Skip to main content
Log in

ACE2 Rescues Sepsis-Associated Encephalopathy by Reducing Inflammation, Oxidative Stress, and Neuronal Apoptosis via the Nrf2/Sestrin2 Signaling Pathway

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation and oxidative stress contribute to the progression of sepsis-associated encephalopathy (SAE). Angiotensin-converting enzyme 2 (ACE2) is considered to be a neuroprotective factor due to its anti-inflammatory and antioxidant properties. However, the role of ACE2 on myeloid cells in regulating SAE and the underlying mechanism warrants further exploration. SAE was induced in ACE2 transgenic (TG), knockout (KO), and bone marrow (BM) chimeric mice by cecal ligation and puncture (CLP). The expression levels of apoptosis-, oxidation- and neuroinflammation-associated mediators and morphological changes were monitored by quantitative real-time PCR analyses and histological examinations in the cortex of septic mice. The contents of angiotensin (Ang) II and Ang-(1–7) along with the activity of ACE2 were examined with commercial kits. The expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and Sestrin2 was detected by immunoblotting analysis. Our results indicated that the expression of cortical ACE2 was significantly reduced in the early phase of CLP-induced sepsis. Moreover, ACE2 overexpression in TG mice conferred neuroprotection against sepsis, as evidenced by alleviated neuronal apoptosis, oxidative stress, and proinflammatory M1-like microglial polarization, accompanied by upregulation of the Ang-(1–7), Nrf2, and Sestrin2 protein levels. Conversely, ACE2 deficiency in KO mice exacerbated SAE. The neuroprotective effects of ACE2 were further confirmed in wild-type mice transplanted with ACE2-TG and KO BM cells. Therefore, our data suggest that myeloid ACE2 exerts a protective role in the pathogenesis of SAE, potentially by activating Ang-(1–7)-Nrf2/sestrin2 signaling pathway, and highlight that upregulating ACE2 expression and activity may represent a promising approach for the treatment of SAE in patients with sepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

ACE2:

Angiotensin-converting enzyme 2

Ang-II:

Angiotensin II

Ang-(1–7):

Angiotensin-(1–7)

Arg-1:

Arginase-1

Bax:

BCL-2-associated X protein

BCL-2:

B-cell lymphoma-2

BMT:

Bone marrow transplantation

BSA:

Bovine serum albumin

CLP:

Cecal ligation and puncture

CNS:

Central nervous system

DAPI:

4′,6-Diamidino-2-phenylindole

DHE:

Dihydroethidium

ELISA:

Enzyme-linked immunosorbent assay

IL-1β:

Interleukin 1β

IL-6:

Interleukin 6

KO:

Knockout

MasRs:

Mas receptors

NLRP3:

NOD-like receptor thermal protein domain associated protein 3

NOX:

NADPH oxidase

Nrf2:

Nuclear factor erythroid 2-related factor 2

PBS:

Phosphate buffer solution

RAS:

Renin-angiotensin system

ROS:

Reactive oxygen species

SAE:

Sepsis-associated encephalopathy

TG:

Transgenic

TNF-α:

Tumor necrosis factor alpha

TUNEL:

Terminal-deoxynucleotidyl transferase-mediated nick end labeling

References

  1. Helbing D-L, Böhm L, Witte OW (2018) Sepsis-associated encephalopathy. CMAJ 190(36):E1083. https://doi.org/10.1503/cmaj.180454

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xin Y, Tian M, Deng S, Li J, Yang M, Gao J, Pei X, Wang Y et al (2023) The key drivers of brain injury by systemic inflammatory responses after sepsis: microglia and neuroinflammation. Mol Neurobiol 60(3):1369–1390. https://doi.org/10.1007/s12035-022-03148-z

    Article  CAS  PubMed  Google Scholar 

  3. Wicks EE, Ran KR, Kim JE, Xu R, Lee RP, Jackson CM (2022) The translational potential of microglia and monocyte-derived macrophages in ischemic stroke. Front Immunol 13:897022. https://doi.org/10.3389/fimmu.2022.897022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang Y, Xing C-J, Liu X, Li Y-H, Jia J, Feng J-G, Yang C-J, Chen Y et al (2022) Thioredoxin-Interacting Protein (TXNIP) Knockdown protects against sepsis-induced brain injury and cognitive decline in mice by suppressing oxidative stress and neuroinflammation. Oxid Med Cell Longev 2022:8645714. https://doi.org/10.1155/2022/8645714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mei B, Li J, Zuo Z (2021) Dexmedetomidine attenuates sepsis-associated inflammation and encephalopathy via central α2A adrenoceptor. Brain Behav Immun 91:296–314. https://doi.org/10.1016/j.bbi.2020.10.008

    Article  CAS  PubMed  Google Scholar 

  6. Ding H, Li Y, Chen S, Wen Y, Zhang S, Luo E, Li X, Zhong W et al (2022) Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy. CNS Neurosci Ther 28(2):247–258. https://doi.org/10.1111/cns.13765

    Article  CAS  PubMed  Google Scholar 

  7. Wang K, Gheblawi M, Oudit GY (2020) Angiotensin converting enzyme 2: a double-edged sword. Circulation 142(5):426–428. https://doi.org/10.1161/CIRCULATIONAHA.120.047049

    Article  CAS  PubMed  Google Scholar 

  8. Mohammed M, Berdasco C, Lazartigues E (2020) Brain angiotensin converting enzyme-2 in central cardiovascular regulation. Clin Sci (Lond) 134(19):2535–2547. https://doi.org/10.1042/CS20200483

    Article  CAS  PubMed  Google Scholar 

  9. Evans CE, Miners JS, Piva G, Willis CL, Heard DM, Kidd EJ, Good MA, Kehoe PG (2020) ACE2 activation protects against cognitive decline and reduces amyloid pathology in the Tg2576 mouse model of Alzheimer’s disease. Acta Neuropathol 139(3):485–502. https://doi.org/10.1007/s00401-019-02098-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR et al (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 315(8):801–810. https://doi.org/10.1001/jama.2016.0287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Le Merre P, Ährlund-Richter S, Carlén M (2021) The mouse prefrontal cortex: Unity in diversity. Neuron 109(12):1925–1944. https://doi.org/10.1016/j.neuron.2021.03.035

    Article  CAS  PubMed  Google Scholar 

  12. Cui H, Su S, Cao Y, Ma C, Qiu W (2021) The altered anatomical distribution of ACE2 in the brain with Alzheimer’s disease pathology. Front Cell Dev Biol 9:684874. https://doi.org/10.3389/fcell.2021.684874

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hernández VS, Zetter MA, Guerra EC, Hernández-Araiza I, Karuzin N, Hernández-Pérez OR, Eiden LE, Zhang L (2021) ACE2 expression in rat brain: implications for COVID-19 associated neurological manifestations. Exp Neurol 345:113837. https://doi.org/10.1016/j.expneurol.2021.113837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. National Research Council Committee for the Update of the Guide for the C, Use of Laboratory A (2011) The National Academies Collection: Reports funded by National Institutes of Health. In: Guide for the Care and Use of Laboratory Animals. National Academies Press (US) Copyright © 2011, National Academy of Sciences., Washington (DC) https://doi.org/10.17226/12910

  15. Han X, Zhang Y-L, Lin Q-Y, Li H-H, Guo S-B (2022) ATGL deficiency aggravates pressure overload-triggered myocardial hypertrophic remodeling associated with the proteasome-PTEN-mTOR-autophagy pathway. Cell Biol Toxicol. https://doi.org/10.1007/s10565-022-09699-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zhang Y, Wu F, Teng F, Guo S, Li H (2023) Deficiency of S100A9 alleviates sepsis-induced acute liver injury through regulating AKT-AMPK-dependent mitochondrial energy metabolism. Int J Mol Sci 24(3):2112. https://doi.org/10.3390/ijms24032112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang H, Wang Y, Deng J, Zhang H, Wu Q, He L, Xu J, Shao X et al (2022) Sepsis-induced gut dysbiosis mediates the susceptibility to sepsis-associated encephalopathy in mice. mSystems 7(3):e0139921. https://doi.org/10.1128/msystems.01399-21

    Article  CAS  PubMed  Google Scholar 

  18. Zhou S, Li Y, Hong Y, Zhong Z, Zhao M (2023) Puerarin protects against sepsis-associated encephalopathy by inhibiting NLRP3/Caspase-1/GSDMD pyroptosis pathway and reducing blood-brain barrier damage. Eur J Pharmacol 945:175616. https://doi.org/10.1016/j.ejphar.2023.175616

    Article  CAS  PubMed  Google Scholar 

  19. Ping S, Qiu X, Kyle M, Zhao LR (2021) Brain-derived CCR5 contributes to neuroprotection and brain repair after experimental stroke. Aging Dis 12(1):72–92. https://doi.org/10.14336/AD.2020.0406

    Article  PubMed  PubMed Central  Google Scholar 

  20. Ruiz S, Vardon-Bounes F, Merlet-Dupuy V, Conil J-M, Buléon M, Fourcade O, Tack I, Minville V (2016) Sepsis modeling in mice: ligation length is a major severity factor in cecal ligation and puncture. Intensive Care Med Exp 4(1):22. https://doi.org/10.1186/s40635-016-0096-z

    Article  PubMed  PubMed Central  Google Scholar 

  21. Li J-X, Xiao X, Teng F, Li H-H (2023) Myeloid ACE2 protects against septic hypotension and vascular dysfunction through Ang-(1–7)-Mas-mediated macrophage polarization. Redox Biol 69:103004. https://doi.org/10.1016/j.redox.2023.103004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, Lee HE, Kang D et al (2013) Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab 17(1):73–84. https://doi.org/10.1016/j.cmet.2012.12.002

    Article  CAS  PubMed  Google Scholar 

  23. Kim M-J, Bae SH, Ryu J-C, Kwon Y, Oh J-H, Kwon J, Moon J-S, Kim K et al (2016) SESN2/sestrin2 suppresses sepsis by inducing mitophagy and inhibiting NLRP3 activation in macrophages. Autophagy 12(8):1272–1291. https://doi.org/10.1080/15548627.2016.1183081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xiao T, Zhang L, Huang Y, Shi Y, Wang J, Ji Q, Ye J, Lin Y et al (2019) Sestrin2 increases in aortas and plasma from aortic dissection patients and alleviates angiotensin II-induced smooth muscle cell apoptosis via the Nrf2 pathway. Life Sci 218:132–138. https://doi.org/10.1016/j.lfs.2018.12.043

    Article  CAS  PubMed  Google Scholar 

  25. Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ (2018) The ACE2/angiotensin-(1–7)/MAS axis of the renin-angiotensin system: focus on angiotensin-(1–7). Physiol Rev 98(1):505–553. https://doi.org/10.1152/physrev.00023.2016

    Article  CAS  PubMed  Google Scholar 

  26. Sriramula S, Xia H, Xu P, Lazartigues E (2015) Brain-targeted angiotensin-converting enzyme 2 overexpression attenuates neurogenic hypertension by inhibiting cyclooxygenase-mediated inflammation. Hypertension 65(3):577–586. https://doi.org/10.1161/HYPERTENSIONAHA.114.04691

    Article  CAS  PubMed  Google Scholar 

  27. Barzegar M, Vital S, Stokes KY, Wang Y, Yun JW, White LA, Chernyshev O, Kelley RE et al (2021) Human placenta mesenchymal stem cell protection in ischemic stroke is angiotensin converting enzyme-2 and masR receptor-dependent. Stem Cells 39(10):1335–1348. https://doi.org/10.1002/stem.3426

    Article  CAS  PubMed  Google Scholar 

  28. Bennion DM, Haltigan EA, Irwin AJ, Donnangelo LL, Regenhardt RW, Pioquinto DJ, Purich DL, Sumners C (2015) Activation of the neuroprotective angiotensin-converting enzyme 2 in rat ischemic stroke. Hypertension 66(1):141–148. https://doi.org/10.1161/HYPERTENSIONAHA.115.05185

    Article  CAS  PubMed  Google Scholar 

  29. Dang R, Yang M, Cui C, Wang C, Zhang W, Geng C, Han W, Jiang P (2021) Activation of angiotensin-converting enzyme 2/angiotensin (1–7)/mas receptor axis triggers autophagy and suppresses microglia proinflammatory polarization via forkhead box class O1 signaling. Aging Cell 20(10):e13480. https://doi.org/10.1111/acel.13480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mazeraud A, Righy C, Bouchereau E, Benghanem S, Bozza FA, Sharshar T (2020) Septic-associated encephalopathy: a comprehensive review. Neurotherapeutics 17(2):392–403. https://doi.org/10.1007/s13311-020-00862-1

    Article  PubMed  PubMed Central  Google Scholar 

  31. Castro LVG, Gonçalves-de-Albuquerque CF, Silva AR (2022) Polarization of Microglia and Its Therapeutic Potential in Sepsis. Int J Mol Sci 23(9):4925. https://doi.org/10.3390/ijms23094925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cui C, Xu P, Li G, Qiao Y, Han W, Geng C, Liao D, Yang M et al (2019) Vitamin D receptor activation regulates microglia polarization and oxidative stress in spontaneously hypertensive rats and angiotensin II-exposed microglial cells: role of renin-angiotensin system. Redox Biol 26:101295. https://doi.org/10.1016/j.redox.2019.101295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gupta S, Tiwari V, Tiwari P, Parul MA, Hanif K, Shukla S (2022) Angiotensin-converting enzyme 2 activation mitigates behavioral deficits and neuroinflammatory burden in 6-OHDA induced experimental models of Parkinson’s disease. ACS Chem Neurosci 13(10):1491–1504. https://doi.org/10.1021/acschemneuro.1c00797

    Article  CAS  PubMed  Google Scholar 

  34. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13):4777. https://doi.org/10.3390/ijms21134777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pillai R, Hayashi M, Zavitsanou A-M, Papagiannakopoulos T (2022) NRF2: KEAPing tumors protected. Cancer Discov 12(3):625–643. https://doi.org/10.1158/2159-8290.CD-21-0922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lu C, Jiang Y, Xu W, Bao X (2023) Sestrin2: multifaceted functions, molecular basis, and its implications in liver diseases. Cell Death Dis 14(2):160. https://doi.org/10.1038/s41419-023-05669-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I (2022) MLN-4760 Induces oxidative stress without blood pressure and behavioural alterations in SHRs: roles of Nfe2l2 gene, nitric oxide and hydrogen sulfide. Antioxidants (Basel) 11(12):2385. https://doi.org/10.3390/antiox11122385

    Article  CAS  PubMed  Google Scholar 

  38. Fang Y, Gao F, Liu Z (2019) Angiotensin-converting enzyme 2 attenuates inflammatory response and oxidative stress in hyperoxic lung injury by regulating NF-κB and Nrf2 pathways. QJM 112(12):914–924. https://doi.org/10.1093/qjmed/hcz206

    Article  CAS  PubMed  Google Scholar 

  39. Li J-Y, Ren C, Wang L-X, Yao R-Q, Dong N, Wu Y, Tian Y-P, Yao Y-M (2021) Sestrin2 protects dendrite cells against ferroptosis induced by sepsis. Cell Death Dis 12(9):834. https://doi.org/10.1038/s41419-021-04122-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yang Y, Ding H, Yang C, Wu J, Bao Y, Lan S, Zhou L, Zhou L et al (2023) Sestrin2 provides cerebral protection through activation of Nrf2 signaling in microglia following subarachnoid hemorrhage. Front Immunol 14:1089576. https://doi.org/10.3389/fimmu.2023.1089576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhou K, Han J, Wang Y, Xu Y, Zhang Y, Zhu C (2022) The therapeutic potential of bone marrow-derived macrophages in neurological diseases. CNS Neurosci Ther 28(12):1942–1952. https://doi.org/10.1111/cns.13964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ngwa C, Al Mamun A, Qi S, Sharmeen R, Conesa MPB, Ganesh BP, Manwani B, Liu F (2023) Central IRF4/5 signaling are critical for microglial activation and impact on stroke outcomes. Transl Stroke Res. https://doi.org/10.1007/s12975-023-01172-2

    Article  PubMed  Google Scholar 

  43. Larochelle A, Bellavance M-A, Michaud J-P (2016) Bone marrow-derived macrophages and the CNS: an update on the use of experimental chimeric mouse models and bone marrow transplantation in neurological disorders. Biochim Biophys Acta 1862:310–322. https://doi.org/10.1016/j.bbadis.2015.09.017

  44. Xie Z, Xu M, Xie J, Liu T, Xu X, Gao W, Li Z, Bai X et al (2022) Inhibition of ferroptosis attenuates glutamate excitotoxicity and nuclear autophagy in a CLP septic mouse model. Shock 57(5):694–702. https://doi.org/10.1097/SHK.0000000000001893

    Article  CAS  PubMed  Google Scholar 

  45. Zhao L, An R, Yang Y, Yang X, Liu H, Yue L, Li X, Lin Y et al (2015) Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT1 signaling. J Pineal Res 59(2):230–239. https://doi.org/10.1111/jpi.12254

    Article  CAS  PubMed  Google Scholar 

  46. Halbach JL, Wang AW, Hawisher D, Cauvi DM, Lizardo RE, Rosas J, Reyes T, Escobedo O et al (2017) Why antibiotic treatment is not enough for sepsis resolution: an evaluation in an experimental animal model. Infect Immun 85(12):10–128. https://doi.org/10.1128/IAI.00664-17

    Article  Google Scholar 

  47. Alverdy JC, Keskey R, Thewissen R (2020) Can the cecal ligation and puncture model be repurposed to better inform therapy in human sepsis? Infect Immun 88(9):10–128. https://doi.org/10.1128/IAI.00942-19

    Article  Google Scholar 

  48. Sterling SA, Miller WR, Pryor J, Puskarich MA, Jones AE (2015) The impact of timing of antibiotics on outcomes in severe sepsis and septic shock: a systematic review and meta-analysis. Crit Care Med 43(9):1907–1915. https://doi.org/10.1097/CCM.0000000000001142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Iskander KN, Vaickus M, Duffy ER, Remick DG (2016) Shorter duration of post-operative antibiotics for cecal ligation and puncture does not increase inflammation or mortality. PLoS ONE 11(9):e0163005. https://doi.org/10.1371/journal.pone.0163005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Göl Serin B, Köse Ş, Yilmaz O, Yildirim M, Akbulut I, Serin Senger S, Akkoçlu G, Diniz G et al (2019) An evaluation of the effect of ertapenem in rats with sepsis created by cecal ligation and puncture. Ulus Travma Acil Cerrahi Derg 25(5):427–432. https://doi.org/10.5505/tjtes.2018.26050

    Article  PubMed  Google Scholar 

  51. Fröhlich EE, Farzi A, Mayerhofer R, Reichmann F, Jačan A, Wagner B, Zinser E, Bordag N et al (2016) Cognitive impairment by antibiotic-induced gut dysbiosis: analysis of gut microbiota-brain communication. Brain Behav Immun 56:140–155. https://doi.org/10.1016/j.bbi.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cheng D, Qin Z-S, Zheng Y, Xie J-Y, Liang S-S, Zhang J-L, Feng Y-B, Zhang Z-J (2023) Minocycline, a classic antibiotic, exerts psychotropic effects by normalizing microglial neuroinflammation-evoked tryptophan-kynurenine pathway dysregulation in chronically stressed male mice. Brain Behav Immun 107:305–318. https://doi.org/10.1016/j.bbi.2022.10.022

    Article  CAS  PubMed  Google Scholar 

  53. Hayer SS, Hwang S, Clayton JB (2023) Antibiotic-induced gut dysbiosis and cognitive, emotional, and behavioral changes in rodents: a systematic review and meta-analysis. Front Neurosci 17:1237177. https://doi.org/10.3389/fnins.2023.1237177

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Naturel Science Foundation of China (grant number 82172123) to Shubin Guo.

Author information

Authors and Affiliations

Authors

Contributions

Ya Li, Tian-Tian Wan, Jia-Xin Li, Xue Xiao, and Lei Liu performed the experiments. Ya Li conducted data collection, statistical analysis, and interpretation. Hui-Hua Li and Ya Li designed the experiments and prepared the manuscript. Hui-Hua Li and Shu-Bin Guo were responsible for the supervision of the project. Shubin Guo offered funding support. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Hui-Hua Li or Shu-Bin Guo.

Ethics declarations

Ethics Approval

The protocols of this study were approved by Animal Care and Use Committee of Beijing Chaoyang Hospital of Capital Medical University (approval number 2021-Animal-35, February 26, 2021), and all experiments were carried out by following the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to publication of this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Wan, TT., Li, JX. et al. ACE2 Rescues Sepsis-Associated Encephalopathy by Reducing Inflammation, Oxidative Stress, and Neuronal Apoptosis via the Nrf2/Sestrin2 Signaling Pathway. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04063-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04063-1

Keywords

Navigation