Skip to main content

Advertisement

Log in

Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer’s Disease: Mechanisms and Therapeutic Implications-Exercise Perspective

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Lactate has a novel function different from previously known functions despite its traditional association with hypoxia in skeletal muscle. It plays various direct and indirect physiological functions. It is a vital energy source within the central nervous system (CNS) and a signal transmitter regulating crucial processes, such as angiogenesis and inflammation. Activating lactate and its associated receptors elicits effects like synaptic plasticity and angiogenesis alterations. These effects can significantly influence the astrocyte-neuron lactate shuttle, potentially impacting cognitive performance. Decreased cognitive function relates to different neurodegenerative conditions, including Alzheimer’s disease (AD), ischemic brain injury, and frontotemporal dementia. Therefore, lactic acid has significant potential for treating neurodegenerative disorders. Exercise is a method that induces the production of lactic acid, which is similar to the effect of lactate injections. It is a harmless and natural way to achieve comparable results. Animal experiments demonstrate that high-intensity intermittent exercise can increase vascular endothelial growth factor (VEGF) levels, thus promoting angiogenesis. In vivo, lactate receptor-hydroxycarboxylic acid receptor 1 (HCAR1) activation can occur by various stimuli, including variations in ion concentrations, cyclic adenosine monophosphate (cAMP) level elevations, and fluctuations in the availability of energy substrates. While several articles have been published on the benefits of physical activity on developing Alzheimer’s disease in the CNS, could lactic acid act as a bridge? Understanding how HCAR1 responds to these signals and initiates associated pathways remains incomplete. This review comprehensively analyzes lactate-induced signaling pathways, investigating their influence on neuroinflammation, neurodegeneration, and cognitive decline. Consequently, this study describes the unique role of lactate in the progression of Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article.

References

  1. Breijyeh Z, Karaman R (2020) Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 25(24). https://doi.org/10.3390/molecules25245789

  2. (2023) 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19(4):1598-1695. https://doi.org/10.1002/alz.13016

  3. Agüero P, Sainz MJ, Téllez R, Lorda I, Ávila A, García-Ribas G, Rodríguez PP, Gómez-Tortosa E (2021) De novo PS1 mutation (Pro436Gln) in a very early-onset posterior variant of Alzheimer’s disease associated with spasticity: a case report. J Alzheimers Dis 83(3):1011–1016. https://doi.org/10.3233/jad-210420

    Article  PubMed  Google Scholar 

  4. Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS (2021) Sarcopenia is associated with incident Alzheimer’s dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc 69(7):1826–1835. https://doi.org/10.1111/jgs.17206

    Article  PubMed  PubMed Central  Google Scholar 

  5. Boyle PA, Buchman AS, Wilson RS, Leurgans SE, Bennett DA (2009) Association of muscle strength with the risk of Alzheimer disease and the rate of cognitive decline in community-dwelling older persons. Arch Neurol 66(11):1339–1344. https://doi.org/10.1001/archneurol.2009.240

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pereira TMC, Côco LZ, Ton AMM, Meyrelles SS, Campos-Toimil M, Campagnaro BP, Vasquez EC (2021) The emerging scenario of the gut-brain axis: the therapeutic actions of the new actor kefir against neurodegenerative diseases. Antioxidants (Basel) 10(11).https://doi.org/10.3390/antiox10111845.

  7. Szegeczki V, Horváth G, Perényi H, Tamás A, Radák Z, Ábrahám D, Zákány R, Reglodi D, et al. (2020) Alzheimer’s disease mouse as a model of testis degeneration. Int J Mol Sci 21(16). https://doi.org/10.3390/ijms21165726

  8. Cortes-Canteli M, Iadecola C (2020) Alzheimer’s disease and vascular aging: JACC focus seminar. J Am Coll Cardiol 75(8):942–951. https://doi.org/10.1016/j.jacc.2019.10.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sanna GD, Nusdeo G, Piras MR, Forteleoni A, Murru MR, Saba PS, Dore S, Sotgiu G et al (2019) Cardiac abnormalities in Alzheimer disease: clinical relevance beyond pathophysiological rationale and instrumental findings? JACC Heart Fail 7(2):121–128. https://doi.org/10.1016/j.jchf.2018.10.022

    Article  PubMed  Google Scholar 

  10. Kaur H, Seeger D, Golovko S, Golovko M, Combs CK (2021) Liver bile acid changes in mouse models of Alzheimer’s disease. Int J Mol Sci 22(14). https://doi.org/10.3390/ijms22147451

  11. Kompanje EJ, Jansen TC, van der Hoven B, Bakker J (2007) The first demonstration of lactic acid in human blood in shock by Johann Joseph Scherer (1814–1869) in January 1843. Intensive Care Med 33(11):1967–1971. https://doi.org/10.1007/s00134-007-0788-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haas R, Cucchi D, Smith J, Pucino V, Macdougall CE, Mauro C (2016) Intermediates of metabolism: from bystanders to signalling molecules. Trends Biochem Sci 41(5):460–471. https://doi.org/10.1016/j.tibs.2016.02.003

    Article  CAS  PubMed  Google Scholar 

  13. Liu C, Kuei C, Zhu J, Yu J, Zhang L, Shih A, Mirzadegan T, Shelton J et al (2012) 3,5-Dihydroxybenzoic acid, a specific agonist for hydroxycarboxylic acid 1, inhibits lipolysis in adipocytes. J Pharmacol Exp Ther 341(3):794–801. https://doi.org/10.1124/jpet.112.192799

    Article  CAS  PubMed  Google Scholar 

  14. Sun S, Li H, Chen J, Qian Q (2017) Lactic acid: no longer an inert and end-product of glycolysis. Physiology (Bethesda) 32(6):453–463. https://doi.org/10.1152/physiol.00016.2017

    Article  CAS  PubMed  Google Scholar 

  15. Hadzic A, Nguyen TD, Hosoyamada M, Tomioka NH, Bergersen LH, Storm-Mathisen J, Morland C (2020) The lactate receptor HCA(1) is present in the choroid plexus, the tela choroidea, and the neuroepithelial lining of the dorsal part of the third ventricle. Int J Mol Sci 21(18). https://doi.org/10.3390/ijms21186457

  16. Kuei C, Yu J, Zhu J, Wu J, Zhang L, Shih A, Mirzadegan T, Lovenberg T et al (2011) Study of GPR81, the lactate receptor, from distant species identifies residues and motifs critical for GPR81 functions. Mol Pharmacol 80(5):848–858. https://doi.org/10.1124/mol.111.074500

    Article  CAS  PubMed  Google Scholar 

  17. Ge H, Weiszmann J, Reagan JD, Gupte J, Baribault H, Gyuris T, Chen JL, Tian H et al (2008) Elucidation of signaling and functional activities of an orphan GPCR, GPR81. J Lipid Res 49(4):797–803. https://doi.org/10.1194/jlr.M700513-JLR200

    Article  CAS  PubMed  Google Scholar 

  18. Brown TP, Ganapathy V (2020) Lactate/GPR81 signaling and proton motive force in cancer: role in angiogenesis, immune escape, nutrition, and Warburg phenomenon. Pharmacol Ther 206:107451. https://doi.org/10.1016/j.pharmthera.2019.107451

    Article  CAS  PubMed  Google Scholar 

  19. Morland C, Andersson KA, Haugen ØP, Hadzic A, Kleppa L, Gille A, Rinholm JE, Palibrk V, et al (2017) Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat Commun 8:15557. https://doi.org/10.1038/ncomms15557

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alberini CM, Cruz E, Descalzi G, Bessières B, Gao V (2018) Astrocyte glycogen and lactate: new insights into learning and memory mechanisms. Glia 66(6):1244–1262. https://doi.org/10.1002/glia.23250

    Article  PubMed  Google Scholar 

  21. López-Ortiz S, Valenzuela PL, Seisdedos MM, Morales JS, Vega T, Castillo-García A, Nisticò R, Mercuri NB et al (2021) Exercise interventions in Alzheimer’s disease: a systematic review and meta-analysis of randomized controlled trials. Ageing Res Rev 72:101479. https://doi.org/10.1016/j.arr.2021.101479

    Article  PubMed  Google Scholar 

  22. Ye L, Jiang Y, Zhang M (2022) Crosstalk between glucose metabolism, lactate production and immune response modulation. Cytokine Growth Factor Rev 68:81–92. https://doi.org/10.1016/j.cytogfr.2022.11.001

    Article  CAS  PubMed  Google Scholar 

  23. Baker J, Brown E, Hill G, Phillips G, Williams R, Davies B (2002) Handgrip contribution to lactate production and leg power during high-intensity exercise. Med Sci Sports Exerc 34(6):1037–1040. https://doi.org/10.1097/00005768-200206000-00021

    Article  CAS  PubMed  Google Scholar 

  24. Vernon C, Letourneau JL (2010) Lactic acidosis: recognition, kinetics, and associated prognosis. Crit Care Clin 26(2):255–283. https://doi.org/10.1016/j.ccc.2009.12.007

    Article  CAS  PubMed  Google Scholar 

  25. Jorfeldt L, Juhlin-Dannfelt A, Karlsson J (1978) Lactate release in relation to tissue lactate in human skeletal muscle during exercise. J Appl Physiol Respir Environ Exerc Physiol 44(3):350–352. https://doi.org/10.1152/jappl.1978.44.3.350

    Article  CAS  PubMed  Google Scholar 

  26. Shulman RG (2005) Glycogen turnover forms lactate during exercise. Exerc Sport Sci Rev 33(4):157–162. https://doi.org/10.1097/00003677-200510000-00002

    Article  PubMed  Google Scholar 

  27. Richter EA, Kiens B, Saltin B, Christensen NJ, Savard G (1988) Skeletal muscle glucose uptake during dynamic exercise in humans: role of muscle mass. Am J Physiol 254(5 Pt 1):E555-561. https://doi.org/10.1152/ajpendo.1988.254.5.E555

    Article  CAS  PubMed  Google Scholar 

  28. Price TB, Taylor R, Mason GF, Rothman DL, Shulman GI, Shulman RG (1994) Turnover of human muscle glycogen with low-intensity exercise. Med Sci Sports Exerc 26(8):983–991

    Article  CAS  PubMed  Google Scholar 

  29. Brooks GA (2020) Lactate as a fulcrum of metabolism. Redox Biol 35:101454. https://doi.org/10.1016/j.redox.2020.101454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baik SH, Kang S, Lee W, Choi H, Chung S, Kim JI, Mook-Jung I (2019) A breakdown in metabolic reprogramming causes microglia dysfunction in Alzheimer’s disease. Cell Metab 30(3):493-507.e496. https://doi.org/10.1016/j.cmet.2019.06.005

    Article  CAS  PubMed  Google Scholar 

  31. Solas M, Zamarbide M, Ardanaz CG, Ramírez MJ, Pérez-Mediavilla A (2022) The cognitive improvement and alleviation of brain hypermetabolism caused by FFAR3 ablation in Tg2576 mice is persistent under diet-induced obesity. Int J Mol Sci 23(21).https://doi.org/10.3390/ijms232113591.

  32. Cisternas P, Zolezzi JM, Martinez M, Torres VI, Wong GW, Inestrosa NC (2019) Wnt-induced activation of glucose metabolism mediates the in vivo neuroprotective roles of Wnt signaling in Alzheimer disease. J Neurochem 149(1):54–72. https://doi.org/10.1111/jnc.14608

    Article  CAS  PubMed  Google Scholar 

  33. Tang BL (2020) Glucose, glycolysis, and neurodegenerative diseases. J Cell Physiol 235(11):7653–7662. https://doi.org/10.1002/jcp.29682

    Article  CAS  PubMed  Google Scholar 

  34. Pohanka M (2020) D-lactic acid as a metabolite: toxicology, diagnosis, and detection. Biomed Res Int 2020:3419034. https://doi.org/10.1155/2020/3419034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I (2016) Lactate as a metabolite and a regulator in the central nervous system. Int J Mol Sci 17(9). https://doi.org/10.3390/ijms17091450

  36. Brooks GA (2018) The science and translation of lactate shuttle theory. Cell Metab 27(4):757–785. https://doi.org/10.1016/j.cmet.2018.03.008

    Article  CAS  PubMed  Google Scholar 

  37. Dunn J, Grider MH (2023) Physiology, adenosine triphosphate. In: StatPearls. Treasure Island (FL): StatPearls Publishing Copyright © 2023, StatPearls Publishing LLC

  38. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci U S A 104(49):19345–19350. https://doi.org/10.1073/pnas.0709747104

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  39. Rabinowitz JD, Enerbäck S (2020) Lactate: the ugly duckling of energy metabolism. Nat Metab 2(7):566–571. https://doi.org/10.1038/s42255-020-0243-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Maciolek JA, Pasternak JA, Wilson HL (2014) Metabolism of activated T lymphocytes. Curr Opin Immunol 27:60–74. https://doi.org/10.1016/j.coi.2014.01.006

    Article  CAS  PubMed  Google Scholar 

  41. van Hall G (2010) Lactate kinetics in human tissues at rest and during exercise. Acta Physiol (Oxf) 199(4):499–508. https://doi.org/10.1111/j.1748-1716.2010.02122.x

    Article  CAS  PubMed  Google Scholar 

  42. Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32(7):1152–1166. https://doi.org/10.1038/jcbfm.2011.149

    Article  CAS  PubMed  Google Scholar 

  43. Bennis Y, Bodeau S, Batteux B, Gras-Champel V, Masmoudi K, Maizel J, De Broe ME, Lalau JD et al (2020) A study of associations between plasma metformin concentration, lactic acidosis, and mortality in an emergency hospitalization context. Crit Care Med 48(12):e1194–e1202. https://doi.org/10.1097/ccm.0000000000004589

    Article  CAS  PubMed  Google Scholar 

  44. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587(Pt 23):5591–5600. https://doi.org/10.1113/jphysiol.2009.178350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Halestrap AP (2013) The SLC16 gene family - structure, role and regulation in health and disease. Mol Aspects Med 34(2–3):337–349. https://doi.org/10.1016/j.mam.2012.05.003

    Article  CAS  PubMed  Google Scholar 

  46. Bergersen LH (2007) Is lactate food for neurons? Comparison of monocarboxylate transporter subtypes in brain and muscle. Neuroscience 145(1):11–19. https://doi.org/10.1016/j.neuroscience.2006.11.062

    Article  CAS  PubMed  Google Scholar 

  47. Magistretti PJ, Allaman I (2018) Lactate in the brain: from metabolic end-product to signalling molecule. Nat Rev Neurosci 19(4):235–249. https://doi.org/10.1038/nrn.2018.19

    Article  CAS  PubMed  Google Scholar 

  48. Gertz EW, Wisneski JA, Stanley WC, Neese RA (1988) Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest 82(6):2017–2025. https://doi.org/10.1172/jci113822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rasmussen P, Nielsen J, Overgaard M, Krogh-Madsen R, Gjedde A, Secher NH, Petersen NC (2010) Reduced muscle activation during exercise related to brain oxygenation and metabolism in humans. J Physiol 588(Pt 11):1985–1995. https://doi.org/10.1113/jphysiol.2009.186767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144(5):810–823. https://doi.org/10.1016/j.cell.2011.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gordon GR, Choi HB, Rungta RL, Ellis-Davies GC, MacVicar BA (2008) Brain metabolism dictates the polarity of astrocyte control over arterioles. Nature 456(7223):745–749. https://doi.org/10.1038/nature07525

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xue X, Liu B, Hu J, Bian X, Lou S (2022) The potential mechanisms of lactate in mediating exercise-enhanced cognitive function: a dual role as an energy supply substrate and a signaling molecule. Nutr Metab (Lond) 19(1):52. https://doi.org/10.1186/s12986-022-00687-z

    Article  CAS  PubMed  Google Scholar 

  53. Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6(12):e28427. https://doi.org/10.1371/journal.pone.0028427

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bouzier-Sore AK, Voisin P, Bouchaud V, Bezancon E, Franconi JM, Pellerin L (2006) Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: a comparative NMR study. Eur J Neurosci 24(6):1687–1694. https://doi.org/10.1111/j.1460-9568.2006.05056.x

    Article  PubMed  Google Scholar 

  55. Pierre K, Pellerin L (2005) Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem 94(1):1–14. https://doi.org/10.1111/j.1471-4159.2005.03168.x

    Article  CAS  PubMed  Google Scholar 

  56. Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738. https://doi.org/10.1016/j.cmet.2011.08.016

    Article  CAS  PubMed  Google Scholar 

  57. Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86(4):883–901. https://doi.org/10.1016/j.neuron.2015.03.035

    Article  CAS  PubMed  Google Scholar 

  58. Medel V, Crossley N, Gajardo I, Muller E, Barros LF, Shine JM, Sierralta J (2022) Whole-brain neuronal MCT2 lactate transporter expression links metabolism to human brain structure and function. Proc Natl Acad Sci U S A 119(33):e2204619119. https://doi.org/10.1073/pnas.2204619119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Matsui T, Ishikawa T, Ito H, Okamoto M, Inoue K, Lee MC, Fujikawa T, Ichitani Y et al (2012) Brain glycogen supercompensation following exhaustive exercise. J Physiol 590(3):607–616. https://doi.org/10.1113/jphysiol.2011.217919

    Article  CAS  PubMed  Google Scholar 

  60. Gibbs ME (2015) Role of glycogenolysis in memory and learning: regulation by noradrenaline, serotonin and ATP. Front Integr Neurosci 9:70. https://doi.org/10.3389/fnint.2015.00070

    Article  CAS  PubMed  Google Scholar 

  61. Kerendi H, Rahmati M, Mirnasuri R, Kazemi A (2019) High intensity interval training decreases the expressions of KIF5B and dynein in hippocampus of Wistar male rats. Gene 704:8–14. https://doi.org/10.1016/j.gene.2019.04.027

    Article  CAS  PubMed  Google Scholar 

  62. Sada N, Lee S, Katsu T, Otsuki T, Inoue T (2015) Epilepsy treatment. Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science 347(6228):1362–1367. https://doi.org/10.1126/science.aaa1299

    Article  ADS  CAS  PubMed  Google Scholar 

  63. Rahmati M, Kazemi A (2019) Various exercise intensities differentially regulate GAP-43 and CAP-1 expression in the rat hippocampus. Gene 692:185–194. https://doi.org/10.1016/j.gene.2019.01.013

    Article  CAS  PubMed  Google Scholar 

  64. Sole G (2015) ESSA’s student manual for health, exercise and sport assessment (2014). N Z J Physiother 43(1):33

    Google Scholar 

  65. Faude O, Kindermann W, Meyer T (2009) Lactate threshold concepts: how valid are they? Sports Med 39(6):469–490. https://doi.org/10.2165/00007256-200939060-00003

    Article  PubMed  Google Scholar 

  66. Jamnick NA, Pettitt RW, Granata C, Pyne DB, Bishop DJ (2020) An examination and critique of current methods to determine exercise intensity. Sports Med 50(10):1729–1756. https://doi.org/10.1007/s40279-020-01322-8

    Article  PubMed  Google Scholar 

  67. Goodman JC, Valadka AB, Gopinath SP, Uzura M, Robertson CS (1999) Extracellular lactate and glucose alterations in the brain after head injury measured by microdialysis. Crit Care Med 27(9):1965–1973. https://doi.org/10.1097/00003246-199909000-00041

    Article  CAS  PubMed  Google Scholar 

  68. Harada M, Okuda C, Sawa T, Murakami T (1992) Cerebral extracellular glucose and lactate concentrations during and after moderate hypoxia in glucose- and saline-infused rats. Anesthesiology 77(4):728–734. https://doi.org/10.1097/00000542-199210000-00017

    Article  CAS  PubMed  Google Scholar 

  69. Boumezbeur F, Petersen KF, Cline GW, Mason GF, Behar KL, Shulman GI, Rothman DL (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30(42):13983–13991. https://doi.org/10.1523/jneurosci.2040-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lucertini F, Gervasi M, D’Amen G, Sisti D, Rocchi MBL, Stocchi V, Benelli P (2017) Effect of water-based recovery on blood lactate removal after high-intensity exercise. PLoS ONE 12(9):e0184240. https://doi.org/10.1371/journal.pone.0184240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Gastin PB (2001) Energy system interaction and relative contribution during maximal exercise. Sports Med 31(10):725–741. https://doi.org/10.2165/00007256-200131100-00003

    Article  CAS  PubMed  Google Scholar 

  72. Brooks GA, Butterfield GE, Wolfe RR, Groves BM, Mazzeo RS, Sutton JR, Wolfel EE (1991) Decreased reliance on lactate during exercise after acclimatization to 4,300 m. J Appl Physiol (1985) 71(1):333–341. https://doi.org/10.1152/jappl.1991.71.1.333

    Article  CAS  PubMed  Google Scholar 

  73. De Feo P, Di Loreto C, Lucidi P, Murdolo G, Parlanti N, De Cicco A, Piccioni F, Santeusanio F (2003) Metabolic response to exercise. J Endocrinol Invest 26(9):851–854. https://doi.org/10.1007/bf03345235

    Article  PubMed  Google Scholar 

  74. Rahmati M, Shariatzadeh Joneydi M, Koyanagi A, Yang G, Ji B, Won Lee S, Keon Yon D et al (2023) Resistance training restores skeletal muscle atrophy and satellite cell content in an animal model of Alzheimer’s disease. Sci Rep 13(1):2535. https://doi.org/10.1038/s41598-023-29406-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Téglás T, Ábrahám D, Jókai M, Kondo S, Mohammadi R, Fehér J, Szabó D, Wilhelm M et al (2020) Exercise combined with a probiotics treatment alters the microbiome, but moderately affects signalling pathways in the liver of male APP/PS1 transgenic mice. Biogerontology 21(6):807–815. https://doi.org/10.1007/s10522-020-09895-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9 Pt B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005

    Article  PubMed  Google Scholar 

  77. Shen Z, Jiang L, Yuan Y, Deng T, Zheng YR, Zhao YY, Li WL, Wu JY et al (2015) Inhibition of G protein-coupled receptor 81 (GPR81) protects against ischemic brain injury. CNS Neurosci Ther 21(3):271–279. https://doi.org/10.1111/cns.12362

    Article  CAS  PubMed  Google Scholar 

  78. Li G, Wang HQ, Wang LH, Chen RP, Liu JP (2014) Distinct pathways of ERK1/2 activation by hydroxy-carboxylic acid receptor-1. PLoS ONE 9(3):e93041. https://doi.org/10.1371/journal.pone.0093041

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. Jeninga EH, Bugge A, Nielsen R, Kersten S, Hamers N, Dani C, Wabitsch M, Berger R et al (2009) Peroxisome proliferator-activated receptor gamma regulates expression of the anti-lipolytic G-protein-coupled receptor 81 (GPR81/Gpr81). J Biol Chem 284(39):26385–26393. https://doi.org/10.1074/jbc.M109.040741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Madaan A, Chaudhari P, Nadeau-Vallée M, Hamel D, Zhu T, Mitchell G, Samuels M, Pundir S et al (2019) Müller cell-localized G-protein-coupled receptor 81 (hydroxycarboxylic acid receptor 1) regulates inner retinal vasculature via norrin/Wnt pathways. Am J Pathol 189(9):1878–1896. https://doi.org/10.1016/j.ajpath.2019.05.016

    Article  CAS  PubMed  Google Scholar 

  81. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH et al (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298(2):R372-377. https://doi.org/10.1152/ajpregu.00525.2009

    Article  CAS  PubMed  Google Scholar 

  82. Inoue K, Okamoto M, Shibato J, Lee MC, Matsui T, Rakwal R, Soya H (2015) Long-term mild, rather than intense, exercise enhances adult hippocampal neurogenesis and greatly changes the transcriptomic profile of the hippocampus. PLoS ONE 10(6):e0128720. https://doi.org/10.1371/journal.pone.0128720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Skriver K, Roig M, Lundbye-Jensen J, Pingel J, Helge JW, Kiens B, Nielsen JB (2014) Acute exercise improves motor memory: exploring potential biomarkers. Neurobiol Learn Mem 116:46–58. https://doi.org/10.1016/j.nlm.2014.08.004

    Article  CAS  PubMed  Google Scholar 

  84. Di Benedetto G, Iannucci LF, Surdo NC, Zanin S, Conca F, Grisan F, Gerbino A, Lefkimmiatis K (2021) Compartmentalized signaling in aging and neurodegeneration. Cells 10(2). https://doi.org/10.3390/cells10020464

  85. Yang J, Ruchti E, Petit JM, Jourdain P, Grenningloh G, Allaman I, Magistretti PJ (2014) Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc Natl Acad Sci U S A 111(33):12228–12233. https://doi.org/10.1073/pnas.1322912111

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang M, Gamo NJ, Yang Y, Jin LE, Wang XJ, Laubach M, Mazer JA, Lee D et al (2011) Neuronal basis of age-related working memory decline. Nature 476(7359):210–213. https://doi.org/10.1038/nature10243

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Kamat PK, Kalani A, Rai S, Swarnkar S, Tota S, Nath C, Tyagi N (2016) Mechanism of oxidative stress and synapse dysfunction in the pathogenesis of Alzheimer’s disease: understanding the therapeutics strategies. Mol Neurobiol 53(1):648–661. https://doi.org/10.1007/s12035-014-9053-6

    Article  CAS  PubMed  Google Scholar 

  88. Morland C, Lauritzen KH, Puchades M, Holm-Hansen S, Andersson K, Gjedde A, Attramadal H, Storm-Mathisen J et al (2015) The lactate receptor, G-protein-coupled receptor 81/hydroxycarboxylic acid receptor 1: expression and action in brain. J Neurosci Res 93(7):1045–1055. https://doi.org/10.1002/jnr.23593

    Article  CAS  PubMed  Google Scholar 

  89. Roskoski R Jr (2012) ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res 66(2):105–143. https://doi.org/10.1016/j.phrs.2012.04.005

    Article  CAS  PubMed  Google Scholar 

  90. Hu J, Cai M, Liu Y, Liu B, Xue X, Ji R, Bian X, Lou S (2020) The roles of GRP81 as a metabolic sensor and inflammatory mediator. J Cell Physiol 235(12):8938–8950. https://doi.org/10.1002/jcp.29739

    Article  CAS  PubMed  Google Scholar 

  91. Fallah Mohammadi Z, Falah Mohammadi H, Patel DI (2019) Comparing the effects of progressive and mild intensity treadmill running protocols on neuroprotection of parkinsonian rats. Life Sci 229:219–224. https://doi.org/10.1016/j.lfs.2019.05.036

    Article  CAS  PubMed  Google Scholar 

  92. Oh S, Seo SB, Kim G, Batsukh S, Son KH, Byun K (2023) Poly-D,L-lactic acid stimulates angiogenesis and collagen synthesis in aged animal skin. Int J Mol Sci 24(9). https://doi.org/10.3390/ijms24097986

  93. Moonen S, Koper MJ, Van Schoor E, Schaeverbeke JM, Vandenberghe R, von Arnim CAF, Tousseyn T, De Strooper B et al (2023) Pyroptosis in Alzheimer’s disease: cell type-specific activation in microglia, astrocytes and neurons. Acta Neuropathol 145(2):175–195. https://doi.org/10.1007/s00401-022-02528-y

    Article  CAS  PubMed  Google Scholar 

  94. Végran F, Boidot R, Michiels C, Sonveaux P, Feron O (2011) Lactate influx through the endothelial cell monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway that drives tumor angiogenesis. Cancer Res 71(7):2550–2560. https://doi.org/10.1158/0008-5472.Can-10-2828

    Article  PubMed  Google Scholar 

  95. Rooney K, Trayhurn P (2011) Lactate and the GPR81 receptor in metabolic regulation: implications for adipose tissue function and fatty acid utilisation by muscle during exercise. Br J Nutr 106(9):1310–1316. https://doi.org/10.1017/s0007114511004673

    Article  CAS  PubMed  Google Scholar 

  96. Lin HC, Chen YJ, Wei YH, Lin HA, Chen CC, Liu TF, Hsieh YL, Huang KY et al (2021) Lactic acid fermentation is required for NLRP3 inflammasome activation. Front Immunol 12:630380. https://doi.org/10.3389/fimmu.2021.630380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yang K, Xu J, Fan M, Tu F, Wang X, Ha T, Williams DL, Li C (2020) Lactate suppresses macrophage pro-inflammatory response to LPS stimulation by inhibition of YAP and NF-κB activation via GPR81-mediated signaling. Front Immunol 11:587913. https://doi.org/10.3389/fimmu.2020.587913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nasi A, Fekete T, Krishnamurthy A, Snowden S, Rajnavölgyi E, Catrina AI, Wheelock CE, Vivar N et al (2013) Dendritic cell reprogramming by endogenously produced lactic acid. J Immunol 191(6):3090–3099. https://doi.org/10.4049/jimmunol.1300772

    Article  CAS  PubMed  Google Scholar 

  99. Hoque R, Farooq A, Ghani A, Gorelick F, Mehal WZ (2014) Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology 146(7):1763–1774. https://doi.org/10.1053/j.gastro.2014.03.014

    Article  CAS  PubMed  Google Scholar 

  100. Santoni G, Cardinali C, Morelli MB, Santoni M, Nabissi M, Amantini C (2015) Danger- and pathogen-associated molecular patterns recognition by pattern-recognition receptors and ion channels of the transient receptor potential family triggers the inflammasome activation in immune cells and sensory neurons. J Neuroinflammation 12:21. https://doi.org/10.1186/s12974-015-0239-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Manosalva C, Quiroga J, Hidalgo AI, Alarcón P, Anseoleaga N, Hidalgo MA, Burgos RA (2021) Role of lactate in inflammatory processes: friend or foe. Front Immunol 12:808799. https://doi.org/10.3389/fimmu.2021.808799

    Article  CAS  PubMed  Google Scholar 

  102. Yang L (2018) Neuronal cAMP/PKA signaling and energy homeostasis. Adv Exp Med Biol 1090:31–48. https://doi.org/10.1007/978-981-13-1286-1_3

    Article  CAS  PubMed  Google Scholar 

  103. Omar MH, Scott JD (2020) AKAP signaling islands: venues for precision pharmacology. Trends Pharmacol Sci 41(12):933–946. https://doi.org/10.1016/j.tips.2020.09.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keravis T, Lugnier C (2012) Cyclic nucleotide phosphodiesterase (PDE) isozymes as targets of the intracellular signalling network: benefits of PDE inhibitors in various diseases and perspectives for future therapeutic developments. Br J Pharmacol 165(5):1288–1305. https://doi.org/10.1111/j.1476-5381.2011.01729.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Zhou Z, Okamoto K, Onodera J, Hiragi T, Andoh M, Ikawa M, Tanaka KF, Ikegaya Y, et al. (2021) Astrocytic cAMP modulates memory via synaptic plasticity. Proc Natl Acad Sci USA 118(3). https://doi.org/10.1073/pnas.2016584118

  106. Liu X, Betzenhauser MJ, Reiken S, Meli AC, Xie W, Chen BX, Arancio O, Marks AR (2012) Role of leaky neuronal ryanodine receptors in stress-induced cognitive dysfunction. Cell 150(5):1055–1067. https://doi.org/10.1016/j.cell.2012.06.052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Toledo JB, Arnold SE, Raible K, Brettschneider J, Xie SX, Grossman M, Monsell SE, Kukull WA et al (2013) Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain 136(Pt 9):2697–2706. https://doi.org/10.1093/brain/awt188

    Article  PubMed  PubMed Central  Google Scholar 

  108. Radeva MY, Waschke J (2018) Mind the gap: mechanisms regulating the endothelial barrier. Acta Physiol (Oxf) 222(1) https://doi.org/10.1111/apha.12860

  109. Viña D, Seoane N, Vasquez EC, Campos-Toimil M (2021) cAMP compartmentalization in cerebrovascular endothelial cells: new therapeutic opportunities in Alzheimer’s disease. Cells 10(8). https://doi.org/10.3390/cells10081951

  110. Lauritzen KH, Morland C, Puchades M, Holm-Hansen S, Hagelin EM, Lauritzen F, Attramadal H, Storm-Mathisen J et al (2014) Lactate receptor sites link neurotransmission, neurovascular coupling, and brain energy metabolism. Cereb Cortex 24(10):2784–2795. https://doi.org/10.1093/cercor/bht136

    Article  PubMed  Google Scholar 

  111. Ivashkiv LB (2020) The hypoxia-lactate axis tempers inflammation. Nat Rev Immunol 20(2):85–86. https://doi.org/10.1038/s41577-019-0259-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bozzo L, Puyal J, Chatton JY (2013) Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS ONE 8(8):e71721. https://doi.org/10.1371/journal.pone.0071721

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  113. de Castro AH, Briquet M, Schmuziger C, Restivo L, Puyal J, Rosenberg N, Rocher AB, Offermanns S et al (2019) The lactate receptor HCAR1 modulates neuronal network activity through the activation of G(α) and G(βγ) subunits. J Neurosci 39(23):4422–4433. https://doi.org/10.1523/jneurosci.2092-18.2019

    Article  CAS  Google Scholar 

  114. Booker SA, Wyllie DJA (2021) NMDA receptor function in inhibitory neurons. Neuropharmacology 196:108609. https://doi.org/10.1016/j.neuropharm.2021.108609

    Article  CAS  PubMed  Google Scholar 

  115. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  116. Hynd MR, Scott HL, Dodd PR (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem Int 45(5):583–595. https://doi.org/10.1016/j.neuint.2004.03.007

    Article  CAS  PubMed  Google Scholar 

  117. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463. https://doi.org/10.1016/j.tins.2008.06.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Herrera-López G, Griego E, Galván EJ (2020) Lactate induces synapse-specific potentiation on CA3 pyramidal cells of rat hippocampus. PLoS ONE 15(11):e0242309. https://doi.org/10.1371/journal.pone.0242309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Mosienko V, Teschemacher AG, Kasparov S (2015) Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab 35(7):1069–1075. https://doi.org/10.1038/jcbfm.2015.77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, Guo S, Zhou Q et al (2019) Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell 25(6):754-767.e759. https://doi.org/10.1016/j.stem.2019.09.009

    Article  CAS  PubMed  Google Scholar 

  121. Steinman MQ, Gao V, Alberini CM (2016) The role of lactate-mediated metabolic coupling between astrocytes and neurons in long-term memory formation. Front Integr Neurosci 10:10. https://doi.org/10.3389/fnint.2016.00010

    Article  PubMed  PubMed Central  Google Scholar 

  122. Descalzi G, Gao V, Steinman MQ, Suzuki A, Alberini CM (2019) Lactate from astrocytes fuels learning-induced mRNA translation in excitatory and inhibitory neurons. Commun Biol 2:247. https://doi.org/10.1038/s42003-019-0495-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Lu WT, Sun SQ, Li Y, Xu SY, Gan SW, Xu J, Qiu GP, Zhuo F et al (2019) Curcumin ameliorates memory deficits by enhancing lactate content and MCT2 expression in APP/PS1 transgenic mouse model of Alzheimer’s disease. Anat Rec (Hoboken) 302(2):332–338. https://doi.org/10.1002/ar.23969

    Article  CAS  PubMed  Google Scholar 

  124. Liguori C, Chiaravalloti A, Sancesario G, Stefani A, Sancesario GM, Mercuri NB, Schillaci O, Pierantozzi M (2016) Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer’s disease. Eur J Nucl Med Mol Imaging 43(11):2040–2049. https://doi.org/10.1007/s00259-016-3417-2

    Article  CAS  PubMed  Google Scholar 

  125. Hong P, Zhang X, Gao S, Wang P (2020) Role of monocarboxylate transporter 4 in Alzheimer disease. Neurotoxicology 76:191–199. https://doi.org/10.1016/j.neuro.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  126. El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, El-Ghandour R, Nasrallah P et al (2019) Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci 39(13):2369–2382. https://doi.org/10.1523/jneurosci.1661-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Veloz Castillo MF, Magistretti PJ, Calì C (2021) L-lactate: food for thoughts, memory and behavior. Metabolites 11(8). https://doi.org/10.3390/metabo11080548

  128. Shima T, Matsui T, Jesmin S, Okamoto M, Soya M, Inoue K, Liu YF, Torres-Aleman I et al (2017) Moderate exercise ameliorates dysregulated hippocampal glycometabolism and memory function in a rat model of type 2 diabetes. Diabetologia 60(3):597–606. https://doi.org/10.1007/s00125-016-4164-4

    Article  CAS  PubMed  Google Scholar 

  129. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L (2009) Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 29(11):1780–1789. https://doi.org/10.1038/jcbfm.2009.97

    Article  CAS  PubMed  Google Scholar 

  130. Castillo X, Rosafio K, Wyss MT, Drandarov K, Buck A, Pellerin L, Weber B, Hirt L (2015) A probable dual mode of action for both L- and D-lactate neuroprotection in cerebral ischemia. J Cereb Blood Flow Metab 35(10):1561–1569. https://doi.org/10.1038/jcbfm.2015.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Kennedy L, Glesaaen ER, Palibrk V, Pannone M, Wang W, Al-Jabri A, Suganthan R, Meyer N, et al (2022) Lactate receptor HCAR1 regulates neurogenesis and microglia activation after neonatal hypoxia-ischemia. Elife 11. https://doi.org/10.7554/eLife.76451

  132. Lu W, Huang J, Sun S, Huang S, Gan S, Xu J, Yang M, Xu S et al (2015) Changes in lactate content and monocarboxylate transporter 2 expression in Aβ25-35-treated rat model of Alzheimer’s disease. Neurol Sci 36(6):871–876. https://doi.org/10.1007/s10072-015-2087-3

    Article  PubMed  Google Scholar 

  133. Zhang M, Cheng X, Dang R, Zhang W, Zhang J, Yao Z (2018) Lactate deficit in an alzheimer disease mouse model: the relationship with neuronal damage. J Neuropathol Exp Neurol 77(12):1163–1176. https://doi.org/10.1093/jnen/nly102

    Article  CAS  PubMed  Google Scholar 

  134. Cai M, Wang H, Song H, Yang R, Wang L, Xue X, Sun W, Hu J (2022) Lactate is answerable for brain function and treating brain diseases: energy substrates and signal molecule. Front Nutr 9:800901. https://doi.org/10.3389/fnut.2022.800901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Guéant JL (1998) Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology 44(5):300–304. https://doi.org/10.1159/000022031

    Article  CAS  PubMed  Google Scholar 

  136. Fernandez-Marcos PJ, Auwerx J (2011) Regulation of PGC-1α, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 93(4):884s–8890. https://doi.org/10.3945/ajcn.110.001917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. E L, Lu J, Selfridge JE, Burns JM, Swerdlow RH (2013) Lactate administration reproduces specific brain and liver exercise-related changes. J Neurochem 127(1):91–100. https://doi.org/10.1111/jnc.12394

  138. Laurin D, Verreault R, Lindsay J, MacPherson K, Rockwood K (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58(3):498–504. https://doi.org/10.1001/archneur.58.3.498

    Article  CAS  PubMed  Google Scholar 

  139. De la Rosa A, Olaso-Gonzalez G, Arc-Chagnaud C, Millan F, Salvador-Pascual A, Garcia-Lucerga C, Blasco-Lafarga C, Garcia-Dominguez E et al (2020) Physical exercise in the prevention and treatment of Alzheimer’s disease. J Sport Health Sci 9(5):394–404. https://doi.org/10.1016/j.jshs.2020.01.004

    Article  PubMed  PubMed Central  Google Scholar 

  140. Lee IM, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT (2012) Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 380(9838):219–229. https://doi.org/10.1016/s0140-6736(12)61031-9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81702236), Hunan Provincial Natural Science Foundation (Approval No. 2023JJ30429), Changsha City Natural Science Foundation (Grant No. kq2202251), and Key Project of the Hunan Provincial Education Department (Grant No. 20A333).

Author information

Authors and Affiliations

Authors

Contributions

Xiangyuan Meng and Weijia Wu are the co-first authors. They drafted the manuscript and contributed equally to this article. Yingzhe Tang and Mei Peng drafted the figures. Shunling Yuan and Zelin Hu suggested improvements. Wenfeng Liu conceptualized the article and revised the final version of the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Wenfeng Liu.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, X., Wu, W., Tang, Y. et al. Lactate/Hydroxycarboxylic Acid Receptor 1 in Alzheimer’s Disease: Mechanisms and Therapeutic Implications-Exercise Perspective. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04067-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04067-x

Keywords

Navigation