2022) Multifunctional role of natural products for the treatment of Parkinson’s disease: at a glance. Front Pharmacol 13:976385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Woulfe JM, Gray MT, Gray DA, Munoz DG, Middeldorp JM (2014) Hypothesis: a role for EBV-induced molecular mimicry in Parkinson’s disease. Parkinsonism Relat Disord 20(7):685–694

    Article  PubMed  Google Scholar 

  119. Friedland RP (2015) Mechanisms of molecular mimicry involving the microbiota in neurodegeneration. J Alzheimers Dis 45(2):349–362

    Article  CAS  PubMed  Google Scholar 

  120. Sampson TR, Challis C, Jain N, Moiseyenko A, Ladinsky MS, Shastri GG et al (2020) A gut bacterial amyloid promotes α-synuclein aggregation and motor impairment in mice. elife 9:e53111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Limphaibool N, Iwanowski P, Holstad MJV, Kobylarek D, Kozubski W (2019) Infectious etiologies of parkinsonism: pathomechanisms and clinical implications. Front Neurol 10:652

    Article  PubMed  PubMed Central  Google Scholar 

  122. Jasemi S, Paulus K, Noli M, Simula ER, Ruberto S, Sechi LA (2022) Antibodies against HSV-1 and Curli show the highest correlation in Parkinson’s disease patients in comparison to healthy controls. Int J Mol Sci 23(23):14816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Wang Z, Gao G, Duan C, Yang H (2019) Progress of immunotherapy of anti-α-synuclein in Parkinson’s disease. Biomed Pharmacother 115:108843

    Article  CAS  PubMed  Google Scholar 

  124. Hill-Burns EM, Debelius JW, Morton JT, Wissemann WT, Lewis MR, Wallen ZD et al (2017) Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome. Mov Disord 32(5):739–749

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weis S, Schwiertz A, Unger MM, Becker A, Faßbender K, Ratering S et al (2019) Effect of Parkinson’s disease and related medications on the composition of the fecal bacterial microbiota. NPJ Parkinson’s Dis 5(1):28

    Article  CAS  Google Scholar 

  126. van Kessel SP, Frye AK, El-Gendy AO, Castejon M, Keshavarzian A, van Dijk G et al (2019) Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson’s disease. Nat Commun 10(1):310

    Article  PubMed  PubMed Central  Google Scholar 

  127. Beckers M, Bloem BR, Verbeek MM (2022) Mechanisms of peripheral levodopa resistance in Parkinson’s disease. npj Parkinson’s Dis 8(1):56

    Article  CAS  Google Scholar 

  128. Tan AH, Lim SY, Mahadeva S, Loke MF, Tan JY, Ang BH et al (2020) Helicobacter pylori eradication in Parkinson’s disease: a randomized placebo-controlled trial. Mov Disord 35(12):2250–2260

    Article  CAS  PubMed  Google Scholar 

  129. Lama A, Pirozzi C, Avagliano C, Annunziata C, Mollica MP, Calignano A et al (2020) Nutraceuticals: An integrative approach to starve Parkinson’s disease. Brain Behav Immun-Health 2:100037

    Article  PubMed  PubMed Central  Google Scholar 

  130. González Olmo BM, Butler MJ, Barrientos RM (2021) Evolution of the human diet and its impact on gut microbiota, immune responses, and brain health. Nutrients 13(1):196

    Article  PubMed  PubMed Central  Google Scholar 

  131. Gomaa EZ (2020) Human gut microbiota/microbiome in health and diseases: a review. Antonie Van Leeuwenhoek 113(12):2019–2040

    Article  PubMed  Google Scholar 

  132. Li X, Liu L, Cao Z, Li W, Li H, Lu C et al (2020) Gut microbiota as an “invisible organ” that modulates the function of drugs. Biomed Pharmacother 121:109653

    Article  PubMed  Google Scholar 

  133. Perez-Pardo P, Dodiya HB, Broersen LM, Douna H, van Wijk N, Lopes da Silva S et al (2018) Gut–brain and brain–gut axis in Parkinson’s disease models: effects of a uridine and fish oil diet. Nutr Neurosci 21(6):391–402

    Article  CAS  PubMed  Google Scholar 

  134. Thangaleela S, Sivamaruthi BS, Kesika P, Bharathi M, Chaiyasut C (2022) Role of the gut–brain axis, gut microbial composition, diet, and probiotic intervention in Parkinson’s disease. Microorganisms 10(8):1544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Crozier A, Yokota T, Jaganath IB, Marks S, Saltmarsh M, Clifford MN (2006) Secondary metabolites in fruits, vegetables, beverages and other plant based dietary components. Plant Second Metabolites: Occurrence Struct Role Hum Diet 208–302

  136. Alamgir A, Alamgir A (2018) Phytoconstituents—active and inert constituents, metabolic pathways, chemistry and application of phytoconstituents, primary metabolic products, and bioactive compounds of primary metabolic origin. Ther Use Med Plants Extracts: Volume 2: Phytochem Bioact Compd 2:25–164

    Google Scholar 

  137. Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G et al (2018) Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol 9:557

    Article  PubMed  PubMed Central  Google Scholar 

  138. Sun Q, Yang H, Liu M, Ren S, Zhao H, Ming T et al (2022) Berberine suppresses colorectal cancer by regulation of Hedgehog signaling pathway activity and gut microbiota. Phytomedicine 103:154227

    Article  CAS  PubMed  Google Scholar 

  139. Cheng H, Liu J, Tan Y, Feng W, Peng C (2022) Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal 12(4):541–555

    Article  PubMed  Google Scholar 

  140. Peng L, Kang S, Yin Z, Jia R, Song X, Li L et al (2015) Antibacterial activity and mechanism of berberine against Streptococcus agalactiae. Int J Clin Exp Pathol 8(5):5217

    PubMed  PubMed Central  Google Scholar 

  141. Huang X, Zheng M, Yi Y, Patel A, Song Z, Li Y (2020) Inhibition of berberine hydrochloride on Candida albicans biofilm formation. Biotech Lett 42:2263–2269

    Article  CAS  Google Scholar 

  142. Zhang X, Sun X, Wu J, Wu Y, Wang Y, Hu X et al (2020) Berberine damages the cell surface of methicillin-resistant Staphylococcus aureus. Front Microbiol 11:621

    Article  PubMed  PubMed Central  Google Scholar 

  143. Budeyri Gokgoz N, Avci FG, Yoneten KK, Alaybeyoglu B, Ozkirimli E, Sayar NA et al (2017) Response of Escherichia coli to prolonged berberine exposure. Microb Drug Resist 23(5):531–544

    Article  CAS  PubMed  Google Scholar 

  144. Kong W-J, Xing X-Y, Xiao X-H, Zhao Y-L, Wei J-H, Wang J-B et al (2012) Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol 96:503–510

    Article  CAS  PubMed  Google Scholar 

  145. Kang S, Li Z, Yin Z, Jia R, Song X, Li L et al (2015) The antibacterial mechanism of berberine against Actinobacillus pleuropneumoniae. Nat Prod Res 29(23):2203–2206

    Article  CAS  PubMed  Google Scholar 

  146. Wultańska D, Piotrowski M, Pituch H (2020) The effect of berberine chloride and/or its combination with vancomycin on the growth, biofilm formation, and motility of Clostridioides difficile. Eur J Clin Microbiol Infect Dis 39:1391–1399

    Article  PubMed  PubMed Central  Google Scholar 

  147. Pan H, Li Z, Xie J, Liu D, Wang H, Yu D et al (2019) Berberine influences blood glucose via modulating the gut microbiome in grass carp. Front Microbiol 10:1066

    Article  PubMed  PubMed Central  Google Scholar 

  148. Tian Y, Cai J, Gui W, Nichols RG, Koo I, Zhang J et al (2019) Berberine directly affects the gut microbiota to promote intestinal farnesoid X receptor activation. Drug Metab Dispos 47(2):86–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Guo Y, Zhang Y, Huang W, Selwyn FP, Klaassen CD (2016) Dose-response effect of berberine on bile acid profile and gut microbiota in mice. BMC Complement Altern Med 16(1):1–12

    Article  Google Scholar 

  150. Brial F, Le Lay A, Dumas M-E, Gauguier D (2018) Implication of gut microbiota metabolites in cardiovascular and metabolic diseases. Cell Mol Life Sci 75:3977–3990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sittipo P, Shim J-w, Lee YK (2019) Microbial metabolites determine host health and the status of some diseases. Int J Mol Sci 20(21):5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Wang L-L, Guo H-H, Huang S, Feng C-L, Han Y-X, Jiang J-D (2017) Comprehensive evaluation of SCFA production in the intestinal bacteria regulated by berberine using gas-chromatography combined with polymerase chain reaction. J Chromatogr B 1057:70–80

    Article  CAS  Google Scholar 

  153. Yue M, Tao Y, Fang Y, Lian X, Zhang Q, Xia Y et al (2019) The gut microbiota modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the generation of butyrate and adjusting the intestinal hypoxia and nitrate supply. FASEB J 33(11):12311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Wang Y, Shou J-W, Li X-Y, Zhao Z-X, Fu J, He C-Y et al (2017) Berberine-induced bioactive metabolites of the gut microbiota improve energy metabolism. Metabolism 70:72–84

    Article  CAS  PubMed  Google Scholar 

  155. Jia X, Jia L, Mo L, Yuan S, Zheng X, He J et al (2019) Berberine ameliorates periodontal bone loss by regulating gut microbiota. J Dent Res 98(1):107–116

    Article  CAS  PubMed  Google Scholar 

  156. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C et al (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats 7(8):e42529. https://doi.org/10.1371/journal.pone.0042529

    Article  CAS  Google Scholar 

  157. Carloni S, Rescigno M (2023) The gut-brain vascular axis in neuroinflammation. Semin Immunol 69:101802. https://doi.org/10.1016/j.smim.2023.101802

    Article  CAS  PubMed  Google Scholar 

  158. Wang Y, Tong Q, Ma S-R, Zhao Z-X, Pan L-B, Cong L et al (2021) Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota. Signal Transduct Target Ther 6(1):77

    Article  PubMed  PubMed Central  Google Scholar 

  159. Li J, Meng P, Zhang J, He M (2022) Effect of berberine hydrochloride on the diversity of intestinal flora in Parkinson’s disease patients. Contrast Media Mol Imaging 2022:8381870. https://doi.org/10.1155/2022/8381870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Wang XF, Chen X, Tang Y, Wu JM, Qin DL, Yu L et al (2022) The Therapeutic potential of plant polysaccharides in metabolic diseases. Pharmaceuticals (Basel, Switzerland) 15(11):1329. https://doi.org/10.3390/ph15111329

    Article  CAS  PubMed  Google Scholar 

  161. Wang N, Pan X-Y, Zhu H-K, Guo Y-H, Qian H (2021) Chicoric acid prevents neurodegeneration via microbiota-gut-brain axis in a mouse Parkinson’s disease model. bioRxiv. https://doi.org/10.1101/2021.05.03.442390

  162. Lestari ML, Indrayanto G (2014) Curcumin. Profiles of Drug Subst excipients Relat Methodol 39:113–204

    Article  CAS  Google Scholar 

  163. Amalraj A, Pius A, Gopi S, Gopi S (2017) Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives—a review. J Tradit Complement Med 7(2):205–233

    Article  PubMed  Google Scholar 

  164. Sharifi-Rad J, Rayess YE, Rizk AA, Sadaka C, Zgheib R, Zam W et al (2020) Turmeric and its major compound curcumin on health: bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front Pharmacol 11:1021

    Article  CAS  Google Scholar 

  165. Scazzocchio B, Minghetti L, D’Archivio M (2020) Interaction between gut microbiota and curcumin: a new key of understanding for the health effects of curcumin. Nutrients 12(9):2499. https://doi.org/10.3390/nu12092499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Zhu H, Zhang H, Hou B, Xu B, Ji L, Wu Y (2022) Curcumin regulates gut microbiota and exerts a neuroprotective effect in the MPTP model of Parkinson’s disease. Evid-Based Complement Alternat Med 2022:9110560. https://doi.org/10.1155/2022/9110560

    Article  PubMed  PubMed Central  Google Scholar 

  167. Cui C, Han Y, Li H, Yu H, Zhang B, Li G (2022) Curcumin-driven reprogramming of the gut microbiota and metabolome ameliorates motor deficits and neuroinflammation in a mouse model of Parkinson’s disease. Front Cell Infect Microbiol 12:887407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Cai B, Zhong L, Wang Q, Xu W, Li X, Chen T (2023) Curcumin alleviates 1-methyl- 4-phenyl- 1,2,3,6-tetrahydropyridine-induced Parkinson’s disease in mice via modulating gut microbiota and short-chain fatty acids. Front Pharmacol 14:1198335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Stalmach A, Mullen W, Steiling H, Williamson G, Lean ME, Crozier A (2010) Absorption, metabolism, and excretion of green tea flavan-3-ols in humans with an ileostomy. Mol Nutr Food Res 54(3):323–334

    Article  CAS  PubMed  Google Scholar 

  170. Chen L, Lee MJ, Li H, Yang CS (1997) Absorption, distribution, elimination of tea polyphenols in rats. Drug Metab Dispos: Biol Fate Chem 25(9):1045–1050

    CAS  PubMed  Google Scholar 

  171. Liu Z, de Bruijn WJC, Bruins ME, Vincken JP (2020) Reciprocal interactions between Epigallocatechin-3-gallate (EGCG) and human gut microbiota in vitro. J Agric Food Chem 68(36):9804–9815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Xu Y, Xie M, Xue J, Xiang L, Li Y, Xiao J et al (2020) EGCG ameliorates neuronal and behavioral defects by remodeling gut microbiota and TotM expression in Drosophila models of Parkinson’s disease. FASEB J 34(4):5931–5950

    Article  CAS  PubMed  Google Scholar 

  173. Sirotkin AV, Harrath AH (2014) Phytoestrogens and their effects. Eur J Pharmacol 741:230–236

    Article  PubMed  Google Scholar 

  174. Kreijkamp-Kaspers S, Kok L, Grobbee DE, de Haan EH, Aleman A, Lampe JW et al (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292(1):65–74

    Article  CAS  PubMed  Google Scholar 

  175. Liu L-X, Chen W-F, Xie J-X, Wong M-S (2008) Neuroprotective effects of genistein on dopaminergic neurons in the mice model of Parkinson’s disease. Neurosci Res 60(2):156–161

    Article  CAS  PubMed  Google Scholar 

  176. Subedi L, Ji E, Shin D, Jin J, Yeo JH, Kim SY (2017) Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 9(3):207

    Article  PubMed  PubMed Central  Google Scholar 

  177. Johnson SL, Park HY, Vattem DA, Grammas P, Ma H, Seeram NP (2020) Equol, a blood–brain barrier permeable gut microbial metabolite of dietary isoflavone daidzein, exhibits neuroprotective effects against neurotoxins induced toxicity in human neuroblastoma sh-sy5y cells and Caenorhabditis elegans. Plant Foods Hum Nutr 75:512–517

    Article  CAS  PubMed  Google Scholar 

  178. Chen T-J, Feng Y, Liu T, Wu T-T, Chen Y-J, Li X et al (2020) Fisetin regulates gut microbiota and exerts neuroprotective effect on mouse model of Parkinson’s disease. Front Neurosci 14:549037

    Article  PubMed  PubMed Central  Google Scholar 

  179. Tao J, An Y, Xu L, Wang Y, Wang C, Li P et al (2023) The protective role of microbiota in the prevention of MPTP/P-induced Parkinson’s disease by resveratrol. Food Funct 14(10):4647–4661

    Article  CAS  PubMed  Google Scholar 

  180. Walle T (2011) Bioavailability of resveratrol. Ann N Y Acad Sci 1215:9–15

    Article  CAS  PubMed  Google Scholar 

  181. Rotches-Ribalta M, Andres-Lacueva C, Estruch R, Escribano E, Urpi-Sarda M (2012) Pharmacokinetics of resveratrol metabolic profile in healthy humans after moderate consumption of red wine and grape extract tablets. Pharmacol Res 66(5):375–382

    Article  CAS  PubMed  Google Scholar 

  182. Basholli-Salihu M, Schuster R, Mulla D, Praznik W, Viernstein H, Mueller M (2016) Bioconversion of piceid to resveratrol by selected probiotic cell extracts. Bioprocess Biosyst Eng 39(12):1879–1885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Brandt N, Kotowska D, Kristensen CM, Olesen J, Lützhøft DO, Halling JF et al (2018) The impact of exercise training and resveratrol supplementation on gut microbiota composition in high-fat diet fed mice. Physiol Rep 6(20):e13881

    Article  PubMed  PubMed Central  Google Scholar 

  184. Bird JK, Raederstorff D, Weber P, Steinert RE (2017) Cardiovascular and antiobesity effects of resveratrol mediated through the gut microbiota. Adv Nutr (Bethesda, Md) 8(6):839–849

    Article  CAS  Google Scholar 

  185. Carrera-Quintanar L, López Roa RI, Quintero-Fabián S, Sánchez-Sánchez MA, Vizmanos B, Ortuño-Sahagún D (2018) Phytochemicals that influence gut microbiota as prophylactics and for the treatment of obesity and inflammatory diseases. Mediators Inflamm 2018:9734845

    Article  PubMed  PubMed Central  Google Scholar 

  186. Theilmann MC, Goh YJ, Nielsen KF, Klaenhammer TR, Barrangou R, Abou Hachem M (2017) Lactobacillus acidophilus metabolizes dietary plant glucosides and externalizes their bioactive phytochemicals. mBio 8(6)

  187. Bode LM, Bunzel D, Huch M, Cho GS, Ruhland D, Bunzel M et al (2013) In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am J Clin Nutr 97(2):295–309. https://doi.org/10.3945/ajcn.112.049379

    Article  CAS  PubMed  Google Scholar 

  188. Chaplin A, Carpéné C, Mercader J (2018) Resveratrol, metabolic syndrome, and gut microbiota. Nutrients 10(11)

  189. Abdel-Haq R, Schlachetzki JC, Boktor JC, Cantu-Jungles TM, Thron T, Zhang M et al (2022) A prebiotic diet modulates microglial states and motor deficits in α-synuclein overexpressing mice. Elife 11:e81453. https://doi.org/10.7554/eLife.81453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Becker A, Schmartz GP, Gröger L, Grammes N, Galata V, Philippeit H et al (2022) Effects of resistant starch on symptoms, fecal markers, and gut microbiota in Parkinson’s disease—the RESISTA-PD trial. Genomics Proteomics Bioinforma 20(2):274–287

    Article  CAS  Google Scholar 

  191. Hall DA, Voigt RM, Cantu-Jungles TM, Hamaker B, Engen PA, Shaikh M et al (2023) An open label, non-randomized study assessing a prebiotic fiber intervention in a small cohort of Parkinson’s disease participants. Nat Commun 14(1):926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wang X, Zhang P, Zhang X (2021) Probiotics regulate gut microbiota: an effective method to improve immunity. Molecules 26(19):6076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ohland CL, MacNaughton WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol-Gastrointest Liver Physiol 298(6):G807–G19

    Article  CAS  PubMed  Google Scholar 

  194. Azad MAK, Sarker M, Li T, Yin J (2018) Probiotic species in the modulation of gut microbiota: an overview. BioMed Res Int 2018

  195. Liu X, Cao S, Zhang X (2015) Modulation of gut microbiota–brain axis by probiotics, prebiotics, and diet. J Agric Food Chem 63(36):7885–7895. https://doi.org/10.1021/acs.jafc.5b02404

    Article  CAS  PubMed  Google Scholar 

  196. Ghyselinck J, Verstrepen L, Moens F, Van Den Abbeele P, Bruggeman A, Said J et al (2021) Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson’s disease. Int J Pharm: X 3:100087

    CAS  PubMed  Google Scholar 

  197. Sun J, Li H, Jin Y, Yu J, Mao S, Su K-P et al (2021) Probiotic Clostridium butyricum ameliorated motor deficits in a mouse model of Parkinson’s disease via gut microbiota-GLP-1 pathway. Brain Behav Immun 91:703–715

    Article  CAS  PubMed  Google Scholar 

  198. Guo JD, Zhao X, Li Y, Li GR, Liu XL (2018) Damage to dopaminergic neurons by oxidative stress in Parkinson’s disease. Int J Mol Med 41(4):1817–1825

    CAS  PubMed  Google Scholar 

  199. Westfall S, Lomis N, Kahouli I, Dia SY, Singh SP, Prakash S (2017) Microbiome, probiotics and neurodegenerative diseases: deciphering the gut brain axis. Cell Mol Life Sci 74:3769–3787

    Article  CAS  PubMed  Google Scholar 

  200. Tsao S-P, Nurrahma BA, Kumar R, Wu C-H, Yeh T-H, Chiu C-C et al (2021) Probiotic enhancement of antioxidant capacity and alterations of gut microbiota composition in 6-hydroxydopamin-induced parkinson’s disease rats. Antioxidants 10(11):1823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Li T, Chu C, Yu L, Zhai Q, Wang S, Zhao J et al (2022) Neuroprotective effects of Bifidobacterium breve CCFM1067 in MPTP-induced mouse models of Parkinson’s disease. Nutrients 14(21):4678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Allen SJ, Watson JJ, Shoemark DK, Barua NU, Patel NK (2013) GDNF, NGF and BDNF as therapeutic options for neurodegeneration. Pharmacol Ther 138(2):155–175

    Article  CAS  PubMed  Google Scholar 

  203. Yan T, Mao Q, Zhang X, Wu B, Bi K, He B et al (2021) Schisandra chinensis protects against dopaminergic neuronal oxidative stress, neuroinflammation and apoptosis via the BDNF/Nrf2/NF-κB pathway in 6-OHDA-induced Parkinson’s disease mice. Food Funct 12(9):4079–4091

    Article  CAS  PubMed  Google Scholar 

  204. Panagiotakopoulou V, Botsakis K, Delis F, Mourtzi T, Tzatzarakis MN, Dimopoulou A et al (2020) Anti-neuroinflammatory, protective effects of the synthetic microneurotrophin BNN-20 in the advanced dopaminergic neurodegeneration of “weaver” mice. Neuropharmacology 165:107919

    Article  CAS  PubMed  Google Scholar 

  205. Li W, Ali T, Zheng C, He K, Liu Z, Shah FA et al (2022) Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes. Mol Psychiatry 27(2):1047–1058

    Article  CAS  PubMed  Google Scholar 

  206. Palasz E, Wysocka A, Gasiorowska A, Chalimoniuk M, Niewiadomski W, Niewiadomska G (2020) BDNF as a promising therapeutic agent in Parkinson's disease. Int J Mol Sci 21(3)

  207. Li XL, Tao X, Li TC, Zhu ZM, Huang PL, Gong WJ (2022) Cognitive-exercise dual-task intervention ameliorates cognitive decline in natural aging rats through reducing oxidative stress and enhancing synaptic plasticity. Exp Gerontol 169:111981. https://doi.org/10.1016/j.exger.2022.111981

    Article  CAS  PubMed  Google Scholar 

  208. Wang L, Zhao Z, Zhao L, Zhao Y, Yang G, Wang C et al (2022) Lactobacillus plantarum DP189 reduces α-SYN aggravation in MPTP-induced Parkinson’s disease mice via regulating oxidative damage, inflammation, and gut microbiota disorder. J Agric Food Chem 70(4):1163–1173

    Article  CAS  PubMed  Google Scholar 

  209. Chaudhuri KR, Martinez-Martin P, Brown RG, Sethi K, Stocchi F, Odin P et al (2007) The metric properties of a novel non-motor symptoms scale for Parkinson’s disease: results from an international pilot study. Mov Disord : Off J Mov Disord Soc 22(13):1901–1911

    Article  Google Scholar 

  210. Yang X, He X, Xu S, Zhang Y, Mo C, Lai Y et al (2023) Effect of Lacticaseibacillus paracasei strain Shirota supplementation on clinical responses and gut microbiome in Parkinson’s disease. Food Funct 14(15):6828–6839

    Article  CAS  PubMed  Google Scholar 

  211. Hasegawa S, Goto S, Tsuji H, Okuno T, Asahara T, Nomoto K et al (2015) Intestinal dysbiosis and lowered serum lipopolysaccharide-binding protein in Parkinson’s disease. PLoS one 10(11):e0142164

    Article  PubMed  PubMed Central  Google Scholar 

  212. Keshavarzian A, Green SJ, Engen PA, Voigt RM, Naqib A, Forsyth CB et al (2015) Colonic bacterial composition in Parkinson’s disease. Mov Disord 30(10):1351–1360

    Article  CAS  PubMed  Google Scholar 

  213. Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30(3):350–358

    Article  PubMed  Google Scholar 

  214. Unger MM, Spiegel J, Dillmann K-U, Grundmann D, Philippeit H, Bürmann J et al (2016) Short chain fatty acids and gut microbiota differ between patients with Parkinson’s disease and age-matched controls. Parkinsonism Relat Disord 32:66–72

    Article  PubMed  Google Scholar 

  215. Bedarf JR, Hildebrand F, Coelho LP, Sunagawa S, Bahram M, Goeser F et al (2017) Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med 9:1–13

    Google Scholar 

  216. Hopfner F, Künstner A, Müller SH, Künzel S, Zeuner KE, Margraf NG et al (2017) Gut microbiota in Parkinson disease in a northern German cohort. Brain Res 1667:41–45

    Article  CAS  PubMed  Google Scholar 

  217. Li W, Wu X, Hu X, Wang T, Liang S, Duan Y et al (2017) Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features. Sci China Life Sci 60:1223–1233

    Article  PubMed  Google Scholar 

  218. Petrov V, Saltykova I, Zhukova I, Alifirova V, Zhukova N, Dorofeeva YB et al (2017) Analysis of gut microbiota in patients with Parkinson’s disease. Bull Exp Biol Med 162:734–737

    Article  CAS  PubMed  Google Scholar 

  219. Heintz-Buschart A, Pandey U, Wicke T, Sixel-Döring F, Janzen A, Sittig-Wiegand E et al (2018) The nasal and gut microbiome in Parkinson’s disease and idiopathic rapid eye movement sleep behavior disorder. Mov Disord 33(1):88–98

    Article  CAS  PubMed  Google Scholar 

  220. Lin A, Zheng W, He Y, Tang W, Wei X, He R et al (2018) Gut microbiota in patients with Parkinson’s disease in southern China. Parkinsonism Relat Disord 53:82–88

    Article  PubMed  Google Scholar 

  221. Qian Y, Yang X, Xu S, Wu C, Song Y, Qin N et al (2018) Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease. Brain Behav Immun 70:194–202

    Article  PubMed  Google Scholar 

  222. Aho VT, Pereira PA, Voutilainen S, Paulin L, Pekkonen E, Auvinen P et al (2019) Gut microbiota in Parkinson’s disease: temporal stability and relations to disease progression. EBioMedicine 44:691–707

    Article  PubMed  PubMed Central  Google Scholar 

  223. Barichella M, Severgnini M, Cilia R, Cassani E, Bolliri C, Caronni S et al (2019) Unraveling gut microbiota in Parkinson’s disease and atypical parkinsonism. Mov Disord 34(3):396–405

    Article  PubMed  Google Scholar 

  224. Li F, Wang P, Chen Z, Sui X, Xie X, Zhang J (2019) Alteration of the fecal microbiota in North-Eastern Han Chinese population with sporadic Parkinson’s disease. Neurosci Lett 707:134297

    Article  CAS  PubMed  Google Scholar 

  225. Lin C-H, Chen C-C, Chiang H-L, Liou J-M, Chang C-M, Lu T-P et al (2019) Altered gut microbiota and inflammatory cytokine responses in patients with Parkinson’s disease. J Neuroinflammation 16(1):1–9

    Article  Google Scholar 

  226. Pietrucci D, Cerroni R, Unida V, Farcomeni A, Pierantozzi M, Mercuri NB et al (2019) Dysbiosis of gut microbiota in a selected population of Parkinson’s patients. Parkinsonism Relat Disord 65:124–130

    Article  PubMed  Google Scholar 

  227. Vascellari S, Palmas V, Melis M, Pisanu S, Cusano R, Uva P et al (2020) Gut microbiota and metabolome alterations associated with Parkinson’s disease. Msystems 5(5). https://doi.org/10.1128/msystems.00561-20

  228. Chu C, Yu L, Li Y, Guo H, Zhai Q, Chen W et al (2023) Lactobacillus plantarum CCFM405 against Rotenone-induced Parkinson’s disease mice via regulating gut microbiota and branched-chain amino acids biosynthesis. Nutrients 15(7):1737. https://doi.org/10.3390/nu15071737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Fundamental Research Funds for the Universities of Heilongjiang Province-Microglia activated phenotype role of endotoxin tolerance mechanisms- (2020-KYYWF-0745). Science and Technology Bureau of Mudanjiang City, Science and technology plan project of Mudanjiang City (HT2022JG121). Mudanjiang Medical University, Doctoral research start-up fund of Mudanjiang Medical University (2022-MYBSKY-002). Heilongjiang Provincial Department of Education, Fundamental Research Funds for the Universities of Heilongjiang Province (2022-KYYWF-0702).

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

Liyan Yao, Yong Yang and Xiaowei Yang contributed in data collection and manuscript drafting. All authors approved the final paper. Xiaowei Yang and Mohammad J Rezaei oversaw the study.

Corresponding authors

Correspondence to Xiaowei Yang or Mohammad J. Rezaei.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

None.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Yang, Y., Yang, X. et al. The Interaction Between Nutraceuticals and Gut Microbiota: a Novel Therapeutic Approach to Prevent and Treatment Parkinson’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04151-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04151-2

Keywords

Navigation