Skip to main content

Advertisement

Log in

Integrative Multi-omics Analysis to Characterize Herpes Virus Infection Increases the Risk of Alzheimer’s Disease

  • Original Article
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Evidence suggests that herpes virus infection is associated with an increased risk of Alzheimer’s disease (AD), and innate and adaptive immunity plays an important role in the association. Although there have been many studies, the mechanism of the association is still unclear. This study aims to reveal the underlying molecular and immune regulatory network through multi-omics data and provide support for the study of the mechanism of infection and AD in the future. Here, we found that the herpes virus infection significantly increased the risk of AD. Genes associated with the occurrence and development of AD and genetically regulated by herpes virus infection are mainly enrichment in immune-related pathways. The 22 key regulatory genes identified by machine learning are mainly immune genes. They are also significantly related to the infiltration changes of 3 immune cell in AD. Furthermore, many of these genes have previously been reported to be linked, or potentially linked, to the pathological mechanisms of both herpes virus infection and AD. In conclusion, this study contributes to the study of the mechanisms related to herpes virus infection and AD, and indicates that the regulation of innate and adaptive immunity may be an effective strategy for preventing and treating herpes virus infection and AD. Additionally, the identified key regulatory genes, whether previously studied or newly discovered, may serve as valuable targets for prevention and treatment strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets presented in this study can be found in the corresponding online repositories. The names of the repositories and accession numbers can be found below: https://gwas.mrcieu.ac.uk/, finn-b-H7_HERPESKERATITIS, and ebi-a-GCST002245; https://www.ncbi. nlm.nih.gov/geo/, GSE44770.

References

  1. Sibener L, Zaganjor I, Snyder HM, Bain LJ, Egge R, Carrillo MC (2014) Alzheimer’s disease prevalence, costs, and prevention for military personnel and veterans. Alzheimers Dement 10(3 Suppl):S105–S110. https://doi.org/10.1016/j.jalz.2014.04.011

    Article  PubMed  Google Scholar 

  2. Se Thoe E, Fauzi A, Tang YQ, Chamyuang S, Chia AYY (2021) A review on advances of treatment modalities for Alzheimer’s disease. Life Sci 276:119129. https://doi.org/10.1016/j.lfs.2021.119129

    Article  CAS  PubMed  Google Scholar 

  3. Itzhaki RF, Golde TE, Heneka MT, Readhead B (2020) Do infections have a role in the pathogenesis of Alzheimer disease? Nat Rev Neurol 16(4):193–197. https://doi.org/10.1038/s41582-020-0323-9

    Article  PubMed  Google Scholar 

  4. Evans CM, Kudesia G, McKendrick M (2013) Management of herpesvirus infections. Int J Antimicrob Agents 42(2):119–128. https://doi.org/10.1016/j.ijantimicag.2013.04.023

    Article  CAS  PubMed  Google Scholar 

  5. Whitley RJ, Roizman B (2001) Herpes simplex virus infections. Lancet 357(9267):1513–1518. https://doi.org/10.1016/S0140-6736(00)04638-9

    Article  CAS  PubMed  Google Scholar 

  6. Marcocci ME, Napoletani G, Protto V, Kolesova O, Piacentini R, Li Puma DD et al (2020) Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol 28(10):808–820. https://doi.org/10.1016/j.tim.2020.03.003

    Article  CAS  PubMed  Google Scholar 

  7. Cairns DM, Rouleau N, Parker RN, Walsh KG, Gehrke L, Kaplan DL (2020) A 3D human brain-like tissue model of herpes-induced Alzheimer’s disease. Sci Adv 6(19):eaay8828. https://doi.org/10.1126/sciadv.aay8828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Readhead B, Haure-Mirande JV, Funk CC, Richards MA, Shannon P, Haroutunian V et al (2018) Multiscale analysis of independent Alzheimer’s cohorts finds disruption of molecular, genetic, and clinical networks by human herpesvirus. Neuron 99(1):64-82.e7. https://doi.org/10.1016/j.neuron.2018.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tzeng NS, Chung CH, Lin FH, Chiang CP, Yeh CB, Huang SY et al (2018) Anti-herpetic medications and reduced risk of dementia in patients with herpes simplex virus infections-a nationwide, population-based cohort study in Taiwan. Neurotherapeutics 15(2):417–429. https://doi.org/10.1007/s13311-018-0611-x

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mancuso R, Baglio F, Agostini S, Cabinio M, Lagana MM, Hernis A et al (2014) Relationship between herpes simplex virus-1-specific antibody titers and cortical brain damage in Alzheimer’s disease and amnestic mild cognitive impairment. Front Aging Neurosci 6:285. https://doi.org/10.3389/fnagi.2014.00285

    Article  PubMed  PubMed Central  Google Scholar 

  11. Eimer WA, Vijaya Kumar DK, Navalpur Shanmugam NK, Rodriguez AS, Mitchell T, Washicosky KJ et al (2018) Alzheimer’s disease-associated beta-amyloid is rapidly seeded by herpesviridae to protect against brain infection. Neuron 100(6):1527–1532. https://doi.org/10.1016/j.neuron.2018.11.043

    Article  CAS  PubMed  Google Scholar 

  12. Ames J, Yadavalli T, Suryawanshi R, Hopkins J, Agelidis A, Patil C et al (2021) OPTN is a host intrinsic restriction factor against neuroinvasive HSV-1 infection. Nat Commun 12(1):5401. https://doi.org/10.1038/s41467-021-25642-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Davies NM, Holmes MV, Davey Smith G (2018) Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians. BMJ 362:k601. https://doi.org/10.1136/bmj.k601

    Article  PubMed  PubMed Central  Google Scholar 

  14. Menche J, Sharma A, Kitsak M, Ghiassian SD, Vidal M, Loscalzo J et al (2015) Disease networks. Uncovering disease-disease relationships through the incomplete interactome. Science 347(6224):1257601. https://doi.org/10.1126/science.1257601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lyon MS, Andrews SJ, Elsworth B, Gaunt TR, Hemani G, Marcora E (2021) The variant call format provides efficient and robust storage of GWAS summary statistics. Genome Biol 22(1):32. https://doi.org/10.1186/s13059-020-02248-0

    Article  PubMed  PubMed Central  Google Scholar 

  16. Morrison J, Knoblauch N, Marcus JH, Stephens M, He X (2020) Mendelian randomization accounting for correlated and uncorrelated pleiotropic effects using genome-wide summary statistics. Nat Genet 52(7):740–747. https://doi.org/10.1038/s41588-020-0631-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D et al (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7:e34408. https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  18. Farh KK, Marson A, Zhu J, Kleinewietfeld M, Housley WJ, Beik S et al (2015) Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518(7539):337–343. https://doi.org/10.1038/nature13835

    Article  CAS  PubMed  Google Scholar 

  19. Taylor KE, Ansel KM, Marson A, Criswell LA, Farh KK (2021) PICS2: next-generation fine mapping via probabilistic identification of causal SNPs. Bioinformatics 37(18):3004–3007. https://doi.org/10.1093/bioinformatics/btab122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Huang D, Yi X, Zhang S, Zheng Z, Wang P, Xuan C et al (2018) GWAS4D: multidimensional analysis of context-specific regulatory variant for human complex diseases and traits. Nucleic Acids Res 46(W1):W114–W120. https://doi.org/10.1093/nar/gky407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24(8):408–415. https://doi.org/10.1016/j.tig.2008.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Consortium GT (2013) The Genotype-Tissue Expression (GTEx) project. Nat Genet 45(6):580–585. https://doi.org/10.1038/ng.2653

    Article  CAS  Google Scholar 

  23. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W et al (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  Google Scholar 

  26. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–30

    Google Scholar 

  27. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J et al (2018) ImmPort, toward repurposing of open access immunological assay data for translational and clinical research. Sci Data 5:180015. https://doi.org/10.1038/sdata.2018.15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Breuer K, Foroushani AK, Laird MR, Chen C, Sribnaia A, Lo R et al (2013) InnateDB: systems biology of innate immunity and beyond–recent updates and continuing curation. Nucleic Acids Res 41(D1):D1228-33. https://doi.org/10.1093/nar/gks1147

    Article  CAS  PubMed  Google Scholar 

  29. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y et al (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457. https://doi.org/10.1038/nmeth.3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z et al (2021) clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. Innovation (Camb) 2(3):100141. https://doi.org/10.1016/j.xinn.2021.100141

    Article  CAS  PubMed  Google Scholar 

  31. Esquerda-Canals G, Montoliu-Gaya L, Guell-Bosch J, Villegas S (2017) Mouse models of Alzheimer’s disease. J Alzheimers Dis 57(4):1171–1183. https://doi.org/10.3233/JAD-170045

    Article  CAS  PubMed  Google Scholar 

  32. Rowe AM, St Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL (2013) Herpes keratitis. Prog Retin Eye Res 32:88–101. https://doi.org/10.1016/j.preteyeres.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  33. Li JY (2018) Herpes zoster ophthalmicus: acute keratitis. Curr Opin Ophthalmol 29(4):328–333. https://doi.org/10.1097/ICU.0000000000000491

    Article  PubMed  Google Scholar 

  34. Qin Q, Li Y (2019) Herpesviral infections and antimicrobial protection for Alzheimer’s disease: implications for prevention and treatment. J Med Virol 91(8):1368–1377. https://doi.org/10.1002/jmv.25481

    Article  PubMed  Google Scholar 

  35. Huang SY, Yang YX, Kuo K, Li HQ, Shen XN, Chen SD et al (2021) Herpesvirus infections and Alzheimer’s disease: a Mendelian randomization study. Alzheimers Res Ther 13(1):158. https://doi.org/10.1186/s13195-021-00905-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kwok MK, Schooling CM (2021) Herpes simplex virus and Alzheimer’s disease: a Mendelian randomization study. Neurobiol Aging 99(101):e11–e13. https://doi.org/10.1016/j.neurobiolaging.2020.09.025

    Article  CAS  Google Scholar 

  37. Neshan M, Malakouti SK, Kamalzadeh L, Makvand M, Campbell A, Ahangari G (2022) Alterations in T-cell transcription factors and cytokine gene expression in late-onset Alzheimer’s disease. J Alzheimers Dis 85(2):645–665. https://doi.org/10.3233/JAD-210480

    Article  CAS  PubMed  Google Scholar 

  38. Saresella M, Calabrese E, Marventano I, Piancone F, Gatti A, Alberoni M et al (2011) Increased activity of Th-17 and Th-9 lymphocytes and a skewing of the post-thymic differentiation pathway are seen in Alzheimer’s disease. Brain Behav Immun 25(3):539–547. https://doi.org/10.1016/j.bbi.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  39. Xiong LL, Xue LL, Du RL, Niu RZ, Chen L, Chen J et al (2021) Single-cell RNA sequencing reveals B cell-related molecular biomarkers for Alzheimer’s disease. Exp Mol Med 53(12):1888–1901. https://doi.org/10.1038/s12276-021-00714-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Li K, Hu Y, Wang X (2021) Expression of immune related genes and possible regulatory mechanisms in Alzheimer’s disease. Front Immunol 12:768966. https://doi.org/10.3389/fimmu.2021.768966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lutshumba J, Nikolajczyk BS, Bachstetter AD (2021) Dysregulation of systemic immunity in aging and dementia. Front Cell Neurosci 15:652111. https://doi.org/10.3389/fncel.2021.652111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wendeln AC, Degenhardt K, Kaurani L, Gertig M, Ulas T, Jain G et al (2018) Innate immune memory in the brain shapes neurological disease hallmarks. Nature 556(7701):332–338. https://doi.org/10.1038/s41586-018-0023-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Panitch R, Hu J, Chung J, Zhu C, Meng G, Xia W, Bennett DA, Lunetta KL et al (2021) Integrative brain transcriptome analysis links complement component 4 and HSPA2 to the APOE epsilon2 protective effect in Alzheimer disease. Mol Psychiatry 26(10):6054–6064. https://doi.org/10.1038/s41380-021-01266-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yang LB, Li R, Meri S, Rogers J, Shen Y (2000) Deficiency of complement defense protein CD59 may contribute to neurodegeneration in Alzheimer’s disease. J Neurosci 20(20):7505–7509. https://doi.org/10.1523/JNEUROSCI.20-20-07505.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ohmi Y, Tajima O, Ohkawa Y, Mori A, Sugiura Y, Furukawa K et al (2009) Gangliosides play pivotal roles in the regulation of complement systems and in the maintenance of integrity in nerve tissues. Proc Natl Acad Sci U S A 106(52):22405–22410. https://doi.org/10.1073/pnas.0912336106

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S (2022) Cd59 and inflammation regulate Schwann cell development. Elife 11:e76640. https://doi.org/10.7554/eLife.76640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rautemaa R, Helander T, Meri S (2002) Herpes simplex virus 1 infected neuronal and skin cells differ in their susceptibility to complement attack. Immunology 106(3):404–411. https://doi.org/10.1046/j.1365-2567.2002.01421.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seppanen M, Lokki ML, Timonen T, Lappalainen M, Jarva H, Jarvinen A, Sarna S, Valtonen V, Meri S (2001) Complement C4 deficiency and HLA homozygosity in patients with frequent intraoral herpes simplex virus type 1 infections. Clin Infect Dis 33(9):1604–1607. https://doi.org/10.1086/323462

    Article  CAS  PubMed  Google Scholar 

  49. Dallas ML, Widera D (2021) TLR2 and TLR4-mediated inflammation in Alzheimer’s disease: self-defense or sabotage? Neural Regen Res 16(8):1552–1553. https://doi.org/10.4103/1673-5374.303016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ravari A, Mirzaei T, Kennedy D, Kazemi Arababadi M (2017) Chronoinflammaging in Alzheimer; a systematic review on the roles of Toll like receptor 2. Life Sci 171:16–20. https://doi.org/10.1016/j.lfs.2017.01.003

    Article  CAS  PubMed  Google Scholar 

  51. Kim M, Osborne NR, Zeng W, Donaghy H, McKinnon K, Jackson DC, Cunningham AL (2012) Herpes simplex virus antigens directly activate NK cells via TLR2, thus facilitating their presentation to CD4 T lymphocytes. J Immunol 188(9):4158–4170. https://doi.org/10.4049/jimmunol.1103450

    Article  CAS  PubMed  Google Scholar 

  52. Li R, Singh M (2014) Sex differences in cognitive impairment and Alzheimer’s disease. Front Neuroendocrinol 35(3):385–403. https://doi.org/10.1016/j.yfrne.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ali M, Huarte OU, Heurtaux T, Garcia P, Rodriguez BP, Grzyb K et al (2022) Single-cell transcriptional profiling and gene regulatory network modeling in Tg2576 mice reveal gender-dependent molecular features preceding Alzheimer-like pathologies. Mol Neurobiol. https://doi.org/10.1007/s12035-022-02985-2

    Article  PubMed  PubMed Central  Google Scholar 

  54. Tutukova S, Tarabykin V, Hernandez-Miranda LR (2021) The role of Neurod genes in brain development, function, and disease. Front Mol Neurosci 14:662774. https://doi.org/10.3389/fnmol.2021.662774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan AL, Audrain M, Sakakibara E, Joshi R, Zhu X, Wang Q, Wang M, Beckmann ND et al (2022) Dual-specificity protein phosphatase 4 (DUSP4) overexpression improves learning behavior selectively in female 5xFAD mice, and reduces beta-amyloid load in males and females. Cells 11(23):3880. https://doi.org/10.3390/cells11233880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kamakura M, Nawa A, Ushijima Y, Goshima F, Kawaguchi Y, Kikkawa F, Nishiyama Y (2008) Microarray analysis of transcriptional responses to infection by herpes simplex virus types 1 and 2 and their US3-deficient mutants. Microbes Infect 10(4):405–413. https://doi.org/10.1016/j.micinf.2007.12.019

    Article  CAS  PubMed  Google Scholar 

  57. Buchman AS, Yu L, Boyle PA, Schneider JA, De Jager PL, Bennett DA (2016) Higher brain BDNF gene expression is associated with slower cognitive decline in older adults. Neurology 86(8):735–741. https://doi.org/10.1212/WNL.0000000000002387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sellner J, Lenhard T, Haas J, Einsiedel R, Meyding-Lamade U (2005) Differential mRNA expression of neurotrophic factors GDNF, BDNF, and NT-3 in experimental herpes simplex virus encephalitis. Brain Res Mol Brain Res 137(1–2):267–271. https://doi.org/10.1016/j.molbrainres.2005.03.011

    Article  CAS  PubMed  Google Scholar 

  59. Zhu QB, Unmehopa U, Bossers K, Hu YT, Verwer R, Balesar R, Zhao J, Bao AM, Swaab D (2016) MicroRNA-132 and early growth response-1 in nucleus basalis of Meynert during the course of Alzheimer’s disease. Brain 139(Pt 3):908–921. https://doi.org/10.1093/brain/awv383

    Article  PubMed  Google Scholar 

  60. Woodson CM, Kehn-Hall K (2022) Examining the role of EGR1 during viral infections. Front Microbiol 13:1020220. https://doi.org/10.3389/fmicb.2022.1020220

    Article  PubMed  PubMed Central  Google Scholar 

  61. Gubbi S, Quipildor GF, Barzilai N, Huffman DM, Milman S (2018) 40 years of IGF1: IGF1: the Jekyll and Hyde of the aging brain. J Mol Endocrinol 61(1):T171–T185. https://doi.org/10.1530/JME-18-0093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu Y, Zhang Y (2019) ETV5 is essential for neuronal differentiation of human neural progenitor cells by repressing NEUROG2 expression. Stem Cell Rev Rep 15(5):703–716. https://doi.org/10.1007/s12015-019-09904-4

    Article  PubMed  Google Scholar 

  63. Cui X, Liu K, Xu D, Zhang Y, He X, Liu H, Gao X, Zhu B (2018) Mast cell deficiency attenuates acupuncture analgesia for mechanical pain using c-kit gene mutant rats. J Pain Res 11:483–495. https://doi.org/10.2147/JPR.S152015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Baek SH, Ohgi KA, Rose DW, Koo EH, Glass CK, Rosenfeld MG (2002) Exchange of N-CoR corepressor and Tip60 coactivator complexes links gene expression by NF-kappaB and beta-amyloid precursor protein. Cell 110(1):55–67. https://doi.org/10.1016/s0092-8674(02)00809-7

    Article  CAS  PubMed  Google Scholar 

  65. Astillero-Lopez V, Gonzalez-Rodriguez M, Villar-Conde S, Flores-Cuadrado A, Martinez-Marcos A, Ubeda-Banon I, Saiz-Sanchez D (2022) Neurodegeneration and astrogliosis in the entorhinal cortex in Alzheimer’s disease: stereological layer-specific assessment and proteomic analysis. Alzheimers Dement 18(12):2468–2480. https://doi.org/10.1002/alz.12580

    Article  CAS  PubMed  Google Scholar 

  66. Narayan P, Orte A, Clarke RW, Bolognesi B, Hook S, Ganzinger KA, Meehan S, Wilson MR et al (2011) The extracellular chaperone clusterin sequesters oligomeric forms of the amyloid-beta(1–40) peptide. Nat Struct Mol Biol 19(1):79–83. https://doi.org/10.1038/nsmb.2191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Harris SA, Harris EA (2018) Molecular mechanisms for herpes simplex virus type 1 pathogenesis in Alzheimer’s disease. Front Aging Neurosci 10:48. https://doi.org/10.3389/fnagi.2018.00048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hattori Y, Yamasaki T, Ohashi T, Miyanohana Y, Kusumoto T, Maeda R, Miyamoto M, Debori Y et al (2021) Design, synthesis, and evaluation of (11)C-labeled 3-acetyl-indole derivatives as a novel positron emission tomography imaging agent for diacylglycerol kinase gamma (DGKgamma) in brain. J Med Chem 64(16):11990–12002. https://doi.org/10.1021/acs.jmedchem.1c00584

    Article  CAS  PubMed  Google Scholar 

  69. Usui N, Berto S, Konishi A, Kondo M, Konopka G, Matsuzaki H, Shimada S (2021) Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry 11(1):242. https://doi.org/10.1038/s41398-021-01358-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B et al (2021) Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 108(5):857–873. https://doi.org/10.1016/j.ajhg.2021.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Baron BW, Pytel P (2017) Expression pattern of the BCL6 and ITM2B proteins in normal human brains and in Alzheimer disease. Appl Immunohistochem Mol Morphol 25(7):489–496. https://doi.org/10.1097/PAI.0000000000000329

    Article  CAS  PubMed  Google Scholar 

  72. Shang Z, Lv H, Zhang M, Duan L, Wang S, Li J, Liu G, Ruijie Z et al (2015) Genome-wide haplotype association study identify TNFRSF1A, CASP7, LRP1B, CDH1 and TG genes associated with Alzheimer’s disease in Caribbean Hispanic individuals. Oncotarget 6(40):42504–42514. https://doi.org/10.18632/oncotarget.6391

    Article  PubMed  PubMed Central  Google Scholar 

  73. Lundberg P, Welander PV, Edwards CK 3rd, van Rooijen N, Cantin E (2007) Tumor necrosis factor (TNF) protects resistant C57BL/6 mice against herpes simplex virus-induced encephalitis independently of signaling via TNF receptor 1 or 2. J Virol 81(3):1451–1460. https://doi.org/10.1128/JVI.02243-06

    Article  CAS  PubMed  Google Scholar 

  74. Sun D, Peng H, Wu Z (2022) Establishment and analysis of a combined diagnostic model of Alzheimer’s disease with random forest and artificial neural network. Front Aging Neurosci 14:921906. https://doi.org/10.3389/fnagi.2022.921906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. El-Mayet FS, Harrison KS, Jones C (2021) Regulation of Kruppel-like factor 15 expression by herpes simplex virus type 1 or bovine herpesvirus 1 productive infection. Viruses 13(6):1148. https://doi.org/10.3390/v13061148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the technical support of the Supercomputer Center of Chongqing Medical University for the numerical calculation of this study.

Funding

This work was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202113101).

Author information

Authors and Affiliations

Authors

Contributions

P.T., Y.W., and C.L. conceived the idea and supervised the work; Y.W., Y.T., T.L., and L.S. analyzed data; Y.W. and T.L. wrote the manuscript; P.T. and C.L. edited and revised the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Chunying Li, Yingxiong Wang or Pengcheng Tan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 263 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, Y., Liu, TH. et al. Integrative Multi-omics Analysis to Characterize Herpes Virus Infection Increases the Risk of Alzheimer’s Disease. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03903-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03903-w

Keywords

Navigation