Skip to main content

Advertisement

Log in

Ripks and Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation is an immune response in the central nervous system and poses a significant threat to human health. Studies have shown that the receptor serine/threonine protein kinase family (RIPK) family, a popular research target in inflammation, has been shown to play an essential role in neuroinflammation. It is significant to note that the previous reviews have only examined the link between RIPK1 and neuroinflammation. However, it has yet to systematically analyze the relationship between the RIPK family and neuroinflammation. Activation of RIPK1 promotes neuroinflammation. RIPK1 and RIPK3 are responsible for the control of cell death, including apoptosis, necrosis, and inflammation. RIPK1 and RIPK3 regulate inflammatory responses through the release of damage in necroptosis. RIPK1 and RIPK3 regulate inflammatory responses by releasing damage-associated molecular patterns (DAMPs) during necrosis. In addition, activated RIPK1 nuclear translocation and its interaction with the BAF complex leads to upregulation of chromatin modification and inflammatory gene expression, thereby triggering inflammation. Although RIPK2 is not directly involved in regulating cell death, it is considered an essential target for treating neurological inflammation. When the peptidoglycan receptor detects peptidoglycan IE-DAP or MDP in bacteria, it prompts NOD1 and NOD2 to recruit RIPK2 and activate the XIAP E3 ligase. This leads to the K63 ubiquitination of RIPK2. This is followed by LUBAC-mediated linear ubiquitination, which activates NF-KB and MAPK pathways to produce cytokines and chemokines. In conclusion, there are seven known members of the RIPK family, but RIPK4, RIPK5, RIPK6, and RIPK7 have not been linked to neuroinflammation. This article seeks to explore the potential of RIPK1, RIPK2, and RIPK3 kinases as therapeutic interventions for neuroinflammation, which is associated with Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), ischemic stroke, Parkinson’s disease (PD), multiple sclerosis (MS), and traumatic brain injury (TBI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. DiSabato DJ, Quan N, Godbout JP (2016) Neuroinflammation: the devil is in the details. J Neurochem 139:136–153. https://doi.org/10.1111/jnc.13607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhang W, Xiao D, Mao Q, Xia H (2023) Role of neuroinflammation in neurodegeneration development. Signal Transduct Target Ther 8(1):267. https://doi.org/10.1038/s41392-023-01486-5

    Article  PubMed  PubMed Central  Google Scholar 

  3. Qin C, Yang S, Chu Y-H, Zhang H, Pang X-W, Chen L, Zhou LQ, Chen M et al (2022) Signaling pathways involved in ischemic stroke: molecular mechanisms and therapeutic interventions. Signal Transduct Target Ther 7(1):215. https://doi.org/10.1038/s41392-022-01064-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Becher B, Spath S, Goverman J (2017) Cytokine networks in neuroinflammation. Nat Rev Immunol 17(1):49–59. https://doi.org/10.1038/nri.2016.123

    Article  CAS  PubMed  Google Scholar 

  5. He S, Wang X (2018) Rip kinases as modulators of inflammation and immunity. Nat Immunol 19(9):912–922. https://doi.org/10.1038/s41590-018-0188-x

    Article  CAS  PubMed  Google Scholar 

  6. Mifflin L, Ofengeim D, Yuan J (2020) Receptor-interacting protein kinase 1 (ripk1) as a therapeutic target. Nat Rev Drug Discovery 19(8):553–571. https://doi.org/10.1038/s41573-020-0071-y

    Article  CAS  PubMed  Google Scholar 

  7. Yuan J, Amin P, Ofengeim D (2019) Necroptosis and ripk1-mediated neuroinflammation in cns diseases. Nat Rev Neurosci 20(1):19–33. https://doi.org/10.1038/s41583-018-0093-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ofengeim D, Yuan J (2013) Regulation of rip1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14(11):727–736. https://doi.org/10.1038/nrm3683

    Article  CAS  PubMed  Google Scholar 

  9. Wang M, Ye X, Hu J, Zhao Q, Lv B, Ma W, Wang W, Yin H et al (2020) Nod1/rip2 signalling enhances the microglia-driven inflammatory response and undergoes crosstalk with inflammatory cytokines to exacerbate brain damage following intracerebral haemorrhage in mice. J Neuroinflammation 17(1):1–14. https://doi.org/10.1186/s12974-020-02015-9

    Article  CAS  Google Scholar 

  10. Liu H, Wei X, Kong L, Liu X, Cheng L, Yan S, Zhang X, Chen L (2015) Nod2 is involved in the inflammatory response after cerebral ischemia-reperfusion injury and triggers nadph oxidase 2-derived reactive oxygen species. Int J Biol Sci 11(5):525. https://doi.org/10.7150/ijbs.10927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu Z, Jiang N, Su W, Zhuo Y (2021) Necroptosis: a novel pathway in neuroinflammation. Front Pharmacol 12:701564. https://doi.org/10.3389/fphar.2021.701564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li J, Zhang J, Zhang Y, Wang Z, Song Y, Wei S, He M, You S et al (2019) Traf2 protects against cerebral ischemia-induced brain injury by suppressing necroptosis. Cell Death Dis 10(5):328. https://doi.org/10.1038/s41419-019-1558-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tu Y, Yang Y, Wang Y, Wu N, Tao J, Yang G, You M (2022) Developmental exposure to chlorpyrifos causes neuroinflammation via necroptosis in mouse hippocampus and human microglial cell line. Environ Pollut 314:120217. https://doi.org/10.1016/j.envpol.2022.120217

    Article  CAS  PubMed  Google Scholar 

  14. Prinz M, Jung S, Priller J (2019) Microglia biology: one century of evolving concepts. Cell 179(2):292–311. https://doi.org/10.1016/j.cell.2019.08.053

    Article  CAS  PubMed  Google Scholar 

  15. Singh D (2022) Astrocytic and microglial cells as the modulators of neuroinflammation in alzheimer’s disease. J Neuroinflammation 19(1):206. https://doi.org/10.1186/s12974-022-02565-0

    Article  MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ofengeim D, Mazzitelli S, Ito Y, DeWitt JP, Mifflin L, Zou C, Das S, Adiconis X et al (2017) Ripk1 mediates a disease-associated microglial response in Alzheimer’s disease. Proc Natl Acad Sci 114(41):8788–8797. https://doi.org/10.1073/pnas.1714175114

    Article  CAS  Google Scholar 

  17. Jiao Y, Wang J, Zhang H, Cao Y, Qu Y, Huang S, Kong X, Song C et al (2020) Inhibition of microglial receptor-interacting protein kinase 1 ameliorates neuroinflammation following cerebral ischaemic stroke. J Cell Mol Med 24(21):12585–12598. https://doi.org/10.1111/jcmm.15820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mifflin L, Hu Z, Dufort C, Hession CC, Walker AJ, Niu K, Zhu H, Liu N et al (2021) A ripk1-regulated inflammatory microglial state in amyotrophic lateral sclerosis. Proc Natl Acad Sci 118(13):2025102118. https://doi.org/10.1073/pnas.2025102118

    Article  CAS  Google Scholar 

  19. Zelic M, Pontarelli F, Woodworth L, Zhu C, Mahan A, Ren Y, LaMorte M, Gruber R et al (2021) Ripk1 activation mediates neuroinflammation and disease progression in multiple sclerosis. Cell reports 35(6). https://doi.org/10.1016/j.celrep.2021.109112

  20. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. https://doi.org/10.1038/s41593018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cornell J, Salinas S, Huang H-Y, Zhou M (2022) Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 17(4):705. https://doi.org/10.4103/1673-5374.322423

    Article  CAS  PubMed  Google Scholar 

  22. Stephenson J, Nutma E, Valk P, Amor S (2018) Inflammation in CNS neurodegenerative diseases. Immunology 154(2):204–219. https://doi.org/10.1111/imm.12922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Subhramanyam CS, Wang C, Hu Q, Dheen ST (2019) Microgliamediated neuroinflammation in neurodegenerative diseases. In: Seminars in Cell & Developmental Biology vol. 94, pp. 112–120. Elsevier. https://doi.org/10.1016/j.semcdb.2019.05.004

  24. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):1–24. https://doi.org/10.1186/s12974-019-1516-2

    Article  Google Scholar 

  25. Lv S, Jiang Y, Li Y, Huang R, Peng L, Ma Z, Lu N, Lin X et al (2022) Comparative and evolutionary analysis of rip kinases in immune responses. Front Genet 13:796291. https://doi.org/10.3389/fgene.2022.796291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Martens S, Hofmans S, Declercq W, Augustyns K, Vandenabeele P (2020) Inhibitors targeting ripk1/ripk3: old and new drugs. Trends Pharmacol Sci 41(3):209–224. https://doi.org/10.1016/j.tips.2020.01.002

    Article  CAS  PubMed  Google Scholar 

  27. Wen R, Lv J, Jia P, Yang W, Wang N, Wu X, Xue Z, Liu Y (2022) The protective effects of natural product tunicatachalcone against neuroinflammation via targeting ripk2 in microglia bv-2 cells stimulated by lps. Bioorg Med Chem 69:116916. https://doi.org/10.1016/j.bmc.2022.116916

    Article  CAS  PubMed  Google Scholar 

  28. Meng H, Liu Z, Li X, Wang H, Jin T, Wu G, Shan B, Christofferson DE et al (2018) Death-domain dimerization-mediated activation of ripk1 controls necroptosis and ripk1-dependent apoptosis. Proc Natl Acad Sci 115(9):2001–2009. https://doi.org/10.1073/pnas.1722013115

    Article  CAS  ADS  Google Scholar 

  29. Cao L, Mu W (2021) Necrostatin-1 and necroptosis inhibition: pathophysiology and therapeutic implications. Pharmacol Res 163:105297. https://doi.org/10.1016/j.phrs.2020.105297

    Article  CAS  PubMed  Google Scholar 

  30. Riebeling T, Kunzendorf U, Krautwald S (2022) The role of rhim in necroptosis. Biochem Soc Trans 50(4):1197–1205. https://doi.org/10.1042/BST20220535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hayden MS, Ghosh S (2012) Nf-κb, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26(3):203–234. https://doi.org/10.1101/gad.183434.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Park HH, Lo Y-C, Lin S-C, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586. https://doi.org/10.1146/annurev.immunol.25.022106.141656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park Y-H, Jeong MS, Park HH, Jang SB (2013) Formation of the death domain complex between fadd and rip1 proteins in vitro. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834(1):292–300. https://doi.org/10.1016/j.bbapap.2012.08.013

  34. Cabal-Hierro L, Lazo PS (2012) Signal transduction by tumor necrosis factor receptors. Cell Signal 24(6):1297–1305. https://doi.org/10.1016/j.cellsig.2012.02.006

    Article  CAS  PubMed  Google Scholar 

  35. Micheau O, Tschopp J (2003) Induction of tnf receptor i-mediated apoptosis via two sequential signaling complexes. Cell 114(2):181–190. https://doi.org/10.1016/s00928674(03)00521-x

    Article  CAS  PubMed  Google Scholar 

  36. Shu H-B, Takeuchi M, Goeddel DV (1996) The tumor necrosis factor receptor 2 signal transducers traf2 and c-iap1 are components of the tumor necrosis factor receptor 1 signaling complex. Proc Natl Acad Sci 93(24):13973–13978. https://doi.org/10.1073/pnas.93.24.13973

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB et al (2008) ciap1 and ciap2 facilitate cancer cell survival by functioning as e3 ligases that promote rip1 ubiquitination. Mol Cell 30(6):689–700. https://doi.org/10.1016/j.molcel.2008.05.014

    Article  CAS  PubMed  Google Scholar 

  38. Hsu H, Shu H-B, Pan M-G, Goeddel DV (1996) Tradd–traf2 and tradd–fadd interactions define two distinct tnf receptor 1 signal transduction pathways. Cell 84(2):299–308. https://doi.org/10.1016/s0092-8674(00)80984-8

    Article  CAS  PubMed  Google Scholar 

  39. Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA et al (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature 471(7340):591–596. https://doi.org/10.1038/nature09816

    Article  CAS  PubMed  ADS  Google Scholar 

  40. Draber P, Kupka S, Reichert M, Draberova H, Lafont E, Miguel D, Spilgies L, Surinova S et al (2015) Lubac-recruited cyld and a20 regulate gene activation and cell death by exerting opposing effects on linear ubiquitin in signaling complexes. Cell Rep 13(10):2258–2272. https://doi.org/10.1016/j.celrep.2015.11.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dziedzic SA, Su Z, Jean Barrett V, Najafov A, Mookhtiar AK, Amin P, Pan H, Sun L et al (2018) Abin-1 regulates ripk1 activation by linking met1 ubiquitylation with lys63 deubiquitylation in tnf-rsc. Nat Cell Biol 20(1):58–68. https://doi.org/10.1038/s41556-017-0003-1

    Article  CAS  PubMed  Google Scholar 

  42. Ito Y, Ofengeim D, Najafov A, Das S, Saberi S, Li Y, Hitomi J, Zhu H et al (2016) Ripk1 mediates axonal degeneration by promoting inflammation and necroptosis in als. Science 353(6299):603–608. https://doi.org/10.1126/science.aaf6803

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  43. Vlantis K, Wullaert A, Polykratis A, Kondylis V, Dannappel M, Schwarzer R, Welz P, Corona T et al (2016) Nemo prevents rip kinase 1-mediated epithelial cell death and chronic intestinal inflammation by nf-κb-dependent and-independent functions. Immunity 44(3):553–567. https://doi.org/10.1016/j.immuni.2016.02.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D (2008) c-iap1 and c-iap2 are critical mediators of tumor necrosis factor α (tnfα)-induced nf-κb activation. J Biol Chem 283(36):24295–24299. https://doi.org/10.1074/jbc.C800128200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dynek JN, Goncharov T, Dueber EC, Fedorova AV, Izrael-Tomasevic A, Phu L, Helgason E, Fairbrother WJ et al (2010) c-iap1 and ubch5 promote k11-linked polyubiquitination of rip1 in tnf signalling. EMBO J 29(24):4198–4209. https://doi.org/10.1038/emboj.2010.300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shan B, Pan H, Najafov A, Yuan J (2018) Necroptosis in development and diseases. Genes Dev 32(5–6):327–340. https://doi.org/10.1101/gad.312561.118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang H, Sun L, Su L, Rizo J, Liu L, Wang L-F, Wang F-S, Wang X (2014) Mixed lineage kinase domain-like protein mlkl causes necrotic membrane disruption upon phosphorylation by rip3. Mol Cell 54(1):133–146. https://doi.org/10.1016/j.molcel.2014.03.003

    Article  CAS  PubMed  Google Scholar 

  48. Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, K˝omu˝ves L, Webster JD et al (2019) Cleavage of ripk1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574(7778):428–431. https://doi.org/10.1038/s41586-019-1548-x

  49. Lalaoui N, Boyden SE, Oda H, Wood GM, Stone DL, Chau D, Liu L, Stoffels M et al (2020) Mutations that prevent caspase cleavage of ripk1 cause autoinflammatory disease. Nature 577(7788):103–108. https://doi.org/10.1038/s41586-019-1828-5

    Article  CAS  PubMed  Google Scholar 

  50. Tao P, Sun J, Wu Z, Wang S, Wang J, Li W, Pan H, Bai R et al (2020) A dominant autoinflammatory disease caused by non-cleavable variants of ripk1. Nature 577(7788):109–114. https://doi.org/10.1038/s41586-0191830-y

    Article  CAS  PubMed  Google Scholar 

  51. Huang X, Tan S, Li Y, Cao S, Li X, Pan H, Shan B, Qian L et al (2021) Caspase inhibition prolongs inflammation by promoting a signaling complex with activated ripk1. J Cell Biol 220(6):202007127. https://doi.org/10.1083/jcb.202007127

    Article  CAS  Google Scholar 

  52. Li W, Shan B, Zou C, Wang H, Zhang M-M, Zhu H, Naito MG, Xu D et al (2022) Nuclear ripk1 promotes chromatin remodeling to mediate inflammatory response. Cell Res 32(7):621–637. https://doi.org/10.1038/s41422-022-00673-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Trindade BC, Chen GY (2020) Nod1 and nod2 in inflammatory and infectious diseases. Immunol Rev 297(1):139–161. https://doi.org/10.1111/imr.12902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ogura Y, Inohara N, Benito A, Chen FF, Yamaoka S, Nunez G (2001) Nod2, a nod1/apaf-1 family member that is restricted to monocytes and activates nf-κb. J Biol Chem 276(7):4812–4818. https://doi.org/10.1074/jbc.M008072200

    Article  CAS  PubMed  Google Scholar 

  55. Fern´andez-Garc´ıa V, Gonz´alez-Ramos S, Mart´ın-Sanz P, Garc´ıa-del Portillo F, Laparra JM, Bosc´a L (2021) Nod1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol Res 171:105775. https://doi.org/10.1016/j.phrs.2021.105775

  56. Kuss-Duerkop SK, Keestra-Gounder AM (2020) Nod1 and nod2 activation by diverse stimuli: a possible role for sensing pathogen-induced endoplasmic reticulum stress. Infect Immun 88(7):10–1128. https://doi.org/10.1128/IAI.00898-19

    Article  Google Scholar 

  57. Caruso R, Warner N, Inohara N, Nu´n˜ez G (2014) Nod1 and nod2: signaling, host defense, and inflammatory disease. Immunity 41(6), 898–908. https://doi.org/10.1016/j.immuni.2014.12.010

  58. Goncharov T, Hedayati S, Mulvihill MM, Izrael-Tomasevic A, Zobel K, Jeet S, Fedorova AV, Eidenschenk C et al (2018) Disruption of xiap-rip2 association blocks nod2-mediated inflammatory signaling. Mol Cell 69(4):551–565. https://doi.org/10.1016/j.molcel.2018.01.016

    Article  CAS  PubMed  Google Scholar 

  59. Jost PJ, Vucic D (2020) Regulation of cell death and immunity by xiap. Cold Spring Harb Perspect Biol 12(8):036426. https://doi.org/10.1101/cshperspect.a036426

    Article  Google Scholar 

  60. Takiuchi T, Nakagawa T, Tamiya H, Fujita H, Sasaki Y, Saeki Y, Takeda H, Sawasaki T et al (2014) Suppression of lubac-mediated linear ubiquitination by a specific interaction between lubac and the deubiquitinases cyld and otulin. Genes Cells 19(3):254–272. https://doi.org/10.1111/gtc.12128

    Article  CAS  PubMed  Google Scholar 

  61. Hitotsumatsu O, Ahmad R-C, Tavares R, Wang M, Philpott D, Turer EE, Lee BL, Shiffin N et al (2008) The ubiquitin-editing enzyme a20 restricts nucleotide-binding oligomerization domain containing 2-triggered signals. Immunity 28(3):381–390. https://doi.org/10.1016/j.immuni.2008.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Tigno-Aranjuez JT, Asara JM, Abbott DW (2010) Inhibition of rip2’s tyrosine kinase activity limits nod2-driven cytokine responses. Genes Dev 24(23):2666–2677. https://doi.org/10.1101/gad.1964410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Negroni A, Stronati L, Pierdomenico M, Tirindelli D, Di Nardo G, Mancini V, Maiella G, Cucchiara S (2009) Activation of nod2-mediated intestinal pathway in a pediatric population with Crohn’s disease. Inflamm Bowel Dis 15(8):1145–1154. https://doi.org/10.1002/ibd.20907

    Article  PubMed  Google Scholar 

  64. Chaouhan HS, Vinod C, Mahapatra N, Yu S-H, Wang I-K, Chen K-B, Yu T-M, Li C-Y (2022) Necroptosis: a pathogenic negotiator in human diseases. Int J Mol Sci 23(21):12714. https://doi.org/10.3390/ijms232112714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun X, Lee J, Navas T, Baldwin DT, Stewart TA, Dixit VM (1999) Rip3, a novel apoptosis-inducing kinase. J Biol Chem 274(24):16871–16875. https://doi.org/10.1074/jbc.274.24.16871

    Article  CAS  PubMed  Google Scholar 

  66. Sun X, Yin J, Starovasnik MA, Fairbrother WJ, Dixit VM (2002) Identification of a novel homotypic interaction motif required for the phosphorylation of receptor-interacting protein (rip) by rip3. J Biol Chem 277(11):9505–9511. https://doi.org/10.1074/jbc.M109488200

    Article  CAS  PubMed  Google Scholar 

  67. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J et al (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of rip3 kinase. Cell 148(1):213–227. https://doi.org/10.1016/j.cell.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  68. Moriwaki K, Chan FK-M (2016) Regulation of ripk3-and rhim-dependent necroptosis by the proteasome. J Biol Chem 291(11):5948–5959. https://doi.org/10.1074/jbc.M115.700997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Meng L, Jin W, Wang X (2015) Rip3-mediated necrotic cell death accelerates systematic inflammation and mortality. Proc Natl Acad Sci 112(35):11007–11012. https://doi.org/10.1073/pnas.1514730112

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  70. Pouwels SD, Zijlstra GJ, Toorn M, Hesse L, Gras R, Ten Hacken NH, Krysko DV, Vandenabeele P et al (2016) Cigarette smoke-induced necroptosis and damp release trigger neutrophilic airway inflammation in mice. Am J Physiol-Lung Cell Mol Physiol 310(4):377–386. https://doi.org/10.1152/ajplung.00174.2015

    Article  Google Scholar 

  71. Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C et al (2014) Rip3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res 103(2):206–216. https://doi.org/10.1093/cvr/cvu146

    Article  CAS  PubMed  Google Scholar 

  72. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1(2):112–119. https://doi.org/10.1038/nchembio711

    Article  CAS  PubMed  Google Scholar 

  73. Lau A, Wang S, Jiang J, Haig A, Pavlosky A, Linkermann A, Zhang ZX, Jevnikar A (2013) Ripk3-mediated necroptosis promotes donor kidney inflammatory injury and reduces allograft survival. Am J Transplant 13(11):2805–2818. https://doi.org/10.1111/ajt.12447

    Article  CAS  PubMed  Google Scholar 

  74. Chen H, Fang Y, Wu J, Chen H, Zou Z, Zhang X, Shao J, Xu Y (2018) Ripk3-mlkl-mediated necroinflammation contributes to aki progression to ckd. Cell Death Dis 9(9):878. https://doi.org/10.1038/s41419-0180936-8

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lawlor KE, Khan N, Mildenhall A, Gerlic M, Croker BA, D’Cruz AA, Hall C, Kaur Spall S et al (2015) Ripk3 promotes cell death and nlrp3 inflammasome activation in the absence of mlkl. Nat Commun 6(1):6282. https://doi.org/10.1038/ncomms7282

    Article  CAS  PubMed  ADS  Google Scholar 

  76. Huang H-R, Cho SJ, Harris RM, Yang J, Bermejo S, Sharma L, Dela Cruz CS, Xu J-F (2021) Ripk3 activates mlkl-mediated necroptosis and inflammasome signaling during streptococcus infection. Am J Respir Cell Mol Biol 64(5):579–591. https://doi.org/10.1165/rcmb.2020-0312OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Xue S, Cao Z-X, Wang J-N, Zhao Q-X, Han J, Yang W-J, Sun T (2022) Receptor-interacting protein kinase 3 inhibition relieves mechanical allodynia and suppresses nlrp3 inflammasome and nf-κb in a rat model of spinal cord injury. Front Mol Neurosci 15:861312. https://doi.org/10.3389/fnmol.2022.861312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Garcia-Carbonell R, Wong J, Kim JY, Close LA, Boland BS, Wong TL, Harris PA, Ho SB et al (2018) Elevated a20 promotes tnf-induced and ripk1-dependent intestinal epithelial cell death. Proc Natl Acad Sci 115(39):9192–9200. https://doi.org/10.1073/pnas.1810584115

    Article  CAS  Google Scholar 

  79. Polykratis A, Martens A, Eren RO, Shirasaki Y, Yamagishi M, Yamaguchi Y, Uemura S, Miura M et al (2019) A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its znf7 ubiquitin-binding domain. Nat Cell Biol 21(6):731–742. https://doi.org/10.1038/s41556-019-0324-3

    Article  CAS  PubMed  Google Scholar 

  80. McCauley ME, Baloh RH (2019) Inflammation in als/ftd pathogenesis. Acta Neuropathol 137(5):715–730. https://doi.org/10.1007/s00401-018-1933-9

    Article  CAS  PubMed  Google Scholar 

  81. Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, Mifflin L, Pan L et al (2018) Tbk1 suppresses ripk1-driven apoptosis and inflammation during development and in aging. Cell 174(6):1477–1491. https://doi.org/10.1016/j.cell.2018.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jahanbazi Jahan-Abad A, Salapa HE, Libner CD, Thibault PA, Levin MC (2023) hnrnp a1 dysfunction in oligodendrocytes contributes to the pathogenesis of multiple sclerosis. Glia 71(3):633–647. https://doi.org/10.1002/glia.24300

    Article  CAS  PubMed  Google Scholar 

  83. Consortium*† IMSG, ANZgene IIBDGC, WTCCC2 (2019) Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science 365(6460):7188. https://doi.org/10.1126/science.aav7188

  84. Kerr JS, Adriaanse BA, Greig NH, Mattson MP, Cader MZ, Bohr VA, Fang EF (2017) Mitophagy and Alzheimer’s disease: cellular and molecular mechanisms. Trends Neurosci 40(3):151–166. https://doi.org/10.1016/j.tins.2017.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chen Y, Colonna M (2021) Microglia in Alzheimer’s disease at single-cell level. are there common patterns in humans and mice? J Exp Med 218(9):20202717. https://doi.org/10.1084/jem.20202717

    Article  CAS  Google Scholar 

  86. Zhang Y, Zhao Y, Zhang J, Yang G (2020) Mechanisms of nlrp3 inflammasome activation: its role in the treatment of Alzheimer’s disease. Neurochem Res 45:2560–2572. https://doi.org/10.1007/s11064-020-03121-z

    Article  CAS  PubMed  Google Scholar 

  87. Yang J, Wise L, Fukuchi K-I (2020) Tlr4 cross-talk with nlrp3 inflammasome and complement signaling pathways in Alzheimer’s disease. Front Immunol 11:724. https://doi.org/10.3389/fimmu.2020.00724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sbai O, Djelloul M, Auletta A, Ieraci A, Vascotto C, Perrone L (2022) Correction to: Rage-txnip axis drives inflammation in Alzheimer’s by targeting aβ to mitochondria in microglia. Cell Death Dis 13(4). https://doi.org/10.1038/s41419-022-04840-7

  89. Jung ES, Suh K, Han J, Kim H, Kang H-S, Choi W-S, MookJung I (2022) Amyloid-β activates nlrp3 inflammasomes by affecting microglial immunometabolism through the syk-ampk pathway. Aging Cell 21(5):13623. https://doi.org/10.1111/acel.13623

    Article  CAS  Google Scholar 

  90. Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, VieiraSaecker A, Griep A, Axt D et al (2013) Nlrp3 is activated in alzheimer’s disease and contributes to pathology in app/ps1 mice. Nature 493(7434):674–678. https://doi.org/10.1038/nature11729

    Article  CAS  PubMed  ADS  Google Scholar 

  91. Kelley N, Jeltema D, Duan Y, He Y (2019) The nlrp3 inflammasome: an overview of mechanisms of activation and regulation. Int J Mol Sci 20(13):3328. https://doi.org/10.3390/ijms20133328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S et al (2019) Nlrp3 inflammasome activation drives tau pathology. Nature 575(7784):669–673. https://doi.org/10.1038/s41586-019-1769-z

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  93. Lonnemann N, Hosseini S, Marchetti C, Skouras DB, Stefanoni D, D’Alessandro A, Dinarello CA, Korte M (2020) The nlrp3 inflammasome inhibitor olt1177 rescues cognitive impairment in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci 117(50):32145–32154. https://doi.org/10.1073/pnas.2009680117

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  94. Zhang Y, Dong Z, Song W (2020) Nlrp3 inflammasome as a novel therapeutic target for Alzheimer’s disease. Signal Transduct Target Ther 5(1):37. https://doi.org/10.1038/s41392-020-0145-7

    Article  PubMed  PubMed Central  Google Scholar 

  95. Hugon J, Paquet C (2021) The pkr/p38/ripk1 signaling pathway as a therapeutic target in Alzheimer’s disease. Int J Mol Sci 22(6):3136. https://doi.org/10.3390/ijms22063136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cao L-L, Guan P-P, Zhang S-Q, Yang Y, Huang X-S, Wang P (2021) Downregulating expression of optn elevates neuroinflammation via aim2 inflammasome-and ripk1-activating mechanisms in app/ps1 transgenic mice. J Neuroinflammation 18(1):1–24. https://doi.org/10.1186/s12974-02102327-4

    Article  Google Scholar 

  97. Yang S-H, Lee DK, Shin J, Lee S, Baek S, Kim J, Jung H, Hah JM et al (2017) Nec-1 alleviates cognitive impairment with reduction of aβ and tau abnormalities in app/ps 1 mice. EMBO Mol Med 9(1):61–77. https://doi.org/10.15252/emmm.201606566

    Article  CAS  PubMed  Google Scholar 

  98. Dong Y, Yu H, Li X, Bian K, Zheng Y, Dai M, Feng X, Sun Y et al (2022) Hyperphosphorylated tau mediates neuronal death by inducing necroptosis and inflammation in Alzheimer’s disease. J Neuroinflammation 19(1):1–18. https://doi.org/10.1186/s12974-022-02567-y

    Article  CAS  Google Scholar 

  99. Jayaraman A, Htike TT, James R, Picon C, Reynolds R (2021) Tnfmediated neuroinflammation is linked to neuronal necroptosis in alzheimer’s disease hippocampus. Acta Neuropathol Commun 9(1):1–21. https://doi.org/10.1186/s40478-021-01264-w

    Article  CAS  Google Scholar 

  100. Salvadores N, Moreno-Gonzalez I, Gamez N, Quiroz G, Vegas-Gomez L, Escand´on M, Jimenez S, Vitorica J et al (2022) Aβ oligomers trigger necroptosis-mediated neurodegeneration via microglia activation in Alzheimer’s disease. Acta Neuropathologica Communications 10(1):1–18. https://doi.org/10.1186/s40478-022-01332-9

  101. Qin C, Zhou L-Q, Ma X-T, Hu Z-W, Yang S, Chen M, Bosco DB, Wu L-J et al (2019) Dual functions of microglia in ischemic stroke. Neurosci Bull 35:921–933. https://doi.org/10.1007/s12264-019-00388-3

    Article  PubMed  PubMed Central  Google Scholar 

  102. Candelario-Jalil E, Dijkhuizen RM, Magnus T (2022) Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke 53(5):1473–1486. https://doi.org/10.1161/STROKEAHA.122.036946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Chen A-Q, Fang Z, Chen X-L, Yang S, Zhou Y-F, Mao L, Xia YP, Jin H-J et al (2019) Microglia-derived tnf-α mediates endothelial necroptosis aggravating blood brain–barrier disruption after ischemic stroke. Cell Death Dis 10(7):487. https://doi.org/10.1038/s41419-019-1716-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, Kelliher M, Pasparakis M et al (2020) Sequential activation of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci 117(9):4959–4970. https://doi.org/10.1073/pnas.1916427117

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  105. Deng X-X, Li S-S, Sun F-Y (2019) Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of ripk1-mediated ripk3/mlkl signaling. Aging Dis 10(4):807. https://doi.org/10.14336/AD.2018.0728

    Article  PubMed  PubMed Central  Google Scholar 

  106. Wehn AC, Khalin I, Duering M, Hellal F, Culmsee C, Vandenabeele P, Plesnila N, Terpolilli NA (2021) Ripk1 or ripk3 deletion prevents progressive neuronal cell death and improves memory function after traumatic brain injury. Acta Neuropathol Commun 9(1):1–18. https://doi.org/10.1186/s40478021-01236-0

    Article  Google Scholar 

  107. Wu H, Zheng J, Xu S, Fang Y, Wu Y, Zeng J, Shao A, Shi L et al (2021) Mer regulates microglial/macrophage m1/m2 polarization and alleviates neuroinflammation following traumatic brain injury. J Neuroinflammation 18:1–20. https://doi.org/10.1186/s12974-020-02041-7

    Article  CAS  Google Scholar 

  108. Wu L, Chung JY, Cao T, Jin G, Edmiston WJ III, Hickman S, Levy ES, Whalen JA et al (2021) Genetic inhibition of ripk3 ameliorates functional outcome in controlled cortical impact independent of necroptosis. Cell Death Dis 12(11):1064. https://doi.org/10.1038/s41419021-04333-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu Z-M, Chen Q-X, Chen Z-B, Tian D-F, Li M-C, Wang J-M, Wang L, Liu B-H et al (2018) Rip3 deficiency protects against traumatic brain injury (tbi) through suppressing oxidative stress, inflammation and apoptosis: dependent on ampk pathway. Biochem Biophys Res Commun 499(2):112–119. https://doi.org/10.1016/j.bbrc.2018.02.150

    Article  CAS  PubMed  Google Scholar 

  110. You Z, Savitz SI, Yang J, Degterev A, Yuan J, Cuny GD, Moskowitz MA, Whalen MJ (2008) Necrostatin-1 reduces histopathology and improves functional outcome after controlled cortical impact in mice. J Cereb Blood Flow Metab 28(9):1564–1573. https://doi.org/10.1038/jcbfm.2008.44

    Article  CAS  PubMed  Google Scholar 

  111. Almeida-da-Silva CLC, Savio LEB, Coutinho-Silva R, Ojcius DM (2023) The role of nod-like receptors in innate immunity. Front Immunol 14:1122586. https://doi.org/10.3389/fimmu.2023.1122586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Wicherska-Pawl owska K, Wr´obel T, Rybka J (2021) Toll-like receptors (tlrs), nod-like receptors (nlrs), and rig-i-like receptors (rlrs) in innate immunity. tlrs, nlrs, and rlrs ligands as immunotherapeutic agents for hematopoietic diseases. Int J Mol Sci 22(24):13397. https://doi.org/10.3390/ijms222413397

  113. Mukherjee T, Hovingh ES, Foerster EG, Abdel-Nour M, Philpott DJ, Girardin SE (2019) Nod1 and nod2 in inflammation, immunity and disease. Arch Biochem Biophys 670:69–81. https://doi.org/10.1016/j.abb.2018.12.022

    Article  CAS  PubMed  Google Scholar 

  114. Maekawa S, Ohto U, Shibata T, Miyake K, Shimizu T (2016) Crystal structure of nod2 and its implications in human disease. Nat Commun 7(1):11813. https://doi.org/10.1038/ncomms11813

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  115. Boyle JP, Parkhouse R, Monie TP (2014) Insights into the molecular basis of the nod2 signalling pathway. Open Biol 4(12):140178. https://doi.org/10.1098/rsob.140178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Nachbur U, Stafford CA, Bankovacki A, Zhan Y, Lindqvist LM, Fiil BK, Khakham Y, Ko H-J et al (2015) A ripk2 inhibitor delays nod signalling events yet prevents inflammatory cytokine production. Nat Commun 6(1):6442. https://doi.org/10.1038/ncomms7442

    Article  CAS  PubMed  ADS  Google Scholar 

  117. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A et al (2003) An essential role for nod1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707. https://doi.org/10.1038/ni945

    Article  CAS  PubMed  Google Scholar 

  118. Grimes CL, Ariyananda LDZ, Melnyk JE, O’Shea EK (2012) The innate immune protein nod2 binds directly to mdp, a bacterial cell wall fragment. J Am Chem Soc 134(33):13535–13537. https://doi.org/10.1021/ja303883c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pellegrini E, Desfosses A, Wallmann A, Schulze WM, Rehbein K, Mas P, Signor L, Gaudon S et al (2018) Rip2 filament formation is required for nod2 dependent nf-κb signalling. Nat Commun 9(1):4043. https://doi.org/10.1038/s41467-018-06451-3

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Hasegawa M, Fujimoto Y, Lucas PC, Nakano H, Fukase K, Nu´n˜ez G, Inohara N (2008) A critical role of rick/rip2 polyubiquitination in nodinduced nf-κb activation. EMBO J 27(2):373–383. https://doi.org/10.1038/sj.emboj.7601962

  121. Bertrand MJ, Doiron K, Labb´e K, Korneluk RG, Barker PA, Saleh M (2009) Cellular inhibitors of apoptosis ciap1 and ciap2 are required for innate immunity signaling by the pattern recognition receptors nod1 and nod2. Immunity 30(6), 789–801. https://doi.org/10.1016/j.immuni.2009.04.011

  122. Yang S, Wang B, Humphries F, Jackson R, Healy ME, Bergin R, Aviello G, Hall B et al (2013) Pellino3 ubiquitinates rip2 and mediates nod2-induced signaling and protective effects in colitis. Nat Immunol 14(9):927–936. https://doi.org/10.1038/ni.2669

    Article  CAS  PubMed  Google Scholar 

  123. Damgaard RB, Nachbur U, Yabal M, Wong WW-L, Fiil BK, Kastirr M, Rieser E, Rickard JA et al (2012) The ubiquitin ligase xiap recruits lubac for nod2 signaling in inflammation and innate immunity. Mol Cell 46(6):746–758. https://doi.org/10.1016/j.molcel.2012.04.014

    Article  CAS  PubMed  Google Scholar 

  124. Fiil BK, Damgaard RB, Wagner SA, Keusekotten K, Fritsch M, BekkerJensen S, Mailand N, Choudhary C et al (2013) Otulin restricts met1-linked ubiquitination to control innate immune signaling. Mol Cell 50(6):818–830. https://doi.org/10.1016/j.molcel.2013.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Hrdinka M, Fiil BK, Zucca M, Leske D, Bagola K, Yabal M, Elliott PR, Damgaard RB et al (2016) Cyld limits lys63-and met1linked ubiquitin at receptor complexes to regulate innate immune signaling. Cell Rep 14(12):2846–2858. https://doi.org/10.1016/j.celrep.2016.02.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Windheim M, Lang C, Peggie M, Plater LA, Cohen P (2007) Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J 404(2):179–190. https://doi.org/10.1042/BJ20061704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Silva Correia J, Miranda Y, Leonard N, Hsu J, Ulevitch R (2007) Regulation of nod1-mediated signaling pathways. Cell Death Differ 14(4):830–839. https://doi.org/10.1038/sj.cdd.4402070

    Article  CAS  PubMed  Google Scholar 

  128. Hsu Y-MS, Zhang Y, You Y, Wang D, Li H, Duramad O, Qin X-F, Dong C et al (2007) The adaptor protein card9 is required for innate immune responses to intracellular pathogens. Nat Immunol 8(2):198–205. https://doi.org/10.1038/ni1426

    Article  CAS  PubMed  Google Scholar 

  129. Laman JD, Bert A, Power C, Dziarski R (2020) Bacterial peptidoglycan as a driver of chronic brain inflammation. Trends Mol Med 26(7):670–682. https://doi.org/10.1016/j.molmed.2019.11.006

    Article  CAS  PubMed  Google Scholar 

  130. Schrijver IA, Meurs M, Melief M-J, Wim Ang C, Buljevac D, Ravid R, Hazenberg MP, Laman JD (2001) Bacterial peptidoglycan and immune reactivity in the central nervous system in multiple sclerosis. Brain 124(8):1544–1554. https://doi.org/10.1093/brain/124.8.1544

    Article  CAS  PubMed  Google Scholar 

  131. Visser L, Melief M-J, Riel D, Meurs M, Sick EA, Inamura S, Bajramovic JJ, Amor S et al (2006) Phagocytes containing a disease-promoting toll-like receptor/nod ligand are present in the brain during demyelinating disease in primates. Am J Pathol 169(5):1671–1685. https://doi.org/10.2353/ajpath.2006.060143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Branton W, Lu J, Surette M, Holt R, Lind J, Laman J, Power C (2016) Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep 6(1):37344. https://doi.org/10.1038/srep37344

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  133. Ramaswamy V, Walsh JG, Sinclair DB, Johnson E, Tang-Wai R, Wheatley BM, Branton W, Maingat F et al (2013) Inflammasome induction in Rasmussen’s encephalitis: cortical and associated white matter pathogenesis. J Neuroinflammation 10:1–10. https://doi.org/10.1186/1742-2094-10-152

    Article  CAS  Google Scholar 

  134. Guo H, Callaway JB, Ting JP (2015) Inflammasomes: mechanism of action, role in disease, and therapeutics. Nat Med 21(7):677–687. https://doi.org/10.1038/nm.3893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Travassos LH, Carneiro LA, Ramjeet M, Hussey S, Kim Y-G, Magalh˜aes JG, Yuan L, Soares F et al (2010) Nod1 and nod2 direct autophagy by recruiting atg16l1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11(1):55–62. https://doi.org/10.1038/ni.1823

  136. Sorbara MT, Ellison LK, Ramjeet M, Travassos LH, Jones NL, Girardin SE, Philpott DJ (2013) The protein atg16l1 suppresses inflammatory cytokines induced by the intracellular sensors nod1 and nod2 in an autophagy-independent manner. Immunity 39(5):858–873. https://doi.org/10.1016/j.immuni.2013.10.013

    Article  CAS  PubMed  Google Scholar 

  137. Yan R, Liu Z (2017) Lrrk2 enhances nod1/2-mediated inflammatory cytokine production by promoting rip2 phosphorylation. Protein Cell 8(1):55–66. https://doi.org/10.1007/s13238-016-0326-x

    Article  CAS  PubMed  Google Scholar 

  138. Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC (2017) Leucine-rich repeat kinase 2 (lrrk2) stimulates il-1β-mediated inflammatory signaling through phosphorylation of rcan1. Front Cell Neurosci 11:125. https://doi.org/10.3389/fncel.2017.00125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Cho HJ, Xie C, Cai H (2018) Age-induced neuronal cell death is enhanced in g2019s lrrk2 mutation with increased rage expression. Transl Neurodegener 7(1):1–8. https://doi.org/10.1186/s40035-018-0106-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Panagiotakopoulou V, Ivanyuk D, De Cicco S, Haq W, Arsi´c A, Yu C, Messelodi D, Oldrati M et al (2020) Interferon-γ signaling synergizes with lrrk2 in neurons and microglia derived from human induced pluripotent stem cells. Nat Commun 11(1):5163. https://doi.org/10.1038/s41467-020-18755-4

  141. Manjaly Z-M, Harrison NA, Critchley HD, Do CT, Stefanics G, Wenderoth N, Lutterotti A, Mu¨ller A et al (2019) Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry 90(6), 642–651. https://doi.org/10.1136/jnnp-2018-320050

  142. Satoh J-I, Nakanishi M, Koike F, Miyake S, Yamamoto T, Kawai M, Kikuchi S, Nomura K et al (2005) Microarray analysis identifies an aberrant expression of apoptosis and DNA damage-regulatory genes in multiple sclerosis. Neurobiol Dis 18(3):537–550. https://doi.org/10.1016/j.nbd.2004.10.007

    Article  CAS  PubMed  Google Scholar 

  143. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (eae) as a model for multiple sclerosis (ms). Br J Pharmacol 164(4):1079–1106. https://doi.org/10.1111/j.14765381.2011.01302.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Shaw PJ, Barr MJ, Lukens JR, McGargill MA, Chi H, Mak TW, Kanneganti T-D (2011) Signaling via the rip2 adaptor protein in central nervous system-infiltrating dendritic cells promotes inflammation and autoimmunity. Immunity 34(1):75–84. https://doi.org/10.1016/j.immuni.2010.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kim S, Lu HC, Steelman AJ, Li J (2022) Myeloid caspase-8 restricts ripk3dependent proinflammatory il-1β production and cd4 t cell activation in autoimmune demyelination. Proc Natl Acad Sci 119(24):2117636119. https://doi.org/10.1073/pnas.2117636119

    Article  CAS  Google Scholar 

  146. Kumar S, Budhathoki S, Oliveira CB, Kahle AD, Calhan OY, Lukens JR, Deppmann CD (2023) Role of the caspase-8/ripk3 axis in Alzheimer’s disease pathogenesis and aβ-induced nlrp3 inflammasome activation. JCI Insight 8(3). https://doi.org/10.1172/jci.insight.157433

Download references

Funding

This work was funded by the National Natural Science Funds of China (Grant Nos. 81971098 and 82104144).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. CW and ZL: conceptualization. XY and LF: writing original draft preparation. LG and SJ: reviewing and editing. XY and LF: contribute equally to this manuscript.

Corresponding authors

Correspondence to Wenli Chen or Lei Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors read and approved the final manuscript.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Lin, F., Liao, G. et al. Ripks and Neuroinflammation. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-024-03981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-024-03981-4

Keywords

Navigation