Skip to main content

Advertisement

Log in

Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Carnosine is composed of β-alanine and L-histidine and is considered to be an important neuroprotective agent with antioxidant, metal chelating, and antisenescence properties. However, children with serum carnosinase deficiency present increased circulating carnosine and severe neurological symptoms. We here investigated the in vitro effects of carnosine on redox and mitochondrial parameters in cultured cortical astrocytes from neonatal rats. Carnosine did not alter mitochondrial content or mitochondrial membrane potential. On the other hand, carnosine increased mitochondrial superoxide anion formation, levels of thiobarbituric acid reactive substances and oxidation of 2′,7′-dichlorofluorescin diacetate (DCF-DA), indicating that carnosine per se acts as a pro-oxidant agent. Nonetheless, carnosine prevented DCF-DA oxidation induced by H2O2 in cultured cortical astrocytes. Since alterations on mitochondrial membrane potential are not likely to be involved in these effects of carnosine, the involvement of N-Methyl-D-aspartate (NMDA) receptors in the pro-oxidant actions of carnosine was investigated. MK-801, an antagonist of NMDA receptors, prevented DCF-DA oxidation induced by carnosine in cultured cortical astrocytes. Astrocyte reactivity induced by carnosine was also prevented by the coincubation with MK-801. The present study shows for the very first time the pro-oxidant effects of carnosine per se in astrocytes. The data raise awareness on the importance of a better understanding of the biological actions of carnosine, a nutraceutical otherwise widely reported as devoid of side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data will be made available by direct contact with the authors.

References

  1. Gulewitsch W, Amiradzibi S (1900) Uber das carnosin, eine neue organische Base des Fleischextraktes. Ber Dtsch Chem Ges 33:1902–1903

    Article  CAS  Google Scholar 

  2. Abe H (2000) Role of histidine-related compounds as intracellular proton buffering constituents in vertebrate muscle. Biochemistry (Mosc) 65:757–765

    PubMed  CAS  Google Scholar 

  3. Bonfanti L, Peretto P, De Marchis S, Fasolo A (1999) Carnosine-related dipeptides in the mammalian brain. Prog Neurobiol 59:333–353. https://doi.org/10.1016/s0301-0082(99)00010-6

    Article  PubMed  CAS  Google Scholar 

  4. Boldyrev AA, Aldini G, Derave W (2013) Physiology and pathophysiology of carnosine. Physiol Rev 93:1803–1845. https://doi.org/10.1152/physrev.00039.2012

    Article  PubMed  CAS  Google Scholar 

  5. Bakardjiev A, Bauer K (2000) Biosynthesis, release, and uptake of carnosine in primary cultures. Biochemistry (Mosc) 65:779–782

    PubMed  CAS  Google Scholar 

  6. Hoffmann AM, Bakardjiev A, Bauer K (1996) Carnosine-synthesis in cultures of rat glial cells is restricted to oligodendrocytes and carnosine uptake to astrocytes. Neurosci Lett 215:29–32. https://doi.org/10.1016/s0304-3940(96)12937-2

    Article  PubMed  CAS  Google Scholar 

  7. De Marchis S, Modena C, Peretto P, Giffard C, Fasolo A (2000) Carnosine-like immunoreactivity in the central nervous system of rats during postnatal development. J Comp Neurol 426:378–390

    Article  PubMed  Google Scholar 

  8. Xiang J, Hu Y, Smith DE, Keep RF (2006) PEPT2-mediated transport of 5-aminolevulinic acid and carnosine in astrocytes. Brain Res 1122:18–23. https://doi.org/10.1016/j.brainres.2006.09.013

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Lopachev AV, Abaimov DA, Filimonov IS, Kulichenkova KN, Fedorova TN (2021) An assessment of the transport mechanism and intraneuronal stability of L-carnosine. Amino Acids 54:1115–1122. https://doi.org/10.1007/s00726-021-03094-5

    Article  PubMed  CAS  Google Scholar 

  10. Lenney JF, George RP, Weiss AM, Kucera CM, Chan PW, Rinzler GS (1982) Human serum carnosinase: characterization, distinction from cellular carnosinase, and activation by cadmium. Clin Chim Acta 123:221–231. https://doi.org/10.1016/0009-8981(82)90166-8

    Article  PubMed  CAS  Google Scholar 

  11. Lenney JF, Peppers SC, Kucera-Orallo CM, George RP (1985) Characterization of human tissue carnosinase. Biochem J 228:653–660. https://doi.org/10.1042/bj2280653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Teufel M, Saudek V, Ledig JP, Bernhardt A, Boularand S, Carreau A, Cairns NJ, Carter C, Cowley DJ, Duverger D, Ganzhorn AJ, Guenet C, Heintzelmann B, Laucher V, Sauvage C, Smirnova T (2003) Sequence identification and characterization of human carnosinase and a closely related non-specific dipeptidase. J Biol Chem 278:6521–6531. https://doi.org/10.1074/jbc.M209764200

    Article  PubMed  CAS  Google Scholar 

  13. Otani H, Okumura A, Nagai K, Okumura N (2008) Colocalization of a carnosine-splitting enzyme, tissue carnosinase (CN2)/cytosolic non-specific dipeptidase 2 (CNDP2), with histidine decarboxylase in the tuberomammillary nucleus of the hypothalamus. Neurosci Lett 445:166–169. https://doi.org/10.1016/j.neulet.2008.09.008

    Article  PubMed  CAS  Google Scholar 

  14. Jackson MC, Kucera CM, Lenney JF (1991) Purification and properties of human serum carnosinase. Clin Chim Acta 196:193–205. https://doi.org/10.1016/0009-8981(91)90073-l

    Article  PubMed  CAS  Google Scholar 

  15. Hu X, Fukui Y, Feng T, Bian Z, Yu H, Morihara R, Hu X, Bian Y, Sun H, Takemoto M, Nakano Y, Yunoki T, Abe K, Yamashita T (2023) Neuroprotective effects of carnosine in a mice stroke model concerning oxidative stress and inflammatory response. J Neurol Sc 4(447):120608. https://doi.org/10.1016/j.jns.2023.120608

    Article  CAS  Google Scholar 

  16. Fresta CG, Fidilio A, Lazzarino G, Musso N, Grasso M, Merlo S, Amorini AM, Bucolo C, Tavazzi B, Lazzarino G, Lunte SM, Caraci F, Caruso G (2020) Modulation of Pro-Oxidant and Pro-Inflammatory Activities of M1 Macrophages by the Natural Dipeptide Carnosine. Int J Mol Sci 21:776. https://doi.org/10.3390/ijms21030776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kim E.H., Kim E.S., Shin D., Kim D., Choi S., Shin Y.J., Kim K.A., Noh D., Caglayan A.B., Rajanikant G.K., Majid A., Bae O.N. Carnosine Protects against Cerebral Ischemic Injury by Inhibiting Matrix-Metalloproteinases. Int J Mol Sci, 2021, 13;22(14):7495. doi: https://doi.org/10.3390/ijms22147495.

  18. Macedo LW, Cararo JH, Maravai SG, Gonçalves CL, Oliveira GM, Kist LW, Guerra Martinez C, Kurtenbach E, Bogo MR, Hipkiss AR, Streck EL, Schuck PF, Ferreira GC (2016) Acute Carnosine Administration Increases Respiratory Chain Complexes and Citric Acid Cycle Enzyme Activities in Cerebral Cortex of Young Rats. Mol Neurobiol 53:5582–5590. https://doi.org/10.1007/s12035-015-9475-9

    Article  PubMed  CAS  Google Scholar 

  19. Macarini JR, Maravai SG, Cararo JH, Dimer NW, Gonçalves CL, Kist LW, Bogo MR, Schuck PF, Streck EL, Ferreira GC (2014) Impairment of electron transfer chain induced by acute carnosine administration in skeletal muscle of young rats. Biomed Res Int 2014:632986. https://doi.org/10.1155/2014/632986

  20. Shen Y, Tian Y, Yang J, Shi X, Ouyang L, Gao J, Lu J (2014) Dual effects of carnosine on energy metabolism of cultured cortical astrocytes under normal and ischemic conditions. Regul Pept 193:45–52. https://doi.org/10.1016/j.regpep.2014.08.005

    Article  CAS  Google Scholar 

  21. Chilukuri H, Kulkarni MJ, Fernandes M (2018) Revisiting amino acids and peptides as anti-glycation agents. Medchemcomm 9:614–624. https://doi.org/10.1039/c7md00514h

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Liu XQ, Jiang L, Lei L, Nie ZY, Zhu W, Wang S, Zeng HX, Zhang SQ, Zhang Q, Yard B, Wu YG (2020) Carnosine alleviates diabetic nephropathy by targeting GNMT, a key enzyme mediating renal inflammation and fibrosis. Clin Sci 134:3175–3193. https://doi.org/10.1042/CS20201207

    Article  CAS  Google Scholar 

  23. Menon K, Cameron JD, de Courten M, de Courten B (2021) Use of carnosine in the prevention of cardiometabolic risk factors in overweight and obese individuals: study protocol for a randomised, double-blind placebo-controlled trial. BMJ Open 11:e043680. https://doi.org/10.1136/bmjopen-2020-043680

    Article  PubMed  PubMed Central  Google Scholar 

  24. Banerjee S, Mukherjee B, Poddar MK, Dunbar GL (2021) Carnosine improves aging-induced cognitive impairment and brain regional neurodegeneration in relation to the neuropathological alterations in the secondary structure of amyloid beta (Aβ). J Neurochem 158(3):710–723. https://doi.org/10.1111/jnc.15357

    Article  PubMed  CAS  Google Scholar 

  25. Diniz FC, Hipkiss AR, Ferreira GC (2022) The Potential Use of Carnosine in Diabetes and Other Afflictions Reported in Long COVID Patients. Front Neurosci 22(16):898735. https://doi.org/10.3389/fnins.2022.898735

    Article  Google Scholar 

  26. Willi SM, Zhang Y, Hill JB, Phelan MC, Michaelis RC, Holden KR (1997) A deletion in the long arm of chromosome 18 in a child with serum carnosinase deficiency. Pediatr Res 41:210–213. https://doi.org/10.1203/00006450-199702000-00009

    Article  PubMed  CAS  Google Scholar 

  27. Perry TL, Hansen S, Tischler B, Bunting R, Berry K (1967) Carnosinemia. A new metabolic disorder associated with neurologic disease and mental defect. N Engl J Med 277:1219–1227. https://doi.org/10.1056/NEJM196712072772302

    Article  PubMed  CAS  Google Scholar 

  28. Murphey WH, Lindmark DG, Patchen LI, Housler ME, Harrod EK, Mosovich L (1973) Serum carnosinase deficiency concomitant with mental retardation. Pediatr Res 7:601–606. https://doi.org/10.1203/00006450-197307000-00001

    Article  PubMed  CAS  Google Scholar 

  29. Gjessing LR, Lunde HA, Mørkrid L, Lenney JF, Sjaastad O (1990) Inborn errors of carnosine and homocarnosine metabolism. J Neural Transm Suppl 29:91–106. https://doi.org/10.1007/978-3-7091-9050-0_10

    Article  PubMed  CAS  Google Scholar 

  30. NORD (2002) NORD Guide to rare diseases. Lippincott Williams and Wilkins, Philadelphia

  31. Verkhratsky A, Nedergaard M (2018) Physiology of Astroglia. Physiol Rev 98:239–389. https://doi.org/10.1152/physrev.00042.2016

    Article  PubMed  CAS  Google Scholar 

  32. McKenna MC, Ferreira GC (2016) Enzyme Complexes Important for the Glutamate-Glutamine Cycle. Adv Neurobiol 13:59–98. https://doi.org/10.1007/978-3-319-45096-4_4

    Article  PubMed  Google Scholar 

  33. Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:17–35. https://doi.org/10.1007/s00401-009-0619-8

    Article  Google Scholar 

  34. Díaz-Amarilla P, Olivera-Bravo S, Trias E, Cragnolini A, Martínez-Palma L, Cassina P, Beckman J, Barbeito L (2011) Phenotypically aberrant astrocytes that promote motoneuron damage in a model of inherited amyotrophic lateral sclerosis. Proc Natl Acad Sci 108:18126–18131. https://doi.org/10.1073/pnas.1110689108

    Article  PubMed  PubMed Central  Google Scholar 

  35. Kuter K, Olech L, Głowacka U (2018) Prolonged Dysfunction of Astrocytes and Activation of Microglia Accelerate Degeneration of Dopaminergic Neurons in the Rat Substantia Nigra and Block Compensation of Early Motor Dysfunction Induced by 6-OHDA. Mol Neurobiol 55:3049–3066. https://doi.org/10.1007/s12035-017-0529-z

    Article  PubMed  CAS  Google Scholar 

  36. Ding ZB, Song LJ, Wang Q, Kumar G, Yan YQ, Ma CG (2021) Astrocytes: a double-edged sword in neurodegenerative diseases. Neural Regen Res 16:1702–1710. https://doi.org/10.4103/1673-5374.306064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oksanen M, Lehtonen S, Jaronen M, Goldsteins G, Hämäläinen RH, Koistinaho J (2019) Astrocyte alterations in neurodegenerative pathologies and their modeling in human induced pluripotent stem cell platforms. Cell Mol Life Sci 76:2739–2760. https://doi.org/10.1007/s00018-019-03111-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Olivera-Bravo S, Fernández A, Sarlabós MN, Rosillo JC, Casanova G, Jiménez M, Barbeito L (2011) Neonatal astrocyte damage is sufficient to trigger progressive striatal degeneration in a rat model of glutaric acidemia-I. PLoS One 6:e20831. https://doi.org/10.1371/journal.pone.0020831

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Olivera-Bravo S, Isasi E, Fernández A, Casanova G, Rosillo JC, Barbeito L (2016) Astrocyte Dysfunction in Developmental Neurometabolic Diseases. Adv Exp Med Biol 949:227–243. https://doi.org/10.1007/978-3-319-40764-7_11

    Article  PubMed  CAS  Google Scholar 

  40. Lamp J, Keyser B, Koeller DM, Ullrich K, Braulke T, Mühlhausen C (2011) Glutaric aciduria type 1 metabolites impair the succinate transport from astrocytic to neuronal cells. J Biol Chem 286:17777–17784. https://doi.org/10.1074/jbc.M111.232744

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Aydin F, Kalaz EB, Kucukgergin C, Coban J, Dogru-Abbasoglu S, Uysal M (2018) Carnosine Treatment Diminished Oxidative Stress and Glycation Products in Serum and Tissues of D-Galactose-Treated Rats. Curr Aging Sci 11:10–15. https://doi.org/10.2174/1871530317666170703123519

    Article  PubMed  CAS  Google Scholar 

  42. Lopachev AV, Lopacheva OM, Abaimov DA, Koroleva OV, Vladychenskaya EA, Erukhimovich AA, Fedorova TN (2016) Neuroprotective Effect of Carnosine on Primary Culture of Rat Cerebellar Cells under Oxidative Stress. Biochemistry (Mosc) 81:511–20. https://doi.org/10.1134/S0006297916050084

    Article  PubMed  CAS  Google Scholar 

  43. Harris RC, Tallon MJ, Dunnett M, Boobis L, Coakley J, Kim HJ, Fallowfield JL, Hill CA, Sale C, Wise JA (2006) The absorption of orally supplied beta-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino acids 30(3):279–289. https://doi.org/10.1007/s00726-006-0299-9

    Article  PubMed  CAS  Google Scholar 

  44. Behl T, Gupta A, Chigurupati S, Singh S, Sehgal A, Badavath VN, Alhowail A, Mani V, Bhatia S, Al-Harrasi A, Bungau S (2022) Natural and Synthetic Agents Targeting Reactive Carbonyl Species against Metabolic Syndrome. Molecules (Basel, Switzerland) 27(5):1583. https://doi.org/10.3390/molecules27051583

    Article  PubMed  CAS  Google Scholar 

  45. Sakano T, Egusa AS, Kawauchi Y, Wu J, Nishimura T, Nakao N, Kuramoto A, Kawashima T, Shiotani S, Okada Y, Sato K, Yanai N (2022) Pharmacokinetics and tissue distribution of orally administrated imidazole dipeptides in carnosine synthase gene knockout mice. Bioscience, biotechnology, and biochemistry 86(9):1276–1285. https://doi.org/10.1093/bbb/zbac081

    Article  PubMed  Google Scholar 

  46. Zhang L, Wei Y, Yuan S, Sun L (2023) Targeting Mitochondrial Metabolic Reprogramming as a Potential Approach for Cancer Therapy. Int J Mol Sci 24(5):4954. https://doi.org/10.3390/ijms24054954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol 4:191. https://doi.org/10.3389/fendo.2013.00191

    Article  Google Scholar 

  48. Pendergrass W, Wolf N, Poot M (2004) Efficacy of MitoTracker Green and CMXrosamine to measure changes in mitochondrial membrane potentials in living cells and tissues. Cytometry A 61:162–169. https://doi.org/10.1002/cyto.a.20033

    Article  PubMed  CAS  Google Scholar 

  49. Bermúdez ML, Skelton MR, Genter MB (2018) Intranasal carnosine attenuates transcriptomic alterations and improves mitochondrial function in the Thy1-aSyn mouse model of Parkinson’s disease. Mol Genet Metab 125:305–313. https://doi.org/10.1016/j.ymgme.2018.08.002

    Article  PubMed  CAS  Google Scholar 

  50. Kohen R, Yamamoto Y, Cundy KC, Ames BN (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc Natl Acad Sci 85:3175–3179. https://doi.org/10.1073/pnas.85.9.3175

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Aruoma OI, Laughton MJ, Halliwell B (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem J 264:863–869. https://doi.org/10.1042/bj2640863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Quinn PJ, Boldyrev AA, Formazuyk VE (1992) Carnosine: its properties, functions and potential therapeutic applications. Mol Aspects Med 13:379–444. https://doi.org/10.1016/0098-2997(92)90006-l

    Article  PubMed  CAS  Google Scholar 

  53. Hipkiss AR (1998) Carnosine, a protective, anti-ageing peptide? Int J Biochem Cell Biol 30:863–868. https://doi.org/10.1016/s1357-2725(98)00060-0

    Article  PubMed  CAS  Google Scholar 

  54. Yen WJ, Chang LW, Lee CP, Duhl PD (2002) Inhibition of lipid peroxidation and nonlipid oxidative damage by carnosine. J Amer Oil Chem Soc 79:329–333. https://doi.org/10.1007/s11746-002-0483-9

    Article  CAS  Google Scholar 

  55. Fadda LM, Attia HA, Al-Rasheed NM, Ali HM, Aldossari M (2017) Attenuation of DNA damage and mRNA gene expression in hypoxic rats using natural antioxidants. J Biochem Mol Toxicol 31:12-e21975. https://doi.org/10.1002/jbt.21975

    Article  CAS  Google Scholar 

  56. Carr A, Frei B (1999) Does vitamin C act as a pro-oxidant under physiological conditions? FASEB J 13:1007–1024. https://doi.org/10.1096/fasebj.13.9.1007

    Article  PubMed  CAS  Google Scholar 

  57. Naidu KA (2003) Vitamin C in human health and disease is still a mystery? An overview. Nutr J 21:2–7. https://doi.org/10.1186/1475-2891-2-7

    Article  Google Scholar 

  58. Kamal MA, Jiang H, Hu Y, Keep RF, Smith DE (2009) Influence of genetic knockout of Pept2 on the in vivo disposition of endogenous and exogenous carnosine in wild-type and Pept2 null mice. Am J Physiol Regul Integr Comp Physiol 296:986–991. https://doi.org/10.1152/ajpregu.90744.2008

    Article  CAS  Google Scholar 

  59. Seidel EC, Birkemeyer C, Baran-Schmidt R, Meixensberger J, Oppermann H, Gaunitz F (2022) Viability of Glioblastoma Cells and Fibroblasts in the Presence of Imidazole-Containing Compounds. Int J Mol Sci 23(10):5834. https://doi.org/10.3390/ijms23105834

  60. Bae ON, Serfozo K, Baek SH, Lee KY, Dorrance A, Rumbeiha W, Fitzgerald SD, Farooq MU, Naravelta B, Bhatt A, Majid A (2013) Safety and efficacy evaluation of carnosine, an endogenous neuroprotective agent for ischemic stroke. Stroke 44:205–212. https://doi.org/10.1161/STROKEAHA.112.673954

    Article  PubMed  CAS  Google Scholar 

  61. Spaas J, Franssen WMA, Keytsman C, Blancquaert L, Vanmierlo T, Bogie J, Broux B, Hellings N, van Horssen J, Posa DK, Hoetker D, Baba SP, Derave W, Eijnde BO (2021) Carnosine quenches the reactive carbonyl acrolein in the central nervous system and attenuates autoimmune neuroinflammation. J Neuroinflammation 18(1):255. https://doi.org/10.1186/s12974-021-02306-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Caruso G, Privitera A, Saab MW, Musso N, Maugeri S, Fidilio A, Privitera AP, Pittalà A, Jolivet RB, Lanzanò L, Lazzarino G, Caraci F, Amorini AM (2023) Characterization of Carnosine Effect on Human Microglial Cells under Basal Conditions. Biomedicines 11(2):474. https://doi.org/10.3390/biomedicines11020474

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Escartin C, Guillemaud O, Carrillo-de Sauvage MA (2019) Questions and (some) answers on reactive astrocytes. Glia 67(12):2221–2247. https://doi.org/10.1002/glia.23687

    Article  PubMed  Google Scholar 

  64. Matias I, Morgado J, Gomes FCA (2019) Astrocyte Heterogeneity: Impact to Brain Aging and Disease. Front Aging Neurosci 11:59. https://doi.org/10.3389/fnagi.2019.00059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sofroniew MV (2020) Astrocyte Reactivity: Subtypes, States, and Functions in CNS Innate Immunity. Trends Immunol 41(9):758–770. https://doi.org/10.1016/j.it.2020.07.004

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Xiong XY, Tang Y, Yang QW (2022) Metabolic changes favor the activity and heterogeneity of reactive astrocytes. Trends Endocrinol Metab 33(6):390–400. https://doi.org/10.1016/j.tem.2022.03.001

    Article  PubMed  CAS  Google Scholar 

  67. Patani R, Hardingham GE, Liddelow SA (2023) Functional roles of reactive astrocytes in neuroinflammation and neurodegeneration. Nat Rev Neurol 19(7):395–409. https://doi.org/10.1038/s41582-023-00822-1

    Article  PubMed  CAS  Google Scholar 

  68. Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, Jimenez-Blasco D, Lopez-Fabuel I, Fernandez E, Josephine C, Bonvento G, Enriquez JA, Almeida A, Bolaños JP (2019) Astrocytic mitochondrial ROS modulate brain metabolism and mouse behaviour. Nat Metab 1(2):201–211. https://doi.org/10.1038/s42255-018-0031-6

    Article  PubMed  CAS  Google Scholar 

  69. Bretheau F, Castellanos-Molina A, Bélanger D, Kusik M, Mailhot B, Boisvert A, Vallières N, Lessard M, Gunzer M, Liu X, Boilard É, Quan N, Lacroix S (2022) The alarmin interleukin-1α triggers secondary degeneration through reactive astrocytes and endothelium after spinal cord injury. Nat Commun 13(1):5786. https://doi.org/10.1038/s41467-022-33463-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liu R, Wang J, Chen Y, Collier JM, Capuk O, Jin S, Sun M, Mondal SK, Whiteside TL, Stolz DB, Yang Y, Begum G (2022) NOX activation in reactive astrocytes regulates astrocytic LCN2 expression and neurodegeneration. Cell Death Dis 13(4):371. https://doi.org/10.1038/s41419-022-04831-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wang D, Gao F, Hu F, Wu J (2022) Nobiletin Alleviates Astrocyte Activation and Oxidative Stress Induced by Hypoxia In Vitro. Molecules 27(6):1962. https://doi.org/10.3390/molecules27061962

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Ni XC, Wang HF, Cai YY, Yang D, Alolga RN, Liu B, Li J, Huang FQ (2022) Ginsenoside Rb1 inhibits astrocyte activation and promotes transfer of astrocytic mitochondria to neurons against ischemic stroke. Redox Biol 54:102363. https://doi.org/10.1016/j.redox.2022.102363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Casteilla L, Rigoulet M, Pénicaud L (2001) Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB Life 52:181–188. https://doi.org/10.1080/15216540152845984

    Article  PubMed  CAS  Google Scholar 

  74. Sinenko SA, Starkova TY, Kuzmin AA, Tomilin AN (2021) Physiological Signaling Functions of Reactive Oxygen Species in Stem Cells: From Flies to Man. Front Cell Dev Biol 9:714370. https://doi.org/10.3389/fcell.2021.714370

    Article  PubMed  PubMed Central  Google Scholar 

  75. Domínguez-Mozo MI, García-Frontini Nieto MC, Gómez-Calcerrada MI, Pérez-Pérez S, García-Martínez MÁ, Villar LM, Villarrubia N, Costa-Frossard L, Arroyo R, Alvarez-Lafuente R (2022) Mitochondrial Impairments in Peripheral Blood Mononuclear Cells of Multiple Sclerosis Patients. Biology (Basel) 11(11):1633. https://doi.org/10.3390/biology11111633

    Article  PubMed  CAS  Google Scholar 

  76. Cheng J, Nanayakkara G, Shao Y, Cueto R, Wang L, Yang WY, Tian Y, Wang H, Yang X (2017) Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Adv Exp Med Biol 982:359–370. https://doi.org/10.1007/978-3-319-55330-6_20

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Mailloux RJ, Harper ME (2011) Uncoupling proteins and the control of mitochondrial reactive oxygen species production. Free Radic Biol Med 51:1106–111. https://doi.org/10.1016/j.freeradbiomed.2011.06.022

    Article  PubMed  CAS  Google Scholar 

  78. Sassoè-Pognetto M, Cantino D, Panzanelli P, Verdun di Cantogno L, Giustetto M, Margolis FL, Fasolo A (1993) Presynaptic co-localization of carnosine and glutamate in olfactory neurones. Neuroreport 5:7–10

    Article  PubMed  Google Scholar 

  79. Bakardjiev A (1998) Carnosine and beta-alanine release is stimulated by glutamatergic receptors in cultured rat oligodendrocytes. Glia 24:346–351

    Article  PubMed  CAS  Google Scholar 

  80. Hamberger A (1971) Amino acid uptake in neuronal and glial cell fractions from rabbit cerebral cortex. Brain Res 31:169–178. https://doi.org/10.1016/0006-8993(71)90641-x

    Article  PubMed  CAS  Google Scholar 

  81. Zhou Y, Li HL, Zhao R, Yang LT, Dong Y, Yue X, Ma YY, Wang Z, Chen J, Cui CL, Yu AC (2010) Astrocytes express N-methyl-D-aspartate receptor subunits in development, ischemia and post-ischemia. Neurochem Res 35:2124–2134. https://doi.org/10.1007/s11064-010-0325-x

    Article  PubMed  CAS  Google Scholar 

  82. Lucas DR, Newhouse JP (1957) The toxic effect of sodium L-glutamate on the inner layers of the retina. AMA Arch Ophthalmol 58(2):193–201. https://doi.org/10.1001/archopht.1957.00940010205006

    Article  PubMed  CAS  Google Scholar 

  83. Lin SP, Bu J, Ye S, Xie Q, Wei JX, Yin X, Mei F, Lin PY, Chen XH (2023) Activated AMPK-mediated glucose uptake and mitochondrial dysfunction is critically involved in the glutamate-induced oxidative injury in HT22 cell. Tissue Cell 81:102039. https://doi.org/10.1016/j.tice.2023.102039

    Article  PubMed  CAS  Google Scholar 

  84. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695. https://doi.org/10.1126/science.7901908

    Article  PubMed  CAS  Google Scholar 

  85. Reyes RC, Brennan AM, Shen Y, Baldwin Y, Swanson RA (2012) Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci 32:12973–12378. https://doi.org/10.1523/JNEUROSCI.1597-12.2012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Skowrońska K, Obara-Michlewska M, Zielińska M, Albrecht J (2019) NMDA Receptors in Astrocytes: In Search for Roles in Neurotransmission and Astrocytic Homeostasis. Int J Mol Sci 20:309. https://doi.org/10.3390/ijms20020309

  87. Kovacic P, Somanathan R (2010) Clinical physiology and mechanism of dizocilpine (MK-801): electron transfer, radicals, redox metabolites and bioactivity. Oxid Med Cell Longev 3(1):13–22. https://doi.org/10.4161/oxim.3.1.10028

    Article  PubMed  PubMed Central  Google Scholar 

  88. Volterra A, Trotti D, Tromba C, Floridi S, Racagni G (1994) Glutamate uptake inhibition by oxygen free radicals in rat cortical astrocytes. J Neurosci 14:2924–2932. https://doi.org/10.1523/JNEUROSCI.14-05-02924.1994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Piani D, Frei K, Pfister HW, Fontana A (1993) Glutamate uptake by astrocytes is inhibited by reactive oxygen intermediates but not by other macrophage-derived molecules including cytokines, leukotrienes or platelet-activating factor. J Neuroimmunol 48:99–104. https://doi.org/10.1016/0165-5728(93)90063-5

    Article  PubMed  CAS  Google Scholar 

  90. Shen Y, He P, Fan YY, Zhang JX, Yan HJ, Hu WW, Ohtsu H, Chen Z (2010) Carnosine protects against permanent cerebral ischemia in histidine decarboxylase knockout mice by reducing glutamate excitotoxicity. Free Radic Biol Med 48:727–735. https://doi.org/10.1016/j.freeradbiomed.2009.12.021

    Article  PubMed  CAS  Google Scholar 

  91. Shi X, Wang B, Liu Y, Zhang J, Huang Y, Cao P, Shen Y, Lyu J (2017) Carnosine modulates glutamine synthetase expression in senescent astrocytes exposed to oxygen-glucose deprivation/recovery. Brain Res Bull 130:138–145. https://doi.org/10.1016/j.brainresbull.2017.01.014

    Article  PubMed  CAS  Google Scholar 

  92. Companys-Alemany J, Turcu AL, Vázquez S, Pallàs M, Griñán-Ferré C (2022) Glial cell reactivity and oxidative stress prevention in Alzheimer’s disease mice model by an optimized NMDA receptor antagonist. Sci Rep 12(1):17908. https://doi.org/10.1038/s41598-022-22963-x

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Ramoa AS, Alkondon M, Aracava Y, Irons J, Lunt GG, Deshpande SS, Wonnacott S, Aronstam RS, Albuquerque EX (1990) The anticonvulsant MK-801 interacts with peripheral and central nicotinic acetylcholine receptor ion channels. J Pharmacol Exp Ther 254:71–82

    PubMed  CAS  Google Scholar 

  94. Hess GP, Ulrich H, Breitinger HG, Niu L, Gameiro AM, Grewer C, Srivastava S, Ippolito JE, Lee SM, Jayaraman V, Coombs SE (2000) Mechanism-based discovery of ligands that counteract inhibition of the nicotinic acetylcholine receptor by cocaine and MK-801. Proc Natl Acad Sci 97:13895–13900. https://doi.org/10.1073/pnas.240459497

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang L, Yao K, Fan Y, He P, Wang X, Hu W, Chen Z (2012) Carnosine protects brain microvascular endothelial cells against rotenone-induced oxidative stress injury through histamine H1 and H2 receptors in vitro. Clin Exp Pharmacol Physiol 39(12):1019–25. https://doi.org/10.1111/1440-1681.12019

    Article  PubMed  CAS  Google Scholar 

  96. Halliwell B, Whiteman M (2004) Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 142:231–255. https://doi.org/10.1038/sj.bjp.0705776

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Esterbauer H, Cheeseman KH (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Methods Enzymol 186:407–421. https://doi.org/10.1016/0076-6879(90)86134-h

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Victor Túlio Resende for contributing with training in microscopy and suggestions in that area.

Funding

This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Author information

Authors and Affiliations

Authors

Contributions

F.C.D: conception and design, collection and assembly of the data, data analysis and interpretation, manuscript writing, and final approval of the manuscript. B.P.; G.B., B.K.F., and M.F.T.: collection and assembly of the data, data analysis and interpretation, and final approval of the manuscript. E.L.S.; S.O.B.; L.H.B.; P.F.S. and R.A.M.R.: conception and design, assembly of the data, data interpretation, final approval of manuscript. G.C.F.: conception and design, assembly of the data, data analysis and interpretation, manuscript writing, final approval of manuscript, financial support, and administrative support.

Corresponding author

Correspondence to Gustavo Costa Ferreira.

Ethics declarations

Institutional Review Board Statement

This study was approved by the Animal Research Ethics Committee of the Universidade Federal do Rio de Janeiro (protocol # 091-20). This study was performed in accordance with the “Guide for the Care and Use of Laboratory Animals: Eighth Edition” (The National Academies Collection: Reports funded by National Institutes of Health, 2011) and the Brazilian Directive for the Care and Use of Animals for Scientific and Didactic Purposes (2018).

Consent to participate

Not applicable.

Consent to publish

Not applicable.

Conflicts of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diniz, F., Parmeggiani, B., Brandão, G. et al. Dual Effect of Carnosine on ROS Formation in Rat Cultured Cortical Astrocytes. Mol Neurobiol (2023). https://doi.org/10.1007/s12035-023-03880-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12035-023-03880-0

Keywords

Navigation