Skip to main content

Advertisement

Log in

Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

There is growing concern about the role of the microbiota-gut-brain axis in neurological illnesses, and it makes sense to consider microglia as a critical component of this axis in the context of epilepsy. Microglia, which reside in the central nervous system, are dynamic guardians that monitor brain homeostasis. Microglia receive information from the gut microbiota and function as hubs that may be involved in triggering epileptic seizures. Vagus nerve bridges the communication in the axis. Essential axis signaling molecules, such as gamma-aminobutyric acid, 5-hydroxytryptamin, and short-chain fatty acids, are currently under investigation for their participation in drug-resistant epilepsy (DRE). In this review, we explain how vagus nerve connects the gut microbiota to microglia in the brain and discuss the emerging concepts derived from this interaction. Understanding microbiota-gut-brain axis in epilepsy brings hope for DRE therapies. Future treatments can focus on the modulatory effect of the axis and target microglia in solving DRE.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  2. Sheng JY, Liu S, Qin HJ et al (2018) Drug-resistant epilepsy and surgery. Curr Neuropharmacol 16(1):17–28. https://doi.org/10.2174/1570159x15666170504123316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Utz SG, See P, Mildenberger W et al (2020) Early fate defines microglia and non-parenchymal brain macrophage development. Cell 181(3):557-573.e518. https://doi.org/10.1016/j.cell.2020.03.021

    Article  CAS  PubMed  Google Scholar 

  4. Prinz M, Masuda T, Wheeler MA et al (2021) Microglia and central nervous system-associated macrophages-from origin to disease modulation. Annu Rev Immunol 39:251–277. https://doi.org/10.1146/annurev-immunol-093019-110159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Pelvig DP, Pakkenberg H, Stark AK et al (2008) Neocortical glial cell numbers in human brains. Neurobiol Aging 29(11):1754–1762. https://doi.org/10.1016/j.neurobiolaging.2007.04.013

    Article  CAS  PubMed  Google Scholar 

  6. Lenz KM, Nelson LH (2018) Microglia and beyond: innate immune cells as regulators of brain development and behavioral function. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.00698

  7. Borst K, Dumas AA, Prinz M (2021) Microglia: immune and non-immune functions. Immunity 54(10):2194–2208. https://doi.org/10.1016/j.immuni.2021.09.014

    Article  CAS  PubMed  Google Scholar 

  8. Kwan P, Arzimanoglou A, Berg AT et al (2010) Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia 51(6):1069–1077. https://doi.org/10.1111/j.1528-1167.2009.02397.x

    Article  CAS  PubMed  Google Scholar 

  9. Sultana B, Panzini MA, Veilleux Carpentier A et al (2021) Incidence and prevalence of drug-resistant epilepsy: a systematic review and meta-analysis. Neurology 96(17):805–817. https://doi.org/10.1212/wnl.0000000000011839

    Article  PubMed  Google Scholar 

  10. Kwan P, Schachter SC, Brodie MJ (2011) Drug-resistant epilepsy. N Engl J Med 365(10):919–926. https://doi.org/10.1056/NEJMra1004418

    Article  CAS  PubMed  Google Scholar 

  11. Devinsky O, Vezzani A, O’Brien TJ et al (2018) Epilepsy Nature reviews Disease primers 4:18024. https://doi.org/10.1038/nrdp.2018.24

    Article  PubMed  Google Scholar 

  12. Cook MJ, O’Brien TJ, Berkovic SF et al (2013) Prediction of seizure likelihood with a long-term, implanted seizure advisory system in patients with drug-resistant epilepsy: a first-in-man study. The Lancet Neurology 12(6):563–571. https://doi.org/10.1016/s1474-4422(13)70075-9

    Article  PubMed  Google Scholar 

  13. Morais LH, SchreiberMazmanian HLSK (2021) The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol 19(4):241–255. https://doi.org/10.1038/s41579-020-00460-0

    Article  CAS  PubMed  Google Scholar 

  14. Luczynski P, McVey Neufeld KA, Oriach CS et al (2016) Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol 19 (8). https://doi.org/10.1093/ijnp/pyw020

  15. Yoo BB, Mazmanian SK (2017) The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46(6):910–926. https://doi.org/10.1016/j.immuni.2017.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Sanderson D, Mian MF et al (2021) Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology 195. https://doi.org/10.1016/j.neuropharm.2021.108682

  17. Peng AJ, Qiu XM, Lai WL et al (2018) Altered composition of the gut microbiome in patients with drug-resistant epilepsy. Epilepsy Res 147:102–107. https://doi.org/10.1016/j.eplepsyres.2018.09.013

    Article  CAS  PubMed  Google Scholar 

  18. Olson CA, Vuong HE, Yano JM et al (2018) The gut microbiota mediates the anti-seizure effects of the ketogenic diet (vol 173, pg 1728, 2018). Cell 174(2):497–497. https://doi.org/10.1016/j.cell.2018.06.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Caro C, Leo A, Nesci V et al (2019) Intestinal inflammation increases convulsant activity and reduces antiepileptic drug efficacy in a mouse model of epilepsy. Sci Rep 9. https://doi.org/10.1038/s41598-019-50542-0

  20. Margolis KG, Cryan JF, Mayer EA (2021) The microbiota-gut-brain axis: from motility to mood. Gastroenterology 160(5):1486–1501. https://doi.org/10.1053/j.gastro.2020.10.066

    Article  PubMed  Google Scholar 

  21. Tan HE, Sisti AC, Jin H et al (2020) The gut-brain axis mediates sugar preference. Nature 580(7804):511–516. https://doi.org/10.1038/s41586-020-2199-7

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kakinuma Y (2021) Significance of vagus nerve function in terms of pathogenesis of psychosocial disorders. Neurochem Int 143:104934. https://doi.org/10.1016/j.neuint.2020.104934

    Article  CAS  PubMed  Google Scholar 

  23. Altmann A, Ryten M, Di Nunzio M et al (2022) A systems-level analysis highlights microglial activation as a modifying factor in common epilepsies. Neuropathology and Applied Neurobiology 48 (1). https://doi.org/10.1111/nan.12758

  24. Patel DC, Tewari BP, Chaunsali L et al (2019) Neuron-glia interactions in the pathophysiology of epilepsy. Nat Rev Neurosci 20(5):282–297. https://doi.org/10.1038/s41583-019-0126-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erny D, de Angelis ALH, Jaitin D et al (2015) Host microbiota constantly control maturation and function of microglia in the CNS. Nature Neuroscience 18 (7):965-+. https://doi.org/10.1038/nn.4030

  26. Mossad O, Batut B, Yilmaz B et al (2022) Gut microbiota drives age-related oxidative stress and mitochondrial damage in microglia via the metabolite N(6)-carboxymethyllysine. Nat Neurosci 25(3):295–305. https://doi.org/10.1038/s41593-022-01027-3

    Article  CAS  PubMed  Google Scholar 

  27. Shi H, Ge X, Ma X et al (2021) A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9(1):223. https://doi.org/10.1186/s40168-021-01172-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Layden BT, Angueira AR, Brodsky M et al (2013) Short chain fatty acids and their receptors: new metabolic targets. Translational research : the journal of laboratory and clinical medicine 161(3):131–140. https://doi.org/10.1016/j.trsl.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  29. Abdul Rahim MBH, Chilloux J, Martinez-Gili L et al (2019) Diet-induced metabolic changes of the human gut microbiome: importance of short-chain fatty acids, methylamines and indoles. Acta Diabetol 56(5):493–500. https://doi.org/10.1007/s00592-019-01312-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Silva YP, Bernardi A, Frozza RL (2020) The role of short-chain fatty acids from gut microbiota in gut-brain communication. Frontiers in Endocrinology 11. https://doi.org/10.3389/fendo.2020.00025

  31. Wenzel TJ, Gates EJ, Ranger AL et al (2020) Short-chain fatty acids (SCFAs) alone or in combination regulate select immune functions of microglia-like cells. Mol Cell Neurosci 105:103493. https://doi.org/10.1016/j.mcn.2020.103493

    Article  CAS  PubMed  Google Scholar 

  32. Caetano-Silva ME, Rund L, Hutchinson NT et al (2023) Inhibition of inflammatory microglia by dietary fiber and short-chain fatty acids. Sci Rep 13(1):2819. https://doi.org/10.1038/s41598-022-27086-x

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sherwin E, Bordenstein SR, Quinn JL et al (2019) Microbiota and the social brain. Science (New York, NY) 366 (6465). https://doi.org/10.1126/science.aar2016

  34. de Goffau MC, Lager S, Sovio U et al (2019) Human placenta has no microbiome but can contain potential pathogens (vol 572, pg 329, 2019). Nature 574(7778):E15–E15. https://doi.org/10.1038/s41586-019-1628-y

    Article  CAS  PubMed  Google Scholar 

  35. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. Plos Biology 14 (8). https://doi.org/10.1371/journal.pbio.1002533

  36. Ding M, Lang Y, Shu H et al (2021) Microbiota-gut-brain axis and epilepsy: a review on mechanisms and potential therapeutics. Front Immunol 12:742449. https://doi.org/10.3389/fimmu.2021.742449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thion MS, Low D, Silvin A et al (2018) Microbiome influences prenatal and adult microglia in a sex-specific manner. Cell 172(3):500-516.e516. https://doi.org/10.1016/j.cell.2017.11.042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Osadchiy V, Martin CR, Mayer EA (2020) Gut microbiome and modulation of CNS function. Compr Physiol 10(1):57–72. https://doi.org/10.1002/cphy.c180031

    Article  Google Scholar 

  39. Mu X, Zhang X, Gao H et al (2022) Crosstalk between peripheral and the brain-resident immune components in epilepsy. Journal of integrative neuroscience 21(1):9. https://doi.org/10.31083/j.jin2101009

    Article  PubMed  Google Scholar 

  40. Darch H, McCafferty CP (2022) Gut microbiome effects on neuronal excitability & activity: implications for epilepsy. Neurobiol Dis 165:105629. https://doi.org/10.1016/j.nbd.2022.105629

    Article  CAS  PubMed  Google Scholar 

  41. Lindefeldt M, Eng A, Darban H et al (2019) The ketogenic diet influences taxonomic and functional composition of the gut microbiota in children with severe epilepsy. NPJ Biofilms Microbiomes 5. https://doi.org/10.1038/s41522-018-0073-2

  42. Xie G, Zhou Q, Qiu CZ et al (2017) Ketogenic diet poses a significant effect on imbalanced gut microbiota in infants with refractory epilepsy. World J Gastroenterol 23(33):6164–6171. https://doi.org/10.3748/wjg.v23.i33.6164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gong X, Liu X, Chen C et al (2020) Alteration of gut microbiota in patients with epilepsy and the potential index as a biomarker. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.517797

  44. Leguia MG, Andrzejak RG, Rummel C et al (2021) Seizure cycles in focal epilepsy. JAMA Neurol 78(4):454–463. https://doi.org/10.1001/jamaneurol.2020.5370

    Article  PubMed  Google Scholar 

  45. Karoly PJ, Rao VR, Gregg NM et al (2021) Cycles in epilepsy. Nature reviews. Neurology 17(5):267–284. https://doi.org/10.1038/s41582-021-00464-1

    Article  PubMed  Google Scholar 

  46. Voigt RM, Forsyth CB, Green SJ et al (2014) Circadian disorganization alters intestinal microbiota. PLoS ONE 9(5):e97500. https://doi.org/10.1371/journal.pone.0097500

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hu L, Li G, Shu Y et al (2022) Circadian dysregulation induces alterations of visceral sensitivity and the gut microbiota in Light/Dark phase shift mice. Front Microbiol 13:935919. https://doi.org/10.3389/fmicb.2022.935919

    Article  PubMed  PubMed Central  Google Scholar 

  48. Godinho-Silva C, Domingues RG, Rendas M et al (2019) Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574(7777):254–258. https://doi.org/10.1038/s41586-019-1579-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pizzo F, Collotta AD, Di Nora A et al (2022) Ketogenic diet in pediatric seizures: a randomized controlled trial review and meta-analysis. Expert Rev Neurother 22(2):169–177. https://doi.org/10.1080/14737175.2022.2030220

    Article  CAS  PubMed  Google Scholar 

  50. He Z, Cui BT, Zhang T et al (2017) Fecal microbiota transplantation cured epilepsy in a case with Crohn’s disease: the first report. World J Gastroenterol 23(19):3565–3568. https://doi.org/10.3748/wjg.v23.i19.3565

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rubio C, Ochoa E, Gatica F et al (2023) The role of the vagus nerve in the microbiome and digestive system in relation to epilepsy. Curr Med Chem. https://doi.org/10.2174/0109298673260479231010044020

    Article  PubMed  Google Scholar 

  52. Sharkey KA, Mawe GM (2023) The enteric nervous system. Physiol Rev 103(2):1487–1564. https://doi.org/10.1152/physrev.00018.2022

    Article  CAS  PubMed  Google Scholar 

  53. Niesler B, Kuerten S, Demir IE et al (2021) Disorders of the enteric nervous system - a holistic view. Nat Rev Gastroenterol Hepatol 18(6):393–410. https://doi.org/10.1038/s41575-020-00385-2

    Article  PubMed  Google Scholar 

  54. Obata Y, Pachnis V (2016) The effect of microbiota and the immune system on the development and organization of the enteric nervous system. Gastroenterology 151(5):836–844. https://doi.org/10.1053/j.gastro.2016.07.044

    Article  CAS  PubMed  Google Scholar 

  55. Vicentini FA, Keenan CM, Wallace LE et al (2021) Intestinal microbiota shapes gut physiology and regulates enteric neurons and glia. Microbiome 9(1):210. https://doi.org/10.1186/s40168-021-01165-z

    Article  PubMed  PubMed Central  Google Scholar 

  56. Cignarella F, Cantoni C, Ghezzi L et al (2018) Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab 27(6):1222-1235.e1226. https://doi.org/10.1016/j.cmet.2018.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Collins J, Borojevic R, Verdu EF et al (2014) Intestinal microbiota influence the early postnatal development of the enteric nervous system. Neurogastroenterol Motil 26(1):98–107. https://doi.org/10.1111/nmo.12236

    Article  CAS  PubMed  Google Scholar 

  58. Sharon G, Sampson TR, Geschwind DH et al (2016) The central nervous system and the gut microbiome. Cell 167(4):915–932. https://doi.org/10.1016/j.cell.2016.10.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Neufeld KAM, Perez-Burgos A, Mao YK et al (2015) The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol Motil 27(5):627–636. https://doi.org/10.1111/nmo.12534

    Article  CAS  Google Scholar 

  60. Neufeld KAM, Mao YK, Bienenstock J et al (2013) The microbiome is essential for normal gut intrinsic primary afferent neuron excitability in the mouse. Neurogastroenterology and Motility 25 (2):183-+. https://doi.org/10.1111/nmo.12049

  61. Ni SJ, Yao ZY, Wei X et al (2022) Vagus nerve stimulated by microbiota-derived hydrogen sulfide mediates the regulation of berberine on microglia in transient middle cerebral artery occlusion rats. Phytother Res 36(7):2964–2981. https://doi.org/10.1002/ptr.7490

    Article  CAS  PubMed  Google Scholar 

  62. Xie Z, Zhang X, Zhao M et al (2022) The gut-to-brain axis for toxin-induced defensive responses. Cell 185(23):4298-4316.e4221. https://doi.org/10.1016/j.cell.2022.10.001

    Article  CAS  PubMed  Google Scholar 

  63. Ran C, Boettcher JC, Kaye JA et al (2022) A brainstem map for visceral sensations. Nature 609(7926):320–326. https://doi.org/10.1038/s41586-022-05139-5

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. Bravo JA, Forsythe P, Chew MV et al (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38):16050–16055. https://doi.org/10.1073/pnas.1102999108

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  65. Broncel A, Bocian R, Kłos-Wojtczak P et al (2019) GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Res Bull 147:110–123. https://doi.org/10.1016/j.brainresbull.2019.02.010

    Article  CAS  PubMed  Google Scholar 

  66. Morais A, Liu TT, Qin T et al (2020) Vagus nerve stimulation inhibits cortical spreading depression exclusively through central mechanisms. Pain 161(7):1661–1669. https://doi.org/10.1097/j.pain.0000000000001856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Winter Y, Sandner K, Glaser M et al (2023) Synergistic effects of vagus nerve stimulation and antiseizure medication. J Neurol. https://doi.org/10.1007/s00415-023-11825-9

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yalnizoglu D, Ardicli D, Bilginer B et al (2020) Long-term effects of vagus nerve stimulation in refractory pediatric epilepsy: a single-center experience. Epilepsy & behavior : E&B 110:107147. https://doi.org/10.1016/j.yebeh.2020.107147

    Article  Google Scholar 

  69. Schwabenland M, Brück W, Priller J et al (2021) Analyzing microglial phenotypes across neuropathologies: a practical guide. Acta Neuropathol 142(6):923–936. https://doi.org/10.1007/s00401-021-02370-8

    Article  PubMed  PubMed Central  Google Scholar 

  70. Joshi AU, Minhas PS, Liddelow SA et al (2019) Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat Neurosci 22(10):1635–1648. https://doi.org/10.1038/s41593-019-0486-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kaczmarczyk R, Tejera D, Simon BJ et al (2017) Microglia modulation through external vagus nerve stimulation in a murine model of Alzheimer’s disease. J Neurochem. https://doi.org/10.1111/jnc.14284

    Article  PubMed  Google Scholar 

  72. Matcovitch-Natan O, Winter DR, Giladi A et al (2016) Microglia development follows a stepwise program to regulate brain homeostasis. Science (New York, NY) 353(6301):aad8670. https://doi.org/10.1126/science.aad8670

    Article  CAS  Google Scholar 

  73. Cordella F, Sanchini C, Rosito M et al (2021) Antibiotics treatment modulates microglia-synapses interaction. Cells 10 (10). https://doi.org/10.3390/cells10102648

  74. Janssens Y, Debunne N, De Spiegeleer A et al (2021) PapRIV, a BV-2 microglial cell activating quorum sensing peptide. Scientific Reports 11 (1). https://doi.org/10.1038/s41598-021-90030-y

  75. Shen J, Guo H, Liu S et al (2023) Aberrant branched-chain amino acid accumulation along the microbiota-gut-brain axis: crucial targets affecting the occurrence and treatment of ischaemic stroke. Br J Pharmacol 180(3):347–368. https://doi.org/10.1111/bph.15965

    Article  CAS  PubMed  Google Scholar 

  76. Ma N, He T, Johnston LJ et al (2020) Host-microbiome interactions: the aryl hydrocarbon receptor as a critical node in tryptophan metabolites to brain signaling. Gut microbes 11(5):1203–1219. https://doi.org/10.1080/19490976.2020.1758008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Liu Y, Sanderson D, Mian MF et al (2021) Loss of vagal integrity disrupts immune components of the microbiota-gut-brain axis and inhibits the effect of Lactobacillus rhamnosus on behavior and the corticosterone stress response. Neuropharmacology 195:108682. https://doi.org/10.1016/j.neuropharm.2021.108682

    Article  CAS  PubMed  Google Scholar 

  78. Hoogland ICM, Houbolt C, van Westerloo DJ et al (2015) Systemic inflammation and microglial activation: systematic review of animal experiments. Journal of neuroinflammation 12. https://doi.org/10.1186/s12974-015-0332-6

  79. Khan S, Nobili L, Khatami R et al (2018) Circadian rhythm and epilepsy. The Lancet Neurology 17(12):1098–1108. https://doi.org/10.1016/s1474-4422(18)30335-1

    Article  PubMed  Google Scholar 

  80. Wang XL, Wolff SEC, Korpel N et al (2020) Deficiency of the circadian clock gene Bmal1 reduces microglial immunometabolism. Front Immunol 11:586399. https://doi.org/10.3389/fimmu.2020.586399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Iweka CA, Seigneur E, Hernandez AL et al (2023) Myeloid deficiency of the intrinsic clock protein BMAL1 accelerates cognitive aging by disrupting microglial synaptic pruning. J Neuroinflammation 20(1):48. https://doi.org/10.1186/s12974-023-02727-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hiragi T, Ikegaya Y, Koyama R (2018) Microglia after Seizures and in Epilepsy. Cells 7(4). https://doi.org/10.3390/cells7040026

  83. Chen Z, Trapp BD (2016) Microglia and neuroprotection. J Neurochem 136(Suppl 1):10–17. https://doi.org/10.1111/jnc.13062

    Article  CAS  PubMed  Google Scholar 

  84. Tu D, Velagapudi R, Gao Y et al (2023) Activation of neuronal NADPH oxidase NOX2 promotes inflammatory neurodegeneration. Free Radical Biol Med 200:47–58. https://doi.org/10.1016/j.freeradbiomed.2023.03.001

    Article  CAS  Google Scholar 

  85. Wyatt SK, Witt T, Barbaro NM et al (2017) Enhanced classical complement pathway activation and altered phagocytosis signaling molecules in human epilepsy. Exp Neurol 295:184–193. https://doi.org/10.1016/j.expneurol.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  86. Feng L, Murugan M, Bosco DB et al (2019) Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 67(8):1434–1448. https://doi.org/10.1002/glia.23616

    Article  PubMed  PubMed Central  Google Scholar 

  87. Engel J, Thompson PM, Stern JM et al (2013) Connectomics and epilepsy. Curr Opin Neurol 26(2):186–194. https://doi.org/10.1097/WCO.0b013e32835ee5b8

    Article  PubMed  PubMed Central  Google Scholar 

  88. Lariviere S, Rodriguez-Cruces R, Royer J et al (2020) Network-based atrophy modeling in the common epilepsies: a worldwide ENIGMA study. Sci Adv 6 (47). https://doi.org/10.1126/sciadv.abc6457

  89. Sisodiya SM, Whelan CD, Hatton SN et al (2022) The ENIGMA-Epilepsy working group: mapping disease from large data sets. Hum Brain Mapp 43(1):113–128. https://doi.org/10.1002/hbm.25037

    Article  Google Scholar 

  90. Zhang B, Zou J, Han LR et al (2018) The specificity and role of microglia in epileptogenesis in mouse models of tuberous sclerosis complex. Epilepsia 59(9):1796–1806. https://doi.org/10.1111/epi.14526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Somani A, El-Hachami H, Patodia S et al (2021) Regional microglial populations in central autonomic brain regions in SUDEP. Epilepsia 62(6):1318–1328. https://doi.org/10.1111/epi.16904

    Article  PubMed  Google Scholar 

  92. Wu W, Li Y, Wei Y et al (2020) Microglial depletion aggravates the severity of acute and chronic seizures in mice. Brain Behav Immun 89:245–255. https://doi.org/10.1016/j.bbi.2020.06.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kaestner E, Reyes A, Chen A et al (2021) Atrophy and cognitive profiles in older adults with temporal lobe epilepsy are similar to mild cognitive impairment. Brain 144(1):236–250. https://doi.org/10.1093/brain/awaa397

    Article  PubMed  Google Scholar 

  94. Sen A, Capelli V, Husain M (2018) Cognition and dementia in older patients with epilepsy. Brain 141:1592–1608. https://doi.org/10.1093/brain/awy022

    Article  PubMed  PubMed Central  Google Scholar 

  95. Schartz ND, Wyatt-Johnson SK, Price LR et al (2018) Status epilepticus triggers long-lasting activation of complement C1q–C3 signaling in the hippocampus that correlates with seizure frequency in experimental epilepsy. Neurobiol Dis 109(Pt A):163–173. https://doi.org/10.1016/j.nbd.2017.10.012

    Article  CAS  PubMed  Google Scholar 

  96. Aronica E, Boer K, van Vliet EA et al (2007) Complement activation in experimental and human temporal lobe epilepsy. Neurobiol Dis 26(3):497–511. https://doi.org/10.1016/j.nbd.2007.01.015

    Article  CAS  PubMed  Google Scholar 

  97. Wei Y, Chen T, Bosco DB et al (2021) The complement C3–C3aR pathway mediates microglia-astrocyte interaction following status epilepticus. Glia 69(5):1155–1169. https://doi.org/10.1002/glia.23955

    Article  CAS  PubMed  Google Scholar 

  98. Merlini M, Rafalski VA, Ma K et al (2021) Microglial G(i)-dependent dynamics regulate brain network hyperexcitability. Nat Neurosci 24(1):19–23. https://doi.org/10.1038/s41593-020-00756-7

    Article  CAS  PubMed  Google Scholar 

  99. Ding X, Zhou J, Zhao L et al (2022) Intestinal flora composition determines microglia activation and improves epileptic episode progress. Front Cell Infect Microbiol 12:835217. https://doi.org/10.3389/fcimb.2022.835217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bui A, Kim HK, Maroso M et al (2015) Microcircuits in epilepsy: heterogeneity and hub cells in network synchronization. Cold Spring Harbor perspectives in medicine 5 (11). https://doi.org/10.1101/cshperspect.a022855

  101. Royer J, Bernhardt BC, Lariviere S et al (2022) Epilepsy and brain network hubs. Epilepsia 63(3):537–550. https://doi.org/10.1111/epi.17171

    Article  PubMed  Google Scholar 

  102. Cryan JF, O’Riordan KJ, Cowan CSM et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  103. Heiss CN, Manneras-Holm L, Lee YS et al (2021) The gut microbiota regulates hypothalamic inflammation and leptin sensitivity in Western diet-fed mice via a GLP-1R-dependent mechanism. Cell Reports 35 (8). https://doi.org/10.1016/j.celrep.2021.109163

  104. Valdearcos M, Robblee MM, Benjamin DI et al (2014) Microglia dictate the impact of saturated fat consumption on hypothalamic inflammation and neuronal function. Cell Rep 9(6):2124–2138. https://doi.org/10.1016/j.celrep.2014.11.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Fujita Y, Yamashita T (2019) The effects of leptin on glial cells in neurological diseases. Frontiers in Neuroscience 13. https://doi.org/10.3389/fnins.2019.00828

  106. Wang SZ, Yu YJ, Adeli K (2020) Role of gut microbiota in neuroendocrine regulation of carbohydrate and lipid metabolism via the microbiota-gut-brain-liver axis. Microorganisms 8 (4). https://doi.org/10.3390/microorganisms8040527

  107. Ang QY, Alexander M, Newman JC et al (2020) Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 181(6):1263-1275.e1216. https://doi.org/10.1016/j.cell.2020.04.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ouédraogo O, Rébillard RM, Jamann H et al (2021) Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 62(1):176–189. https://doi.org/10.1111/epi.16742

    Article  CAS  PubMed  Google Scholar 

  109. Platt MP, Bolding KA, Wayne CR et al (2020) Th17 lymphocytes drive vascular and neuronal deficits in a mouse model of postinfectious autoimmune encephalitis. Proc Natl Acad Sci USA 117(12):6708–6716. https://doi.org/10.1073/pnas.1911097117

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lin PJ, Lin AL, Tao KY et al (2021) Intestinal Klebsiella pneumoniae infection enhances susceptibility to epileptic seizure which can be reduced by microglia activation. Cell Death Discovery 7 (1). https://doi.org/10.1038/s41420-021-00559-0

  111. Vezzani A, Fujinami RS, White HS et al (2016) Infections, inflammation and epilepsy. Acta Neuropathol 131(2):211–234. https://doi.org/10.1007/s00401-015-1481-5

    Article  CAS  PubMed  Google Scholar 

  112. Brown DG, Soto R, Yandamuri S et al (2019) The microbiota protects from viral-induced neurologic damage through microglia-intrinsic TLR signaling. Elife 8. https://doi.org/10.7554/eLife.47117

  113. Holden SS, Grandi FC, Aboubakr O et al (2021) Complement factor C1q mediates sleep spindle loss and epileptic spikes after mild brain injury. Science (New York, NY) 373(6560):eabj2685. https://doi.org/10.1126/science.abj2685

    Article  CAS  Google Scholar 

  114. Clarke G, Grenham S, Scully P et al (2013) The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol Psychiatry 18(6):666–673. https://doi.org/10.1038/mp.2012.77

    Article  CAS  PubMed  Google Scholar 

  115. Holmes M, Flaminio Z, Vardhan M et al (2020) Cross talk between drug-resistant epilepsy and the gut microbiome. Epilepsia 61(12):2619–2628. https://doi.org/10.1111/epi.16744

    Article  PubMed  Google Scholar 

  116. Vezzani A, French J, Bartfai T et al (2011) The role of inflammation in epilepsy. Nat Rev Neurol 7(1):31–40. https://doi.org/10.1038/nrneurol.2010.178

    Article  CAS  PubMed  Google Scholar 

  117. Wang J, Liang J, Deng J et al (2021) Emerging role of microglia-mediated neuroinflammation in epilepsy after subarachnoid hemorrhage. Mol Neurobiol 58(6):2780–2791. https://doi.org/10.1007/s12035-021-02288-y

    Article  CAS  PubMed  Google Scholar 

  118. Weidner LD, Kannan P, Mitsios N et al (2018) The expression of inflammatory markers and their potential influence on efflux transporters in drug-resistant mesial temporal lobe epilepsy tissue. Epilepsia 59(8):1507–1517. https://doi.org/10.1111/epi.14505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rana A, Musto AE (2018) The role of inflammation in the development of epilepsy. J Neuroinflammation 15(1):144. https://doi.org/10.1186/s12974-018-1192-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Sanz P, Garcia-Gimeno MA (2020) Reactive glia inflammatory signaling pathways and epilepsy. International journal of molecular sciences 21(11). https://doi.org/10.3390/ijms21114096

  121. Shemer A, Scheyltjens I, Frumer GR et al (2020) Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity 53(5):1033-1049.e1037. https://doi.org/10.1016/j.immuni.2020.09.018

    Article  CAS  PubMed  Google Scholar 

  122. Bagheri S, Heydari A, Alinaghipour A et al (2019) Effect of probiotic supplementation on seizure activity and cognitive performance in PTZ-induced chemical kindling. Epilepsy & behavior : E&B 95:43–50. https://doi.org/10.1016/j.yebeh.2019.03.038

    Article  Google Scholar 

  123. Wang W, Gao R, Ren Z et al (2022) Global trends in research of glutamate in epilepsy during past two decades: a bibliometric analysis. Front Neurosci 16:1042642. https://doi.org/10.3389/fnins.2022.1042642

    Article  PubMed  PubMed Central  Google Scholar 

  124. Strandwitz P (2018) Neurotransmitter modulation by the gut microbiota. Brain Res 1693(Pt B):128–133. https://doi.org/10.1016/j.brainres.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Kong Q, Chen Q, Mao X et al (2022) Bifidobacterium longum CCFM1077 ameliorated neurotransmitter disorder and neuroinflammation closely linked to regulation in the kynurenine pathway of autistic-like rats. Nutrients 14 (8). https://doi.org/10.3390/nu14081615

  126. Shetty AK, Upadhya D (2016) GABA-ergic cell therapy for epilepsy: advances, limitations and challenges. Neurosci Biobehav Rev 62:35–47. https://doi.org/10.1016/j.neubiorev.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  127. Upadhya D, Hattiangady B, Castro OW et al (2019) Human induced pluripotent stem cell-derived MGE cell grafting after status epilepticus attenuates chronic epilepsy and comorbidities via synaptic integration. Proc Natl Acad Sci USA 116(1):287–296. https://doi.org/10.1073/pnas.1814185115

    Article  ADS  CAS  PubMed  Google Scholar 

  128. Barker-Haliski M, White HS (2015) Glutamatergic mechanisms associated with seizures and epilepsy. Cold Spring Harb Perspect Med 5(8):a022863. https://doi.org/10.1101/cshperspect.a022863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nikbakht F, Mohammadkhanizadeh A, Mohammadi E (2020) How does the COVID-19 cause seizure and epilepsy in patients? The potential mechanisms. Multiple sclerosis and related disorders 46:102535. https://doi.org/10.1016/j.msard.2020.102535

    Article  PubMed  PubMed Central  Google Scholar 

  130. Pascual O, Ben Achour S, Rostaing P et al (2012) Microglia activation triggers astrocyte-mediated modulation of excitatory neurotransmission. Proc Natl Acad Sci USA 109(4):E197-205. https://doi.org/10.1073/pnas.1111098109

    Article  ADS  PubMed  Google Scholar 

  131. Delpech JC, Saucisse N, Parkes SL et al (2015) Microglial activation enhances associative taste memory through purinergic modulation of glutamatergic neurotransmission. J Neurosci 35(7):3022–3033. https://doi.org/10.1523/jneurosci.3028-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Yano JM, Yu K, Donaldson GP et al (2015) Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell 161(2):264–276. https://doi.org/10.1016/j.cell.2015.02.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gao K, Mu CL, Farzi A et al (2020) Tryptophan metabolism: a link between the gut microbiota and brain. Adv Nutr 11(3):709–723. https://doi.org/10.1093/advances/nmz127

    Article  PubMed  Google Scholar 

  134. Gross ER, Gershon MD, Margolis KG et al (2012) Neuronal serotonin regulates growth of the intestinal mucosa in mice. Gastroenterology 143(2):408-417.e402. https://doi.org/10.1053/j.gastro.2012.05.007

    Article  CAS  PubMed  Google Scholar 

  135. Murphy SE, Norbury R, Godlewska BR et al (2013) The effect of the serotonin transporter polymorphism (5-HTTLPR) on amygdala function: a meta-analysis. Mol Psychiatry 18(4):512–520. https://doi.org/10.1038/mp.2012.19

    Article  CAS  PubMed  Google Scholar 

  136. Ye L, Bae M, Cassilly CD et al (2021) Enteroendocrine cells sense bacterial tryptophan catabolites to activate enteric and vagal neuronal pathways. Cell Host Microbe 29(2):179-196.e179. https://doi.org/10.1016/j.chom.2020.11.011

    Article  CAS  PubMed  Google Scholar 

  137. Girardi G, Zumpano D, Goshi N et al (2023) Cultured vagal afferent neurons as sensors for intestinal effector molecules. Biosensors 13 (6). https://doi.org/10.3390/bios13060601

  138. Agus A, Planchais J, Sokol H (2018) Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe 23(6):716–724. https://doi.org/10.1016/j.chom.2018.05.003

    Article  CAS  PubMed  Google Scholar 

  139. Lin WH, Huang HP, Lin MX et al (2013) Seizure-induced 5-HT release and chronic impairment of serotonergic function in rats. Neurosci Lett 534:1–6. https://doi.org/10.1016/j.neulet.2012.12.007

    Article  CAS  PubMed  Google Scholar 

  140. Kopeikina E, Dukhinova M, Yung AWY et al (2020) Platelets promote epileptic seizures by modulating brain serotonin level, enhancing neuronal electric activity, and contributing to neuroinflammation and oxidative stress. Prog Neurobiol 188:101783. https://doi.org/10.1016/j.pneurobio.2020.101783

    Article  CAS  PubMed  Google Scholar 

  141. Shi H, Yu Y, Lin D et al (2020) Beta-glucan attenuates cognitive impairment via the gut-brain axis in diet-induced obese mice. Microbiome 8 (1). https://doi.org/10.1186/s40168-020-00920-y

  142. Shi H, Ge X, Ma X et al (2021) A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome 9 (1). https://doi.org/10.1186/s40168-021-01172-0

  143. Song L, Sun Q, Zheng H et al (2022) Roseburia hominis alleviates neuroinflammation via short-chain fatty acids through histone deacetylase inhibition. Mol Nutr Food Res 66 (18). https://doi.org/10.1002/mnfr.202200164

  144. Hoyles L, Snelling T, Umlai UK et al (2018) Microbiome-host systems interactions: protective effects of propionate upon the blood-brain barrier. Microbiome 6(1):55. https://doi.org/10.1186/s40168-018-0439-y

    Article  PubMed  PubMed Central  Google Scholar 

  145. Liu C, Cheng X, Zhong S et al (2022) Long-term modification of gut microbiota by broad-spectrum antibiotics improves stroke outcome in rats. Stroke and Vascular Neurology 7(5):381–389. https://doi.org/10.1136/svn-2021-001231

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ferraris C, Meroni E, Casiraghi MC et al (2021) One month of classic therapeutic ketogenic diet decreases short chain fatty acids production in epileptic patients. Front Nutr 8:613100. https://doi.org/10.3389/fnut.2021.613100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lupori L, Cornuti S, Mazziotti R et al (2022) The gut microbiota of environmentally enriched mice regulates visual cortical plasticity. Cell Rep 38(2). https://doi.org/10.1016/j.celrep.2021.110212

  148. Pan W, Zhao J, Wu J et al (2023) Dimethyl itaconate ameliorates cognitive impairment induced by a high-fat diet via the gut-brain axis in mice. Microbiome 11 (1). https://doi.org/10.1186/s40168-023-01471-8

  149. Qiao L, Chen Y, Song X et al (2022) Selenium nanoparticles-enriched Lactobacillus casei ATCC 393 prevents cognitive dysfunction in mice through modulating microbiota-gut-brain axis. Int J Nanomed 17:4807–4827. https://doi.org/10.2147/ijn.S374024

    Article  CAS  Google Scholar 

  150. Sadler R, Cramer JV, Heindl S et al (2020) Short-chain fatty acids improve poststroke recovery via immunological mechanisms. J Neurosci 40(5):1162–1173. https://doi.org/10.1523/jneurosci.1359-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Shao J, Ma X, Qu L et al (2023) Ginsenoside Rh4 remodels the periphery microenvironment by targeting the brain-gut axis to alleviate depression-like behaviors. Food Chemistry 404. https://doi.org/10.1016/j.foodchem.2022.134639

  152. Li H, Xiang Y, Zhu Z et al (2021) Rifaximin-mediated gut microbiota regulation modulates the function of microglia and protects against CUMS-induced depression-like behaviors in adolescent rat. Journal of neuroinflammation 18(1). https://doi.org/10.1186/s12974-021-02303-y

  153. Wang ZJ, Bergqvist C, Hunter JV et al (2003) In vivo measurement of brain metabolites using two-dimensional double-quantum MR spectroscopy–exploration of GABA levels in a ketogenic diet. Magn Reson Med 49(4):615–619. https://doi.org/10.1002/mrm.10429

    Article  CAS  PubMed  Google Scholar 

  154. Calderón N, Betancourt L, Hernández L et al (2017) A ketogenic diet modifies glutamate, gamma-aminobutyric acid and agmatine levels in the hippocampus of rats: A microdialysis study. Neurosci Lett 642:158–162. https://doi.org/10.1016/j.neulet.2017.02.014

    Article  CAS  PubMed  Google Scholar 

  155. Yue Q, Cai MF, Xiao B et al (2021) A high-tryptophan diet reduces seizure-induced respiratory arrest and alters the gut microbiota in DBA/1 mice. Front Neurol 12. https://doi.org/10.3389/fneur.2021.762323

  156. Medel-Matus JS, Lagishetty V, Santana-Gomez C et al (2022) Susceptibility to epilepsy after traumatic brain injury is associated with preexistent gut microbiome profile. Epilepsia 63(7):1835–1848. https://doi.org/10.1111/epi.17248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Das TK, Ganesh BP (2023) Interlink between the gut microbiota and inflammation in the context of oxidative stress in Alzheimer’s disease progression. Gut microbes 15(1):2206504. https://doi.org/10.1080/19490976.2023.2206504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Natural Science Fund of Guangdong Province (2017A030313597), Natural Science Fund of Guangzhou in Basic and Applied Research (202201010875), and Southern Medical University (S202012121088S, X202012121354, 202212121027, S202212121113S).

Author information

Authors and Affiliations

Authors

Contributions

JW: conceptualization; JW, YL, and NJ: methodology; JW, YL, CT: formal analysis; JW, YL, and NJ: investigation; JW, YL, and N: writing—original draft; YL, CT: visualization; JW, HL: supervision; JW: funding acquisition.

Corresponding author

Correspondence to Jun Wang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jia, N., Tang, C. et al. Microglia in Microbiota-Gut-Brain Axis: A Hub in Epilepsy. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-04022-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-04022-w

Keywords

Navigation