Skip to main content
Log in

Brachial Plexus Root Avulsion Injury-Induced Endothelin-Converting Enzyme-Like 1 Overexpression Is Associated with Injured Motor Neurons Survival

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Brachial plexus root avulsion (BPRA) injury arises from challenging delivery during childbirth, sports-related incidents, or car accidents, leading to extensive loss of motor neurons (MNs) and subsequent paralysis, including both motor and sensory impairment. Surgical nerve re-implantation cannot effectively restore motor function, and the survival of injured MNs is vital for axon regeneration and re-innervating the target muscles. Therefore, identifying novel molecular targets to improve injured MNs survival is of great significance in the treatment of BPRA injuries. Endothelin-converting enzyme-like 1 (ECEL1), a membrane-bound metallopeptidase, was initially identified as a molecule associated with nerve injuries. Damaged neurons exhibit a significant increase in the expression of ECEL1 following various types of nerve injuries, such as optic nerve injury and sciatic nerve injury. This study aimed to investigate the relationship between ECEL1 overexpression and the survival of injured MNs following BPRA injury. Our results observed a significant elevation in ECEL1 expression in injured MNs and positively correlated with MNs survival following BPRA injury. The transcription of ECEL1 is regulated by the transcription factors c-Jun and ATF3 in the context of BPRA injury, which is consistent with previous other nerve injuries study. In addition, the expression of TrkA gradually decreases in ECEL1-positive MNs and ECEL1 possibly preserves the activity of downstream AKT-GSK3β pathway of TrkA in injured MNs. In conclusion, our results introduce a promising therapeutic molecular target to assist re-implantation surgery for the treatment of BPRA injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

ANOVA:

Variance analysis

ATF-3:

Activating transcriptional factor 3

BPRA:

Brachial plexus root avulsion

CNS:

Central nervous system

DINE:

Damage-induced neuronal endopeptidase

dpi:

Days post-injury

ECEL1:

Endothelin-converting enzyme-like 1

LIF:

Leukemia inhibitory factor

MNs:

Motor neurons

NGF:

Nerve growth factor

PNS:

Peripheral nervous system

RGCs:

Retinal ganglion cells

References

  1. Wu W, Li L (1993) Inhibition of nitric oxide synthase reduces motoneuron death due to spinal root avulsion. Neurosci Lett 153(2):121–124. https://doi.org/10.1016/0304-3940(93)90303-3

    Article  PubMed  CAS  Google Scholar 

  2. Zhong K, Huang Y, Zilundu PLM, Wang Y, Zhou Y, Yu G, Fu R, Chung SK et al (2022) Motor neuron survival is associated with reduced neuroinflammation and increased autophagy after brachial plexus avulsion injury in aldose reductase-deficient mice. J Neuroinflammation 19(1):271–291. https://doi.org/10.1186/s12974-022-02632-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Blits B, Carlstedt TP, Ruitenberg MJ, de Winter F, Hermens WT, Dijkhuizen PA, Claasens JW, Eggers R et al (2004) Rescue and sprouting of motoneurons following ventral root avulsion and reimplantation combined with intraspinal adeno-associated viral vector-mediated expression of glial cell line-derived neurotrophic factor or brain-derived neurotrophic factor. Exp Neurol 189(2):303–316. https://doi.org/10.1016/j.expneurol.2004.05.014

    Article  PubMed  CAS  Google Scholar 

  4. Ben-Shushan E, Feldman E, Reubinoff BE (2015) Notch signaling regulates motor neuron differentiation of human embryonic stem cells. Stem Cells 33(2):403–415. https://doi.org/10.1002/stem.1873

    Article  PubMed  CAS  Google Scholar 

  5. McKay Hart A, Brannstrom T, Wiberg M, Terenghi G (2002) Primary sensory neurons and satellite cells after peripheral axotomy in the adult rat: timecourse of cell death and elimination. Exp Brain Res 142(3):308–318. https://doi.org/10.1007/s00221-001-0929-0

    Article  PubMed  Google Scholar 

  6. Miranda-Lourenço C, Ribeiro-Rodrigues L, Fonseca-Gomes J, Tanqueiro SR, Belo RF, Ferreira CB, Rei N, Ferreira-Manso M et al (2020) Challenges of BDNF-based therapies: from common to rare diseases. Pharmacol Res 162:105281. https://doi.org/10.1016/j.phrs.2020.105281

    Article  PubMed  CAS  Google Scholar 

  7. Kiryu-Seo S, Nagata K, Saido TC, Kiyama H (2019) New insights of a neuronal peptidase DINE/ECEL1: nerve development, nerve regeneration and neurogenic pathogenesis. Neurochem Res 44(6):1279–1288. https://doi.org/10.1007/s11064-018-2665-x

    Article  PubMed  CAS  Google Scholar 

  8. Valdenaire O, Rohrbacher E, Langeveld A, Schweizer A, Meijers C (2000) Organization and chromosomal localization of the human ECEL1 (XCE) gene encoding a zinc metallopeptidase involved in the nervous control of respiration. Biochem J 346(Pt 3):611–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Nagata K, Kiryu-Seo S, Kiyama H (2006) Localization and ontogeny of damage-induced neuronal endopeptidase mRNA-expressing neurons in the rat nervous system. Neuroscience 141(1):299–310. https://doi.org/10.1016/j.neuroscience.2006.03.032

    Article  PubMed  CAS  Google Scholar 

  10. Kato R, Kiryu-Seo S, Kiyama H (2002) Damage-induced neuronal endopeptidase (DINE/ECEL) expression is regulated by leukemia inhibitory factor and deprivation of nerve growth factor in rat sensory ganglia after nerve injury. J Neurosci 22(21):9410–9418. https://doi.org/10.1523/jneurosci.22-21-09410.2002

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Sang Q, Sun D, Chen Z, Zhao W (2018) NGF and PI3K/Akt signaling participate in the ventral motor neuronal protection of curcumin in sciatic nerve injury rat models. Biomed Pharmacother 103:1146–1153. https://doi.org/10.1016/j.biopha.2018.04.116

    Article  PubMed  CAS  Google Scholar 

  12. Wang B, Chen L, Liu B, Liu Z, Zhang Z, Pan Y, Song L, Lu L (2012) Differentiation of endogenous neural stem cells in adult versus neonatal rats after brachial plexus root avulsion injury. Neural Regen Res 7(23):1786–1790. https://doi.org/10.3969/j.issn.1673-5374.2012.23.004

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kiryu-Seo S, Kato R, Ogawa T, Nakagomi S, Nagata K, Kiyama H (2008) Neuronal injury-inducible gene is synergistically regulated by ATF3, c-Jun, and STAT3 through the interaction with Sp1 in damaged neurons. J Biol Chem 283(11):6988–6996. https://doi.org/10.1074/jbc.m707514200

    Article  PubMed  CAS  Google Scholar 

  14. Lindå H, Sköld MK, Ochsmann T (2011) Activating transcription factor 3, a useful marker for regenerative response after nerve root injury. Front Neurol 5(2):30. https://doi.org/10.3389/fneur.2011.00030

    Article  CAS  Google Scholar 

  15. Nakagomi S, Suzuki Y, Namikawa K, Kiryu-Seo S, Kiyama H (2003) Expression of the activating transcription factor 3 prevents c-Jun N-terminal kinase-induced neuronal death by promoting heat shock protein 27 expression and Akt activation. J Neurosci 23(12):5187–5196. https://doi.org/10.1523/jneurosci.23-12-05187.2003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Vlug AS, Teuling E, Haasdijk ED, French P, Hoogenraad CC, Jaarsma D (2005) ATF3 expression precedes death of spinal motoneurons in amyotrophic lateral sclerosis-SOD1 transgenic mice and correlates with c-Jun phosphorylation, CHOP expression, somato-dendritic ubiquitination and Golgi fragmentation. Eur J Neurosci 22(8):1881–1894. https://doi.org/10.1111/j.1460-9568.2005.04389.x

    Article  PubMed  Google Scholar 

  17. Seijffers R, Allchorne AJ, Woolf CJ (2006) The transcription factor ATF-3 promotes neurite outgrowth. Mol Cell Neurosci 32(1–2):143–154. https://doi.org/10.1016/j.mcn.2006.03.005

    Article  PubMed  CAS  Google Scholar 

  18. Houle JD, Schramm P, Herdegen T (1998) Trophic factor modulation of c-Jun expression in supraspinal neurons after chronic spinal cord injury. Exp Neurol 154(2):602–611. https://doi.org/10.1006/exnr.1998.6954

    Article  PubMed  CAS  Google Scholar 

  19. Herdegen T, Skene P, Bähr M (1997) The c-Jun transcription factor—bipotential mediator of neuronal death, survival and regeneration. Trends Neurosci 20(5):227–231. https://doi.org/10.1016/s0166-2236(96)01000-4

    Article  PubMed  CAS  Google Scholar 

  20. Zilundu PLM, Xu X, Liaquat Z, Wang Y, Zhong K, Fu R, Zhou L (2021) Long-term suppression of c-Jun and nNOS preserves ultrastructural features of lower motor neurons and forelimb function after brachial plexus roots avulsion. Cells 10(7):1614. https://doi.org/10.3390/cells10071614

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Ruff CA, Staak N, Patodia S, Kaswich M, Rocha-Ferreira E, Da Costa C, Brecht S, Makwana M et al (2012) Neuronal c-Jun is required for successful axonal regeneration, but the effects of phosphorylation of its N-terminus are moderate. J Neurochem 121(4):607–618. https://doi.org/10.1111/j.1471-4159.2012.07706.x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Li YQ, Song FH, Zhong K, Yu GY, Zilundu PLM, Zhou YY, Fu R, Tang Y et al (2018) Pre-injection of small interfering RNA (siRNA) promotes c-Jun gene silencing and decreases the survival rate of axotomy-injured spinal motoneurons in adult mice. J Mol Neurosci 65(3):400–410. https://doi.org/10.1007/s12031-018-1098-y

    Article  PubMed  CAS  Google Scholar 

  23. Schweizer A, Valdenaire O, Köster A, Lang Y, Schmitt G, Lenz B, Bluethmann H, Rohrer J (1999) Neonatal lethality in mice deficient in XCE, a novel member of the endothelin-converting enzyme and neutral endopeptidase family. J Biol Chem 274(29):20450–20456. https://doi.org/10.1074/jbc.274.29.20450

    Article  PubMed  CAS  Google Scholar 

  24. Kaneko A, Kiryu-Seo S, Matsumoto S, Kiyama H (2017) Damage-induced neuronal endopeptidase (DINE) enhances axonal regeneration potential of retinal ganglion cells after optic nerve injury. Cell Death Dis 8(6):e2847. https://doi.org/10.1038/cddis.2017.212

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Sato K, Shiga Y, Nakagawa Y, Fujita K, Nishiguchi KM, Tawarayama H, Murayama N, Maekawa S et al (2018) Ecel1 knockdown with an AAV2-mediated CRISPR/Cas9 system promotes optic nerve damage-induced RGC death in the mouse retina. Invest Ophthalmol Vis Sci 59(10):3943–3951. https://doi.org/10.1167/iovs.18-23784

    Article  PubMed  CAS  Google Scholar 

  26. Zhou L, Wu W (2006) Antisense oligos to neuronal nitric oxide synthase aggravate motoneuron death induced by spinal root avulsion in adult rat. Exp Neurol 197(1):84–92. https://doi.org/10.1016/j.expneurol.2005.08.019

    Article  PubMed  CAS  Google Scholar 

  27. Zhou LH, Han S, Xie YY, Wang LL, Yao ZB (2008) Differences in c-jun and nNOS expression levels in motoneurons following different kinds of axonal injury in adult rats. Brain Cell Biol 36(5–6):213–227. https://doi.org/10.1007/s11068-009-9040-4

    Article  PubMed  CAS  Google Scholar 

  28. Lv SQ, Wu W (2021) ISP and PAP4 peptides promote motor functional recovery after peripheral nerve injury. Neural Regen Res 16(8):1598–1605. https://doi.org/10.4103/1673-5374.294565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Wu W (1993) Expression of nitric-oxide synthase (NOS) in injured CNS neurons as shown by NADPH diaphorase histochemistry. Exp Neurol 120(2):153–159. https://doi.org/10.1006/exnr.1993.1050

    Article  PubMed  CAS  Google Scholar 

  30. Cheng X, Fu R, Gao M, Liu S, Li YQ, Song FH, Bruce IC, Zhou LH et al (2013) Intrathecal application of short interfering RNA knocks down c-jun expression and augments spinal motoneuron death after root avulsion in adult rats. Neuroscience 241:268–279. https://doi.org/10.1016/j.neuroscience.2013.03.006

    Article  PubMed  CAS  Google Scholar 

  31. Lu W, Li JP, Jiang ZD, Yang L, Liu XZ (2022) Effects of targeted muscle reinnervation on spinal cord motor neurons in rats following tibial nerve transection. Neural Regen Res 17(8):1827–1832. https://doi.org/10.4103/1673-5374.332153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kiryu-Seo S (2006) Identification and functional analysis of damage-induced neuronal endopeptidase (DINE), a nerve injury associated molecule. Anat Sci Int 81(1):1–6. https://doi.org/10.1111/j.1447-073x.2006.00136.x

    Article  PubMed  CAS  Google Scholar 

  33. Kiryu-Seo S, Sasaki M, Yokohama H, Nakagomi S, Hirayama T, Aoki S, Wada K, Kiyama H (2000) Damage-induced neuronal endopeptidase (DINE) is a unique metallopeptidase expressed in response to neuronal damage and activates superoxide scavengers. Proc Natl Acad Sci USA 97(8):4345–4350. https://doi.org/10.1073/pnas.070509897

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Tan M, Yuan MZ, Sun TY, Xie YY, Liu LL, Tang Y, Ling ZM, Li YQ et al (2015) Identification of the avulsion-injured spinal motoneurons. J Mol Neurosci: MN 57(1):142–151. https://doi.org/10.1007/s12031-015-0588-4

    Article  PubMed  CAS  Google Scholar 

  35. Fujita N, Sase K, Tsukahara C, Arizono I, Takagi H, Kitaoka Y (2021) Pemafibrate prevents retinal neuronal cell death in NMDA-induced excitotoxicity via inhibition of p-c-Jun expression. Mol Biol Rep 48(1):195–202. https://doi.org/10.1007/s11033-020-06032-y

    Article  PubMed  CAS  Google Scholar 

  36. Yu B, Gu X (2019) Combination of biomaterial transplantation and genetic enhancement of intrinsic growth capacities to promote CNS axon regeneration after spinal cord injury. Front Med 13(2):131–137. https://doi.org/10.1007/s11684-018-0642-z

    Article  PubMed  Google Scholar 

  37. Lindholm D, Heumann R, Meyer M, Thoenen H (1987) Interleukin-1 regulates synthesis of nerve growth factor in non-neuronal cells of rat sciatic nerve. Nature 330(6149):658–659. https://doi.org/10.1038/330658a0

    Article  PubMed  CAS  Google Scholar 

  38. Kiryu S, Morita N, Ohno K, Maeno H, Kiyama H (1995) Regulation of mRNA expression involved in Ras and PKA signal pathways during rat hypoglossal nerve regeneration. Brain Res Mol Brain Res 29(1):147–156. https://doi.org/10.1038/330658a0

    Article  PubMed  CAS  Google Scholar 

  39. Shadiack AM, Sun Y, Zigmond RE (2001) Nerve growth factor antiserum induces axotomy-like changes in neuropeptide expression in intact sympathetic and sensory neurons. J Neurosc 21(2):363–371. https://doi.org/10.1523/jneurosci.21-02-00363.2001

    Article  CAS  Google Scholar 

  40. Boeshore KL, Schreiber RC, Vaccariello SA, Sachs HH, Salazar R, Lee J, Ratan RR, Leahy P et al (2004) Novel changes in gene expression following axotomy of a sympathetic ganglion: a microarray analysis. J Neurobiol 59(2):216–235. https://doi.org/10.1002/neu.10308

    Article  PubMed  CAS  Google Scholar 

  41. Zhu P, Hu J, Zhang Y, Li X (2021) Enhancing traceability of infectious diseases: a blockchain-based approach. Inf Process Manag 58(4):102570

    Article  PubMed  PubMed Central  Google Scholar 

  42. Nguyen N, Lee SB, Lee YS, Lee KH, Ahn JY (2009) Neuroprotection by NGF and BDNF against neurotoxin-exerted apoptotic death in neural stem cells are mediated through Trk receptors, activating PI3-kinase and MAPK pathways. Neurochem Res 34(5):942–951. https://doi.org/10.1007/s11064-008-9848-9

    Article  PubMed  CAS  Google Scholar 

  43. Dal-Cim T, Molz S, Egea J, Parada E, Romero A, Budni J, Martín de Saavedra MD, del Barrio L et al (2012) Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway. Neurochem Int 61(3):397–404. https://doi.org/10.1016/j.neuint.2012.05.021

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

To the National Natural Science Foundation of China, the Natural Science Foundation of Guangdong Province of China, Open Project of Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Emergency Research, and Guang Dong Basic and Applied Basic Research Foundation for providing financial support.

Funding

This work was supported by the National Natural Science Foundation of China, No. 82171369; the National Natural Science Foundation of China, No. 82102107, the Natural Science Foundation of Guangdong Province of China, No. 2021A1515012165; 2020 Open Project of Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Emergency Research, No. JZ2020KF02; and the Guang Dong Basic and Applied Basic Research Foundation, No. 2022A1515110189.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YL, KZ; methodology: YH, YM, SL, YZ, PW, LZ; formal analysis: YH; investigation: YH and KZ; writing—original draft preparation: YH and KZ; writing—review and editing: YH and WY; supervision: YL and KZ; project administration: YL, KZ. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yingqin Li or Ke Zhong.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Animal Care and Use Committee of Sun Yat-sen University and the Guangdong Province Animal Care Ethics Committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Mai, Y., Ye, W. et al. Brachial Plexus Root Avulsion Injury-Induced Endothelin-Converting Enzyme-Like 1 Overexpression Is Associated with Injured Motor Neurons Survival. Mol Neurobiol (2024). https://doi.org/10.1007/s12035-023-03887-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03887-7

Keywords

Navigation