Skip to main content
Log in

Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Injection of polyinosinic:polycytidylic acid (poly(I:C)) into experimental animals induces neuroimmunological responses and thus has been used for the study of neurological disorders such as anxiety, depression, and chronic fatigue. Here, we investigated the effects of vagus nerve stimulation (VNS) on poly(I:C)-induced neuroinflammation and associated behavioral consequences in rats. The microglia in the prefrontal cortex (PFC) displayed the activated form of morphology in poly(I:C)-injected rats and changed to a normal shape after acute VNS (aVNS). Production of phospho-NF-κB, phospho-IκB, IL-1β, and cleaved caspase 3 was elevated by poly(I:C) and downregulated by aVNS. In contrast, phospho-Akt levels were decreased by poly(I:C) and increased by aVNS. Neuronal production of fractalkine (CX3CL1) in the PFC was markedly reduced by poly(I:C), but recovered by aVNS. Fractalkine interaction with its receptor CX3CR1 was highly elevated by VNS. We further demonstrated that the pharmacological blockade of CX3CR1 activity counteracted the production of IL-1β, phospho-Akt, and cleaved form of caspase 3 that was modulated by VNS, suggesting the anti-inflammatory effects of fractalkine-CX3CR1 signaling as a mediator of neuron-microglia interaction. Behavioral assessments of pain and temperature sensations by von Frey and hot/cold plate tests showed significant improvement by chronic VNS (cVNS) and forced swimming and marble burying tests revealed that the depressive-like behaviors caused by poly(I:C) injection were rescued by cVNS. We also found that the recognition memory which was impaired by poly(I:C) administration was improved by cVNS. This study suggests that VNS may play a role in regulating neuroinflammation and somatosensory and cognitive functions in poly(I:C)-injected animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Abbreviations

aVNS:

Acute vagus nerve stimulation

CFS:

Chronic fatigue syndrome

cVNS:

Chronic vagus nerve stimulation

FST:

Forced swimming test

LPS:

Lipopolysaccharide

PFC:

Prefrontal cortex

poly(I:C):

Polyinosinic:polycytidylic acid

VNS:

Vagus nerve stimulation

References

  1. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413(6857):732–738. https://doi.org/10.1038/35099560

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Murshid A, Borges TJ, Lang BJ, Calderwood SK (2016) The scavenger receptor SREC-I cooperates with toll-like receptors to trigger inflammatory innate immune responses. Front Immunol 7:226. https://doi.org/10.3389/fimmu.2016.00226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Scumpia PO, Kelly KM, Reeves WH, Stevens BR (2005) Double-stranded RNA signals antiviral and inflammatory programs and dysfunctional glutamate transport in TLR3-expressing astrocytes. Glia 52(2):153–162. https://doi.org/10.1002/glia.20234

    Article  PubMed  Google Scholar 

  4. Ifuku M, Hossain SM, Noda M, Katafuchi T (2014) Induction of interleukin1beta by activated microglia is a prerequisite for immunologically induced fatigue. Eur J Neurosci 40:3253–3263. https://doi.org/10.1111/ejn.12668

    Article  PubMed  Google Scholar 

  5. Lee H, Park C, Cho IH, Kim HY, Jo EK, Lee S et al (2007) Double-stranded RNA induces iNOS gene expression in Schwann cells, sensory neuronal death, and peripheral nerve demyelination. Glia 55(7):712–722. https://doi.org/10.1002/glia.20493

    Article  PubMed  Google Scholar 

  6. Garré JM, Silva HM, Lafaille JJ, Yang G (2017) CX3CR1+ monocytes modulate learning and learning-dependent dendritic spine remodeling via TNF-α. Nat Med 23(6):714–722. https://doi.org/10.1038/nm.4340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Reisinger S, Khan D, Kong E, Berger A, Pollak A, Pollak DD (2015) The poly(I:C)-induced maternal immune activation model in preclinical neuropsychiatric drug discovery. Pharmacol Ther 149:213–226. https://doi.org/10.1016/j.pharmthera.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  8. Chambers D, Bagnall AM, Hempel S, Forbes C (2006) Interventions for the treatment, management and rehabilitation of patients with chronic fatigue syndrome/myalgic encephalomyelitis: an updated systematic review. J R Soc Med 99(10):506–520. https://doi.org/10.1177/014107680609901012

    Article  PubMed  PubMed Central  Google Scholar 

  9. Komaroff AL, Takahashi R, Yamamura T, Sawamura M (2018) Neurologic abnormalities in myalgic encephalomyelitis/chronic fatigue syndrome: a review. Brain Nerve 70(1):41–54. https://doi.org/10.11477/mf.1416200948

    Article  CAS  PubMed  Google Scholar 

  10. Cleare AJ (2003) The neuroendocrinology of chronic fatigue syndrome. Endocr Rev 24:236–252. https://doi.org/10.1210/er.2002-0014

    Article  CAS  PubMed  Google Scholar 

  11. Lorusso L, Mikhaylova SV, Capelli E, Ferrari D, Ngonga GK, Ricevuti G (2009) Immunological aspects of chronic fatigue syndrome. Autoimmun Rev 8:287–291. https://doi.org/10.1016/j.autrev.2008.08.003

    Article  CAS  PubMed  Google Scholar 

  12. Cambras T, Castro-Marrero J, Zaragoza MC, Diez-Noguera A, Alegre J (2018) Circadian rhythm abnormalities and autonomic dysfunction in patients with chronic fatigue syndrome/myalgic encephalomyelitis. PLoS One 13:e0198106. https://doi.org/10.1371/journal.pone.0198106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Morris G, Stubbs B, Kohler CA, Walder K, Slyepchenko A, Berk M et al (2018) The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 41:255–265. https://doi.org/10.1016/j.smrv.2018.03.007

    Article  PubMed  Google Scholar 

  14. Noda M, Ifuku M, Hossain MS, Glial KT (2018) Activation and expression of the serotonin transporter in chronic fatigue syndrome. Front Psychiatry 9:589. https://doi.org/10.3389/fpsyt.2018.00589

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nakatomi Y, Mizuno K, Ishii A, Wada Y, Tanaka M, Tazawa S et al (2014) Neuroinflammation in patients with chronic fatigue syndrome/myalgic encephalomyelitis: an (1)(1)C-(R)-PK11195 PET study. J Nucl Med 55:945–50. https://doi.org/10.11477/mf.1416200945

    Article  CAS  PubMed  Google Scholar 

  16. Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J et al (2018) A neural circuit for gut-induced reward. Cell 175(3):665–678. https://doi.org/10.1016/j.cell.2018.10.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Furmaga H, Carreno FR, Frazer A (2012) Vagal nerve stimulation rapidly activates brain-derived neurotrophic factor receptor TrkB in rat brain. PLoS One 7(5):e34844. https://doi.org/10.1371/journal.pone.0034844

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shin HC, Jo BG, Lee CY, Lee KW, Namgung U (2019) Hippocampal activation of 5-HT1B receptors and BDNF production by vagus nerve stimulation in rats under chronic restraint stress. Eur J Neurosci 50(1):1820–1830. https://doi.org/10.1016/j.neuroscience.2016.02.024

    Article  CAS  PubMed  Google Scholar 

  19. Shah AP, Carreno FR, Wu H, Chung YA, Frazer A (2016) Role of TrkB in the anxiolytic-like and antidepressant-like effects of vagal nerve stimulation: comparison with desipramine. Neuroscience 322:273–286

    Article  CAS  PubMed  Google Scholar 

  20. Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A (2021) Vagus nerve stimulation in brain diseases: therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 127:37–53. https://doi.org/10.1016/j.neubiorev.2021.04.018

    Article  CAS  PubMed  Google Scholar 

  21. Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X et al (2020) A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 45(5):1373–1384. https://doi.org/10.3892/ijmm.2020.4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Namgung U, Kim KJ, Jo BG, Park JM (2022) Vagus nerve stimulation modulates hippocampal inflammation caused by continuous stress in rats. J Neuroinflammation 19(1):33. https://doi.org/10.1186/s12974-022-02396-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jo BG, Kim SH, Namgung U (2020) Vagal afferent fibers contribute to the anti-inflammatory reactions by vagus nerve stimulation in concanavalin A model of hepatitis in rats. Mol Med 26(1):119. https://doi.org/10.1186/s10020-020-00247-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hwang J, Namgung U (2021) Phosphorylation of STAT3 by axonal Cdk5 promotes axonal regeneration by modulating mitochondrial activity. Exp Neurol 335:113511. https://doi.org/10.1016/j.expneurol.2020.113511

    Article  CAS  PubMed  Google Scholar 

  25. Lee KW, Im JY, Song JS, Lee SH, Lee HJ, Ha HY et al (2006) Progressive neuronal loss and behavioral impairments of transgenic C57BL/6 inbred mice expressing the carboxy terminus of amyloid precursor protein. Neurobiol Dis 22(1):10–24. https://doi.org/10.1016/j.nbd.2005.09.011

    Article  CAS  PubMed  Google Scholar 

  26. Leger M, Quiedeville A, Bouet V, Haelewyn B, Boulouard M, Schumann-Bard P, Freret T (2013) Object recognition test in mice. Nat Protoc 8(12):2531–2537. https://doi.org/10.1038/nprot.2013.155

    Article  CAS  PubMed  Google Scholar 

  27. Kim KJ, Hwang J, Park JY, Namgung U (2020) Augmented Buyang Huanwu Decoction facilitates axonal regeneration after peripheral nerve transection through the regulation of inflammatory cytokine production. J Ethnopharmacol 260:113063. https://doi.org/10.1016/j.jep.2020.113063

    Article  CAS  PubMed  Google Scholar 

  28. Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D et al (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385(6617):640–644. https://doi.org/10.1038/385640a0

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Chamera K, Kotarska K, Szuster-Głuszczak M, Trojan E, Skórkowska A, Pomierny B et al (2020) The prenatal challenge with lipopolysaccharide and polyinosinic:polycytidylic acid disrupts CX3CL1-CX3CR1 and CD200-CD200R signalling in the brains of male rat offspring: a link to schizophrenia-like behaviours. J Neuroinflammation 17(1):247. https://doi.org/10.1186/s12974-020-01923-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G, Pagani F et al (2014) Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat Neurosci 17(3):400–406. https://doi.org/10.1038/nn.3641

    Article  CAS  PubMed  Google Scholar 

  31. Harrison JK, Jiang Y, Chen S, Xia Y, Maciejewski D, McNamara RK et al (1998) Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 95(18):10896–10901. https://doi.org/10.1073/pnas.95.18.10896

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Scholz J, Woolf CJ (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci 10(11):1361–1368. https://doi.org/10.1038/nn1992

    Article  CAS  PubMed  Google Scholar 

  33. Meucci O, Fatatis A, Simen AA, Miller RJ (2000) Expression of CX3CR1 chemokine receptors on neurons and their role in neuronal survival. Proc Natl Acad Sci U S A 97(14):8075–8080. https://doi.org/10.1073/pnas.090017497

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sheridan GK, Murphy KJ (2013) Neuron-glia crosstalk in health and disease: fractalkine and CX3CR1 take centre stage. Open Biol 3(12):130181. https://doi.org/10.1098/rsob.130181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al (2006) Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 9(7):917–924. https://doi.org/10.1038/nn1715

    Article  CAS  PubMed  Google Scholar 

  37. Subbarayan MS, Joly-Amado A, Bickford PC, Nash KR (2022) CX3CL1/CX3CR1 signaling targets for the treatment of neurodegenerative diseases. Pharmacol Ther 231:107989. https://doi.org/10.1016/j.pharmthera.2021.107989

    Article  CAS  PubMed  Google Scholar 

  38. Yamaguchi T, Yoshimura T, Ohara T, Fujisawa M, Tong G, Matsukawa A (2021) PolyI: C suppresses TGF-β1-induced Akt phosphorylation and reduces the motility of A549 lung carcinoma cells. Mol Biol Rep 48(9):6313–6321. https://doi.org/10.1007/s11033-021-06625-1

    Article  CAS  PubMed  Google Scholar 

  39. Yao X, Qi L, Chen X, Du J, Zhang Z, Liu S (2014) Expression of CX3CR1 associates with cellular migration, metastasis, and prognosis in human clear cell renal cell carcinoma. Urol Oncol 32(2):162–170. https://doi.org/10.1016/j.urolonc.2012.12.006

    Article  CAS  PubMed  Google Scholar 

  40. Lyons A, Lynch AM, Downer EJ, Hanley R, O’Sullivan JB, Smith A et al (2009) Fractalkine-induced activation of the phosphatidylinositol-3 kinase pathway attentuates microglial activation in vivo and in vitro. J Neurochem 110(5):1547–1556. https://doi.org/10.1111/j.1471-4159.2009.06253.x

    Article  CAS  PubMed  Google Scholar 

  41. Lu X, Costantini T, Lopez NE, Wolf PL, Hageny AM, Putnam J et al (2013) Vagal nerve stimulation protects cardiac injury by attenuating mitochondrial dysfunction in a murine burn injury model. J Cell Mol Med 17(5):664–671. https://doi.org/10.1111/jcmm.12049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Carreno FR, Frazer A (2017) Vagal nerve stimulation for treatment-resistant depression. Neurotherapeutics 14(3):716–727. https://doi.org/10.1007/s13311-017-0537-8

    Article  PubMed  PubMed Central  Google Scholar 

  43. Lewis V, Rodrigue B, Arsenault E, Zhang M, Taghavi-Abkuh FF, Silva WCC et al (2023) Translational control by ketamine and its implications for comorbid cognitive deficits in depressive disorders. J Neurochem 166(1):10–23. https://doi.org/10.1111/jnc.15652

    Article  CAS  PubMed  Google Scholar 

  44. Yang Y, Maher DP, Cohen SP (2020) Emerging concepts on the use of ketamine for chronic pain. Expert Rev Clin Pharmacol 13(2):135–146. https://doi.org/10.1080/17512433.2020.1717947

    Article  CAS  PubMed  Google Scholar 

  45. Jett JD, Boley AM, Girotti M, Shah A, Lodge DJ, Morilak DA (2015) Antidepressant-like cognitive and behavioral effects of acute ketamine administration associated with plasticity in the ventral hippocampus to medial prefrontal cortex pathway. Psychopharmacology 232(17):3123–3133. https://doi.org/10.1007/s00213-015-3957-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Papp M, Gruca P, Lason-Tyburkiewicz M, Willner P (2017) Antidepressant, anxiolytic and procognitive effects of subacute and chronic ketamine in the chronic mild stress model of depression. Behav Pharmacol 28(1):1–8. https://doi.org/10.1097/FBP.0000000000000259

    Article  CAS  PubMed  Google Scholar 

  47. Foster CG, Landowski LM, Sutherland BA, Howells DW (2021) Differences in fatigue-like behavior in the lipopolysaccharide and poly I: C inflammatory animal models. Physiol Behav 232:113347. https://doi.org/10.1016/j.physbeh.2021.113347

    Article  CAS  PubMed  Google Scholar 

  48. Tracey KJ (2002) The inflammatory reflex. Nature 420(6917):853–859. https://doi.org/10.1038/nature01321

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Njung’e K, Handley SL (1991) Evaluation of marble-burying behavior as a model of anxiety. Pharmacol Biochem Behav 38(1):63–67. https://doi.org/10.1016/0091-3057(91)90590-x

    Article  PubMed  Google Scholar 

  50. Broekkamp CL, Rijk HW, Joly-Gelouin D, Lloyd KL (1986) Major tranquillizers can be distinguished from minor tranquillizers on the basis of effects on marble burying and swim-induced grooming in mice. Eur J Pharmacol 126(3):223–229. https://doi.org/10.1016/0014-2999(86)90051-8

    Article  CAS  PubMed  Google Scholar 

  51. Deacon RM (2006) Digging and marble burying in mice: simple methods for in vivo identification of biological impacts. Nat Protoc 1(1):122–124. https://doi.org/10.1038/nprot.2006.20

    Article  CAS  PubMed  Google Scholar 

  52. Couch Y, Xie Q, Lundberg L, Sharp T, Anthony DC (2015) A model of post-infection fatigue is associated with increased TNF and 5-HT2A receptor expression in mice. PLoS ONE 10(7):e0130643. https://doi.org/10.1371/journal.pone.0130643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Vuillermot S, Luan W, Meyer U, Eyles D (2017) Vitamin D treatment during pregnancy prevents autism-related phenotypes in a mouse model of maternal immune activation. Mol Autism 7(8):9. https://doi.org/10.1186/s13229-017-0125-0

    Article  CAS  Google Scholar 

  54. Manta S, Dong J, Debonnel G, Blier P (2009) Enhancement of the function of rat serotonin and norepinephrine neurons by sustained vagus nerve stimulation. J Psychiatry Neurosci 34(4):272–280

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are indebted to the former and present members of the Neurophysiology Laboratory at Daejeon University for their valuable discussions and comments. We are grateful to Eui Namgung (University of California, San Diego) for critically reading the manuscript.

Funding

This work was supported by the Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025221) and the Daejeon University fund (grant number 20220159).

Author information

Authors and Affiliations

Authors

Contributions

All experiments were performed in the Daejeon University. All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Ki-Joong Kim, Jinyeon Hwang, Kang-Woo Lee, Jieun Kim, Yunha Han, and Uk Namgung. The first draft of the manuscript was written by Uk Namgung and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Uk Namgung.

Ethics declarations

Ethics Approval and Consent to Participate

All animal care procedures were approved by the Committee on Use of Live Animals for Teaching and Research at Daejeon University.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, KJ., Hwang, J., Lee, KW. et al. Neuron-Microglia Interaction is Involved in Anti-inflammatory Response by Vagus Nerve Stimulation in the Prefrontal Cortex of Rats Injected with Polyinosinic:Polycytidylic Acid. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04054-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04054-2

Keywords

Navigation