Skip to main content

Advertisement

Log in

BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Background: Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Bone marrow mesenchymal stem cells (BMSCs)-derived exosomes show great therapeutic potential for SCI. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration following SCI. Our study aims to uncover the mechanisms by which BMSC-derived exosomes carrying miR-26a-5p regulate SCI. Methods: BMSCs and BMSC-derived exosomes were isolated and characterized by Oil Red O and alizarin red staining, transmission electron microscopy, flow cytometry, nanoparticle tracking analysis and Western blotting. PC12 cells were treated with lipopolysaccharides (LPS), and SCI was established through laminectomy with contusion injury in rats. Annexin-V staining, CCK-8 and EdU incorporation were applied to determine cell apoptosis, viability, and proliferation. Hematoxylin and Eosin, Nissl and TUNEL staining was used to evaluate SCI injury and apoptosis in the spinal cord. Luciferase and chromatin immunoprecipitation assays were applied to evaluate gene interaction. Results: BMSC-derived exosomes facilitated LPS-treated PC12 cell proliferation and inhibited apoptosis by delivering miR-26a-5p. Moreover, BMSC-derived exosomal miR-26a-5p alleviated SCI. Furthermore, miR-26a-5p inhibited EZH2 expression by directly binding to EZH2, and EZH2 inhibited BDNF expression via promoting H3K27me3. Increased phosphorylated CREB enhanced KCC2 transcription and expression by binding to its promoter. Knockdown of miR-26a-5p abrogated BMSC-derived exosome-mediated protection in LPS-treated PC12 cells, but it was reversed by KCC2 overexpression. Conclusion: BMSC-derived exosomes carrying miR-26a-5p repressed EZH2 expression to promote BDNF and TrkB expression and CREB phosphorylation and subsequently increase KCC2 expression, thus protecting PC12 cells and ameliorating SCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Ahuja CS, Wilson JR, Nori S, Kotter MRN, Druschel C, Curt A, Fehlings MG (2017) Traumatic spinal cord injury. Nat Reviews Disease Primers 3:17018

    Article  PubMed  Google Scholar 

  2. Chen Y, Tang Y, Vogel LC, Devivo MJ (2013) Causes of spinal cord injury. Top Spinal cord Injury Rehabilitation 19(1):1–8

    Article  CAS  Google Scholar 

  3. Ge L, Arul K, Mesfin A (2019) Spinal cord Injury from spinal tumors: Prevalence, Management, and outcomes. World Neurosurg 122:e1551–e1556

    Article  PubMed  Google Scholar 

  4. Karsy M, Hawryluk G (2019) Modern Medical Management of spinal cord Injury. Curr Neurol Neurosci Rep 19(9):65

    Article  PubMed  Google Scholar 

  5. Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T et al (2023) Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 28(1):5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Michel M, Goldman M, Peart R, Martinez M, Reddy R, Lucke-Wold B (2021) : Spinal cord Injury: a review of current management considerations and emerging treatments. J Neurol Sci Res 2(2)

  7. Assinck P, Duncan GJ, Hilton BJ, Plemel JR, Tetzlaff W (2017) Cell transplantation therapy for spinal cord injury. Nat Neurosci 20(5):637–647

    Article  CAS  PubMed  Google Scholar 

  8. Charbord P (2010) Bone marrow mesenchymal stem cells: historical overview and concepts. Hum Gene Ther 21(9):1045–1056

    Article  CAS  PubMed  Google Scholar 

  9. Feng X, Yin W, Wang J, Feng L, Kang YJ (2021) Mitophagy promotes the stemness of bone marrow-derived mesenchymal stem cells. Experimental Biology Med (Maywood NJ) 246(1):97–105

    Article  CAS  Google Scholar 

  10. Lin L, Lin H, Bai S, Zheng L, Zhang X (2018) Bone marrow mesenchymal stem cells (BMSCs) improved functional recovery of spinal cord injury partly by promoting axonal regeneration. Neurochem Int 115:80–84

    Article  CAS  PubMed  Google Scholar 

  11. Abrams MB, Dominguez C, Pernold K, Reger R, Wiesenfeld-Hallin Z, Olson L, Prockop D (2009) Multipotent mesenchymal stromal cells attenuate chronic inflammation and injury-induced sensitivity to mechanical stimuli in experimental spinal cord injury. Restor Neurol Neurosci 27(4):307–321

    PubMed  Google Scholar 

  12. Chen JR, Cheng GY, Sheu CC, Tseng GF, Wang TJ, Huang YS (2008) Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke. J Anat 213(3):249–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Han Y, Yang J, Fang J, Zhou Y, Candi E, Wang J, Hua D, Shao C, Shi Y (2022) The secretion profile of mesenchymal stem cells and potential applications in treating human diseases. Signal Transduct Target Therapy 7(1):92

    Article  Google Scholar 

  14. Wei W, Ao Q, Wang X, Cao Y, Liu Y, Zheng SG, Tian X (2020) Mesenchymal stem cell-derived exosomes: a Promising Biological Tool in Nanomedicine. Front Pharmacol 11:590470

    Article  CAS  PubMed  Google Scholar 

  15. Gu J, Jin ZS, Wang CM, Yan XF, Mao YQ, Chen S (2020) Bone marrow mesenchymal stem cell-derived Exosomes improves spinal cord function after Injury in rats by activating Autophagy. Drug Des Devel Ther 14:1621–1631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu W, Wang Y, Gong F, Rong Y, Luo Y, Tang P, Zhou Z, Zhou Z, Xu T, Jiang T et al (2019) Exosomes Derived from Bone mesenchymal stem cells repair traumatic spinal cord Injury by suppressing the activation of A1 neurotoxic reactive astrocytes. J Neurotrauma 36(3):469–484

    Article  PubMed  Google Scholar 

  17. Nieto-Diaz M, Esteban FJ, Reigada D, Munoz-Galdeano T, Yunta M, Caballero-Lopez M, Navarro-Ruiz R, Del Aguila A, Maza RM (2014) MicroRNA dysregulation in spinal cord injury: causes, consequences and therapeutics. Front Cell Neurosci 8:53

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fei M, Li Z, Cao Y, Jiang C, Lin H, Chen Z (2021) MicroRNA-182 improves spinal cord injury in mice by modulating apoptosis and the inflammatory response via IKKbeta/NF-kappaB. Lab Invest 101(9):1238–1253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xu Z, Zhang K, Wang Q, Zheng Y (2019) MicroRNA–124 improves functional recovery and suppresses Bax–dependent apoptosis in rats following spinal cord injury. Mol Med Rep 19(4):2551–2560

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zapolnik P, Zapolnik B (2020) MicroRNA-26a-5p: multiple functions, multiple possibilities- a mini-review. J Pre-Clin Clin 14(4):130–133

    Article  CAS  Google Scholar 

  21. Zhang Y, Su Z, Liu HL, Li L, Wei M, Ge DJ, Zhang ZJ (2018) Effects of miR-26a-5p on neuropathic pain development by targeting MAPK6 in in CCI rat models. Biomed Pharmacother 107:644–649

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Tian Z, He L, Liu C, Wang N, Rong L, Liu B (2021) Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res Ther 12(1):224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jin Z, Ren J, Qi S (2020) Human bone mesenchymal stem cells-derived exosomes overexpressing microRNA-26a-5p alleviate osteoarthritis via down-regulation of PTGS2. Int Immunopharmacol 78:105946

    Article  CAS  PubMed  Google Scholar 

  24. Lu Y, Zhang J, Zeng F, Wang P, Guo X, Wang H, Qin Z, Tao T (2022) Human PMSCs-derived small extracellular vesicles alleviate neuropathic pain through miR-26a-5p/Wnt5a in SNI mice model. J Neuroinflammation 19(1):221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Miranda M, Morici JF, Zanoni MB, Bekinschtein P (2019) Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci 13:363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gupta VK, You Y, Gupta VB, Klistorner A, Graham SL (2013) TrkB receptor signalling: implications in neurodegenerative, psychiatric and proliferative disorders. Int J Mol Sci 14(5):10122–10142

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liang J, Deng G, Huang H (2019) The activation of BDNF reduced inflammation in a spinal cord injury model by TrkB/p38 MAPK signaling. Experimental Therapeutic Med 17(3):1688–1696

    CAS  Google Scholar 

  28. Li X, Wu Q, Xie C, Wang C, Wang Q, Dong C, Fang L, Ding J, Wang T (2019) Blocking of BDNF-TrkB signaling inhibits the promotion effect of neurological function recovery after treadmill training in rats with spinal cord injury. Spinal Cord 57(1):65–74

    Article  PubMed  Google Scholar 

  29. Li YZ, Wu ZY, Zhu BQ, Wang YX, Kan YQ, Zeng HC (2022) : The BDNF-TrkB-CREB signalling pathway is involved in Bisphenol S-Induced neurotoxicity in male mice by regulating methylation. Toxics 10(8)

  30. Ying X, Xie Q, Yu X, Li S, Wu Q, Chen X, Yue J, Zhou K, Tu W, Jiang S (2021) Water treadmill training protects the integrity of the blood-spinal cord barrier following SCI via the BDNF/TrkB-CREB signalling pathway. Neurochem Int 143:104945

    Article  CAS  PubMed  Google Scholar 

  31. Lee-Hotta S, Uchiyama Y, Kametaka S (2019) Role of the BDNF-TrkB pathway in KCC2 regulation and rehabilitation following neuronal injury: a mini review. Neurochem Int 128:32–38

    Article  CAS  PubMed  Google Scholar 

  32. Sun K, Guo C, Deng HJ, Dong JQ, Lei ST, Li GX (2013) Construction of lentivirus-based inhibitor of hsa-microRNA-338-3p with specific secondary structure. Acta Pharmacol Sin 34(1):167–175

    Article  CAS  PubMed  Google Scholar 

  33. He F, Shi E, Yan L, Li J, Jiang X (2015) Inhibition of micro-ribonucleic acid-320 attenuates neurologic injuries after spinal cord ischemia. J Thorac Cardiovasc Surg 150(2):398–406

    Article  CAS  PubMed  Google Scholar 

  34. Mitic T, Caporali A, Floris I, Meloni M, Marchetti M, Urrutia R, Angelini GD, Emanueli C (2015) EZH2 modulates angiogenesis in vitro and in a mouse model of limb ischemia. Mol Therapy: J Am Soc Gene Therapy 23(1):32–42

    Article  CAS  Google Scholar 

  35. Su H, Liu B, Chen H, Zhang T, Huang T, Liu Y, Wang C, Ma Q, Wang Q, Lv Z et al (2022) LncRNA ANRIL mediates endothelial dysfunction through BDNF downregulation in chronic kidney disease. Cell Death Dis 13(7):661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Alessandrini M, Preynat-Seauve O, De Bruin K, Pepper MS (2019) Stem cell therapy for neurological disorders. South Afr Med J = Suid-Afrikaanse Tydskrif vir Geneeskunde 109(8b):70–77

    CAS  Google Scholar 

  37. Ide C, Nakai Y, Nakano N, Seo TB, Yamada Y, Endo K, Noda T, Saito F, Suzuki Y, Fukushima M et al (2010) Bone marrow stromal cell transplantation for treatment of sub-acute spinal cord injury in the rat. Brain Res 1332:32–47

    Article  CAS  PubMed  Google Scholar 

  38. Gu C, Li H, Wang C, Song X, Ding Y, Zheng M, Liu W, Chen Y, Zhang X, Wang L (2017) Bone marrow mesenchymal stem cells decrease CHOP expression and neuronal apoptosis after spinal cord injury. Neurosci Lett 636:282–289

    Article  CAS  PubMed  Google Scholar 

  39. Sheng X, Zhao J, Li M, Xu Y, Zhou Y, Xu J, He R, Lu H, Wu T, Duan C et al (2021) Bone marrow mesenchymal stem cell-derived exosomes accelerate functional recovery after spinal cord Injury by promoting the phagocytosis of macrophages to clean myelin debris. Front cell Dev Biology 9:772205

    Article  Google Scholar 

  40. Liu C, Wang X, Wang X, Zhang Y, Min W, Yu P, Miao J, Shen W, Chen S, Zhou S et al (2022) A new LKB1 activator, piericidin analogue S14, retards renal fibrosis through promoting autophagy and mitochondrial homeostasis in renal tubular epithelial cells. Theranostics 12(16):7158–7179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pinchi E, Frati A, Cantatore S, D’Errico S, Russa R, Maiese A, Palmieri M, Pesce A, Viola RV, Frati P et al (2019) : Acute spinal cord Injury: a systematic review investigating miRNA families involved. Int J Mol Sci 20(8)

  42. Yang L, Ge D, Chen X, Jiang C, Zheng S (2018) miRNA-544a regulates the inflammation of spinal cord Injury by inhibiting the expression of NEUROD4. Cell Physiol Biochemistry: Int J Experimental Cell Physiol Biochem Pharmacol 51(4):1921–1931

    Article  CAS  Google Scholar 

  43. Malvandi AM, Rastegar-Moghaddam SH, Ebrahimzadeh-Bideskan S, Lombardi G, Ebrahimzadeh-Bideskan A, Mohammadipour A (2022) Targeting miR-21 in spinal cord injuries: a game-changer? Mol Med 28(1):118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Feng J, Zhang Y, Zhu Z, Gu C, Waqas A, Chen L (2021) Emerging exosomes and Exosomal MiRNAs in spinal cord Injury. Front cell Dev Biology 9:703989

    Article  Google Scholar 

  45. Cheng C, Chen X, Wang Y, Cheng W, Zuo X, Tang W, Huang W (2021) MSCs–derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 27(1):67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li H, Wang C, He T, Zhao T, Chen YY, Shen YL, Zhang X, Wang LL (2019) Mitochondrial transfer from bone marrow mesenchymal stem cells to motor neurons in spinal cord Injury rats via Gap Junction. Theranostics 9(7):2017–2035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang R, Liu Y, Jing L (2022) MiRNA-99a alleviates inflammation and oxidative stress in lipopolysaccharide-stimulated PC-12 cells and rats post spinal cord injury. Bioengineered 13(2):4248–4259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P (2020) Exosome: a review of its classification, isolation techniques, Storage, Diagnostic and targeted therapy applications. Int J Nanomed 15:6917–6934

    Article  CAS  Google Scholar 

  49. van den Boorn JG, Schlee M, Coch C, Hartmann G (2011) SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29(4):325–326

    Article  PubMed  Google Scholar 

  50. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M Mechanisms of miRNA-Mediated gene regulation from common downregulation to mRNA-Specific Upregulation. Int J Genomics 2014, 2014:970607

  51. Pereira JD, Sansom SN, Smith J, Dobenecker MW, Tarakhovsky A, Livesey FJ (2010) Ezh2, the histone methyltransferase of PRC2, regulates the balance between self-renewal and differentiation in the cerebral cortex. Proc Natl Acad Sci USA 107(36):15957–15962

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Yadav R, Weng HR (2017) EZH2 regulates spinal neuroinflammation in rats with neuropathic pain. Neuroscience 349:106–117

    Article  CAS  PubMed  Google Scholar 

  53. Geng X, Zou Y, Li S, Qi R, Jing C, Ding X, Li J, Yu H (2021) Electroacupuncture promotes the recovery of rats with spinal cord injury by suppressing the notch signaling pathway via the H19/EZH2 axis. Annals Translational Med 9(10):844

    Article  CAS  Google Scholar 

  54. Crowley ST, Fukushima Y, Uchida S, Kataoka K, Itaka K (2019) Enhancement of motor function recovery after spinal cord Injury in mice by delivery of brain-derived neurotrophic factor mRNA. Mol Therapy Nucleic Acids 17:465–476

    Article  CAS  Google Scholar 

  55. Chang DJ, Cho HY, Hwang S, Lee N, Choi C, Lee H, Hong KS, Oh SH, Kim HS, Shin DA et al (2021) : Therapeutic effect of BDNF-Overexpressing human neural stem cells (F3.BDNF) in a Contusion Model of spinal cord Injury in rats. Int J Mol Sci 22(13)

  56. Huang EJ, Reichardt LF (2003) Trk receptors: roles in neuronal signal transduction. Annu Rev Biochem 72:609–642

    Article  CAS  PubMed  Google Scholar 

  57. Walton MR, Dragunow I (2000) Is CREB a key to neuronal survival? Trends Neurosci 23(2):48–53

    Article  CAS  PubMed  Google Scholar 

  58. Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K (2021) The multifaceted roles of KCC2 in cortical development. Trends Neurosci 44(5):378–392

    Article  CAS  PubMed  Google Scholar 

  59. Chen B, Li Y, Yu B, Zhang Z, Brommer B, Williams PR, Liu Y, Hegarty SV, Zhou S, Zhu J et al (2018) Reactivation of dormant relay pathways in injured spinal cord by KCC2 manipulations. Cell 174(3):521–535e513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ma JJ, Zhang TY, Diao XT, Yao L, Li YX, Suo ZW, Yang X, Hu XD, Liu YN (2021) BDNF modulated KCC2 ubiquitylation in spinal cord dorsal horn of mice. Eur J Pharmacol 906:174205

    Article  CAS  PubMed  Google Scholar 

  61. Rivera C, Li H, Thomas-Crusells J, Lahtinen H, Viitanen T, Nanobashvili A, Kokaia Z, Airaksinen MS, Voipio J, Kaila K et al (2002) BDNF-induced TrkB activation down-regulates the K+-Cl- cotransporter KCC2 and impairs neuronal Cl- extrusion. J Cell Biol 159(5):747–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ludwig A, Uvarov P, Soni S, Thomas-Crusells J, Airaksinen MS, Rivera C (2011) Early growth response 4 mediates BDNF induction of potassium chloride cotransporter 2 transcription. J Neuroscience: Official J Soc Neurosci 31(2):644–649

    Article  CAS  Google Scholar 

  63. Aguado F, Carmona MA, Pozas E, Aguilo A, Martinez-Guijarro FJ, Alcantara S, Borrell V, Yuste R, Ibanez CF, Soriano E (2003) : BDNF regulates spontaneous correlated activity at early developmental stages by increasing synaptogenesis and expression of the K+/Cl- co-transporter KCC2. Development 130(7):1267–1280

Download references

Acknowledgements

Not applicable.

Funding

This work was supported by Fujian Provincial Health Technology Youth Project [2021QNA077] and Startup Fund for scientific research, Fujian Medical University (Grant number: 2021QH1045).

Author information

Authors and Affiliations

Authors

Contributions

Min Chen: Conceptualization; Methodology; Data Curation; Writing - Original Draft; Yu Lin: Validation; Formal analysis; Investigation; Resources;

Wenbin Guo: Visualization; Supervision;

Lihui Chen: Writing - Review & Editing; Project administration; Funding acquisition.

Corresponding author

Correspondence to Lihui Chen.

Ethics declarations

Ethics Approval and Consent to Participate

Animal experiments were approved by the Animal Care and Use Committee of Fujian Medical University.

Consent for Publication

N/A.

Competing Interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

12035_2024_4082_MOESM1_ESM.tif

Supplementary Material 1: Fig. 1. BMSC-exosomes Derived from SCI rats Showed Decreased miR-26a-5p Level The expression of miR-26a-5p in BMSC-exosomes derived from sham or SCI rats was determined with RT-qPCR (n = 6 per group). **p < 0.01.

12035_2024_4082_MOESM2_ESM.tif

Supplementary Material 2: Fig. 2. miR-26a-5p Agomir Improved SCI in rats Rats were divided into Sham, SCI, SCI + agomir NC and SCI + miR-26a-5p agomir groups. (A) miR-26a-5p was examined with RT-qPCR (n = 6 per group). (B) H&E staining of the spinal cord and pathological score (n = 6 per group). Scale bar: 50 μm. (C) Nissl staining of the spinal cord. Scale bar: 50 μm. (D) Cell apoptosis was analyzed by TUNEL assays (n = 6 per group). Scale bar: 50 μm. (E and F) Western blot analysis of Bax, Bcl2, cleaved caspase 3, caspase 3, EZH2, BDNF, TrkB, p-CREB, CREB and KCC2. **p < 0.01, and ***p < 0.001.

Supplementary Material 3

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Lin, Y., Guo, W. et al. BMSC-Derived Exosomes Carrying miR-26a-5p Ameliorate Spinal Cord Injury via Negatively Regulating EZH2 and Activating the BDNF-TrkB-CREB Signaling. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04082-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04082-y

Keywords

Navigation