Skip to main content

Advertisement

Log in

Let-7b-TLR7 Signaling Axis Contributes to the Anesthesia/Surgery-Induced Cognitive Impairment

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Perioperative neurocognitive disorders (PNDs) are severe and common neurological complications among elderly patients following anesthesia and surgery. As the first line of defense of the innate immune system, Toll-like receptors (TLRs) have been found to be involved in the occurrence of neurodegenerative diseases in recent years. However, the role of TLR7 in the pathology and development of PNDs remains largely unclear. In our current study, we hypothesized that increased microRNA let-7b (let-7b) during anesthesia and surgical operation would activate TLR7 signaling pathways and mediate PNDs. Using a mouse model of PNDs, 18–20 months wild-type (WT) mice were undergoing unilateral nephrectomy, and increased TLR7 and let-7b expression levels were found in the surgery group compared with the Sham group. Of note, increased TLR7 was found to be co-localized with let-7b in the hippocampal area CA1 in the PNDs model. In addition, TLR7 and let-7b inhibition could improve hippocampus-dependent memory and attenuate the production of inflammatory cytokines. Together, our results indicated that TLR7 activation and up-regulation might be triggered by increased let-7b under stressful conditions and initiated the downstream inflammatory signaling, playing a substantial role in the development of PNDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the present study are available from the corresponding author upon reasonable request.

References

  1. Evered L, Silbert B, Knopman DS, Scott DA, DeKosky ST, Rasmussen LS, Oh ES, Crosby G, Berger M, Eckenhoff RG, Nomenclature Consensus Working G (2018) Recommendations for the nomenclature of cognitive change associated with anaesthesia and surgery-2018. Br J Anaesth 121(5):1005–1012. https://doi.org/10.1016/j.bja.2017.11.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Evered L, Scott DA, Silbert B, Maruff P (2011) Postoperative cognitive dysfunction is independent of type of surgery and anesthetic. Anesth Analg 112(5):1179–1185. https://doi.org/10.1213/ANE.0b013e318215217e

    Article  PubMed  Google Scholar 

  3. Ballard C, Jones E, Gauge N, Aarsland D, Nilsen OB, Saxby BK, Lowery D, Corbett A, Wesnes K, Katsaiti E, Arden J, Amoako D, Prophet N, Purushothaman B, Green D (2012) Optimised anaesthesia to reduce post operative cognitive decline (POCD) in older patients undergoing elective surgery, a randomised controlled trial. PLoS ONE 7(6):e37410. https://doi.org/10.1371/journal.pone.0037410

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seitz DP, Shah PS, Herrmann N, Beyene J, Siddiqui N (2011) Exposure to general anesthesia and risk of Alzheimer’s disease: a systematic review and meta-analysis. BMC Geriatr 11:83. https://doi.org/10.1186/1471-2318-11-83

    Article  PubMed  PubMed Central  Google Scholar 

  5. Barnes CA (1988) Aging and the physiology of spatial memory. Neurobiol Aging 9(5–6):563–568

    Article  CAS  PubMed  Google Scholar 

  6. Song S, Zhao W, Ji Y, Huang Q, Li Y, Chen S, Yang J, Jin X (2023) SHANK2 protein contributes to sevoflurane-induced developmental neurotoxicity and cognitive dysfunction in C57BL/6 male mice. Anesthesiol Perioper Sci 1(1):2. https://doi.org/10.1007/s44254-023-00005-7

    Article  Google Scholar 

  7. Eichenbaum H (2001) The hippocampus and declarative memory: cognitive mechanisms and neural codes. Behav Brain Res 127(1–2):199–207

    Article  CAS  PubMed  Google Scholar 

  8. Miller DB, O’Callaghan JP (2005) Aging, stress and the hippocampus. Ageing Res Rev 4(2):123–140. https://doi.org/10.1016/j.arr.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  9. Terrando N, Eriksson LI, Ryu JK, Yang T, Monaco C, Feldmann M, Jonsson Fagerlund M, Charo IF, Akassoglou K, Maze M (2011) Resolving postoperative neuroinflammation and cognitive decline. Ann Neurol 70(6):986–995. https://doi.org/10.1002/ana.22664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Balusu S, Van Wonterghem E, De Rycke R, Raemdonck K, Stremersch S, Gevaert K, Brkic M, Demeestere D, Vanhooren V, Hendrix A, Libert C, Vandenbroucke RE (2016) Identification of a novel mechanism of blood-brain communication during peripheral inflammation via choroid plexus-derived extracellular vesicles. EMBO Mol Med 8(10):1162–1183. https://doi.org/10.15252/emmm.201606271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen C, Gao R, Li M, Wang Q, Chen H, Zhang S, Mao X, Behensky A, Zhang Z, Gan L, Li T, Liao R, Li Q, Yu H, Yang J, Zhu T, Liu J (2019) Extracellular RNAs-TLR3 signaling contributes to cognitive decline in a mouse model of postoperative cognitive dysfunction. Brain Behav Immun 80:439–451. https://doi.org/10.1016/j.bbi.2019.04.024

    Article  CAS  PubMed  Google Scholar 

  12. Wang Y, He H, Li D, Zhu W, Duan K, Le Y, Liao Y, Ou Y (2013) The role of the TLR4 signaling pathway in cognitive deficits following surgery in aged rats. Mol Med Rep 7(4):1137–1142. https://doi.org/10.3892/mmr.2013.1322

    Article  CAS  PubMed  Google Scholar 

  13. Lu SM, Yu CJ, Liu YH, Dong HQ, Zhang X, Zhang SS, Hu LQ, Zhang F, Qian YN, Gui B (2015) S100A8 contributes to postoperative cognitive dysfunction in mice undergoing tibial fracture surgery by activating the TLR4/MyD88 pathway. Brain Behav Immun 44:221–234. https://doi.org/10.1016/j.bbi.2014.10.011

    Article  CAS  PubMed  Google Scholar 

  14. Gambuzza ME, Sofo V, Salmeri FM, Soraci L, Marino S, Bramanti P (2014) Toll-like receptors in Alzheimer’s disease: a therapeutic perspective. CNS Neurol Disord Drug Targets 13(9):1542–1558. https://doi.org/10.2174/1871527313666140806124850

    Article  CAS  PubMed  Google Scholar 

  15. Luo Z, Su R, Wang W, Liang Y, Zeng X, Shereen MA, Bashir N, Zhang Q, Zhao L, Wu K, Liu Y, Wu J (2019) EV71 infection induces neurodegeneration via activating TLR7 signaling and IL-6 production. PLoS Pathog 15(11):e1008142. https://doi.org/10.1371/journal.ppat.1008142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Areschoug T, Gordon S (2008) Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib Microbiol 15:45–60. https://doi.org/10.1159/000135685

    Article  CAS  PubMed  Google Scholar 

  17. Fitzgerald KA, Kagan JC (2020) Toll-like receptors and the control of immunity. Cell 180(6):1044–1066. https://doi.org/10.1016/j.cell.2020.02.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Krol J, Kaczynska D, Krzyzosiak WJ (2003) Micro RNA–members of non-coding RNA family. Postepy Biochem 49(4):214–228

    CAS  PubMed  Google Scholar 

  19. Fleshner M, Crane CR (2017) Exosomes, DAMPs and miRNA: features of stress physiology and immune homeostasis. Trends Immunol 38(10):768–776. https://doi.org/10.1016/j.it.2017.08.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen L, Dong R, Lu Y, Zhou Y, Li K, Zhang Z, Peng M (2019) MicroRNA-146a protects against cognitive decline induced by surgical trauma by suppressing hippocampal neuroinflammation in mice. Brain Behav Immun 78:188–201. https://doi.org/10.1016/j.bbi.2019.01.020

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann SM, Kruger C, Park B, Derkow K, Rosenberger K, Baumgart J, Trimbuch T, Eom G, Hinz M, Kaul D, Habbel P, Kalin R, Franzoni E, Rybak A, Nguyen D, Veh R, Ninnemann O, Peters O, Nitsch R, Heppner FL, Golenbock D, Schott E, Ploegh HL, Wulczyn FG, Lehnardt S (2012) An unconventional role for miRNA: let-7 activates Toll-like receptor 7 and causes neurodegeneration. Nat Neurosci 15(6):827–835. https://doi.org/10.1038/nn.3113

    Article  CAS  PubMed  Google Scholar 

  22. Klammer MG, Dzaye O, Wallach T, Krüger C, Gaessler D, Buonfiglioli A, Derkow K, Kettenmann H, Brinkmann MM, Lehnardt S (2021) UNC93B1 is widely expressed in the murine CNS and is required for neuroinflammation and neuronal injury induced by MicroRNA let-7b. Front Immunol 12:715774. https://doi.org/10.3389/fimmu.2021.715774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roush S, Slack FJ (2008) The let-7 family of microRNAs. Trends Cell Biol 18(10):505–516. https://doi.org/10.1016/j.tcb.2008.07.007

    Article  CAS  PubMed  Google Scholar 

  24. Lee H, Han S, Kwon CS, Lee D (2016) Biogenesis and regulation of the let-7 miRNAs and their functional implications. Protein Cell 7(2):100–113. https://doi.org/10.1007/s13238-015-0212-y

    Article  CAS  PubMed  Google Scholar 

  25. Coleman LG, Zou J, Crews FT (2017) Microglial-derived miRNA let-7 and HMGB1 contribute to ethanol-induced neurotoxicity via TLR7. J Neuroinflammation 14(1):22. https://doi.org/10.1186/s12974-017-0799-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Sprung J, Roberts RO, Weingarten TN, Nunes Cavalcante A, Knopman DS, Petersen RC, Hanson AC, Schroeder DR, Warner DO (2017) Postoperative delirium in elderly patients is associated with subsequent cognitive impairment. Br J Anaesth 119(2):316–323. https://doi.org/10.1093/bja/aex130

    Article  CAS  PubMed  Google Scholar 

  27. Vizcaychipi MP, Watts HR, O’Dea KP, Lloyd DG, Penn JW, Wan Y, Pac-Soo C, Takata M, Ma D (2014) The therapeutic potential of atorvastatin in a mouse model of postoperative cognitive decline. Ann Surg 259(6):1235–1244. https://doi.org/10.1097/SLA.0000000000000257

    Article  PubMed  Google Scholar 

  28. Xiang Y, Bu X-L, Liu Y-H, Zhu C, Shen L-L, Jiao S-S, Zhu X-Y, Giunta B, Tan J, Song W-H, Zhou H-D, Zhou X-F, Wang Y-J (2015) Physiological amyloid-beta clearance in the periphery and its therapeutic potential for Alzheimer’s disease. Acta Neuropathol 130(4):487–499. https://doi.org/10.1007/s00401-015-1477-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Balazsfi D, Fodor A, Torok B, Ferenczi S, Kovacs KJ, Haller J, Zelena D (2018) Enhanced innate fear and altered stress axis regulation in VGluT3 knockout mice. Stress 21(2):151–161. https://doi.org/10.1080/10253890.2017.1423053

    Article  PubMed  Google Scholar 

  30. Rao SS, Lago L, Volitakis I, Shukla JJ, McColl G, Finkelstein DI, Adlard PA (2021) Deferiprone treatment in aged transgenic tau mice improves Y-Maze performance and alters tau pathology. Neurotherapeutics 18(2):1081–1094. https://doi.org/10.1007/s13311-020-00972-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pugh CR, Kumagawa K, Fleshner M, Watkins LR, Maier SF, Rudy JW (1998) Selective effects of peripheral lipopolysaccharide administration on contextual and auditory-cue fear conditioning. Brain Behav Immun 12(3):212–229. https://doi.org/10.1006/brbi.1998.0524

    Article  CAS  PubMed  Google Scholar 

  32. Mukherjee S, Akbar I, Kumari B, Vrati S, Basu A, Banerjee A (2019) Japanese Encephalitis Virus-induced let-7a/b interacted with the NOTCH-TLR7 pathway in microglia and facilitated neuronal death via caspase activation. J Neurochem 149(4):518–534. https://doi.org/10.1111/jnc.14645

    Article  CAS  PubMed  Google Scholar 

  33. Lin F, Shan W, Zheng Y, Pan L, Zuo Z (2021) Toll-like receptor 2 activation and up-regulation by high mobility group box-1 contribute to post-operative neuroinflammation and cognitive dysfunction in mice. J Neurochem 158(2):328–341. https://doi.org/10.1111/jnc.15368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dalpke A, Helm M (2012) RNA mediated Toll-like receptor stimulation in health and disease. RNA Biol 9(6):828–842. https://doi.org/10.4161/rna.20206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Petes C, Odoardi N, Gee K (2017) The toll for trafficking: toll-like receptor 7 delivery to the endosome. Front Immunol 8:1075. https://doi.org/10.3389/fimmu.2017.01075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cowan M, Petri WA Jr (2018) Microglia: immune regulators of neurodevelopment. Front Immunol 9:2576. https://doi.org/10.3389/fimmu.2018.02576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hickman S, Izzy S, Sen P, Morsett L, El Khoury J (2018) Microglia in neurodegeneration. Nat Neurosci 21(10):1359–1369. https://doi.org/10.1038/s41593-018-0242-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shastri A, Bonifati DM, Kishore U (2013) Innate immunity and neuroinflammation. Mediators Inflamm 2013:342931. https://doi.org/10.1155/2013/342931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35:441–468. https://doi.org/10.1146/annurev-immunol-051116-052358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Heppner FL, Greter M, Marino D, Falsig J, Raivich G, Hovelmeyer N, Waisman A, Rulicke T, Prinz M, Priller J, Becher B, Aguzzi A (2005) Experimental autoimmune encephalomyelitis repressed by microglial paralysis. Nat Med 11(2):146–152. https://doi.org/10.1038/nm1177

    Article  CAS  PubMed  Google Scholar 

  41. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232-240. https://doi.org/10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liu HY, Hong YF, Huang CM, Chen CY, Huang TN, Hsueh YP (2013) TLR7 negatively regulates dendrite outgrowth through the Myd88-c-Fos-IL-6 pathway. J Neurosci 33(28):11479–11493. https://doi.org/10.1523/JNEUROSCI.5566-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146(1):248–254. https://doi.org/10.1016/j.neuroscience.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  44. Mukherjee S, Huda S, Sinha Babu SP (2019) Toll-like receptor polymorphism in host immune response to infectious diseases: a review. Scand J Immunol 90(1):e12771. https://doi.org/10.1111/sji.12771

    Article  CAS  PubMed  Google Scholar 

  45. Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, Akira S, Lipford G, Wagner H, Bauer S (2004) Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303(5663):1526–1529. https://doi.org/10.1126/science.1093620

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C (2004) Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303(5663):1529–1531. https://doi.org/10.1126/science.1093616

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Achek A, Yesudhas D, Choi S (2016) Toll-like receptors: promising therapeutic targets for inflammatory diseases. Arch Pharm Res 39(8):1032–1049. https://doi.org/10.1007/s12272-016-0806-9

    Article  CAS  PubMed  Google Scholar 

  48. Ohashi K, Burkart V, Flohe S, Kolb H (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J Immunol 164(2):558–561. https://doi.org/10.4049/jimmunol.164.2.558

    Article  CAS  PubMed  Google Scholar 

  49. Dinger ME, Mercer TR, Mattick JS (2008) RNAs as extracellular signaling molecules. J Mol Endocrinol 40(4):151–159. https://doi.org/10.1677/JME-07-0160

    Article  CAS  PubMed  Google Scholar 

  50. Kluever AK, Deindl E (2018) Extracellular RNA, a potential drug target for alleviating atherosclerosis, ischemia/reperfusion injury and organ transplantation. Curr Pharm Biotechnol 19(15):1189–1195. https://doi.org/10.2174/1389201020666190102150610

    Article  CAS  PubMed  Google Scholar 

  51. Feng Y, Zou L, Yan D, Chen H, Xu G, Jian W, Cui P, Chao W (2017) Extracellular microRNAs induce potent innate immune responses via TLR7/MyD88-dependent mechanisms. J Immunol 199(6):2106–2117. https://doi.org/10.4049/jimmunol.1700730

    Article  CAS  PubMed  Google Scholar 

  52. Chen C, Cai J, Zhang S, Gan L, Dong Y, Zhu T, Ma G, Li T, Zhang X, Li Q, Cheng X, Wu C, Yang J, Zuo Y, Liu J (2015) Protective effect of RNase on unilateral nephrectomy-induced postoperative cognitive dysfunction in aged mice. PLoS ONE 10(7):e0134307. https://doi.org/10.1371/journal.pone.0134307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Derkow K, Rossling R, Schipke C, Kruger C, Bauer J, Fahling M, Stroux A, Schott E, Ruprecht K, Peters O, Lehnardt S (2018) Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS ONE 13(7):e0200602. https://doi.org/10.1371/journal.pone.0200602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Moulton JD, Jiang S (2009) Gene knockdowns in adult animals: PPMOs and vivo-morpholinos. Molecules 14(3):1304–1323. https://doi.org/10.3390/molecules14031304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Nazmi A, Mukherjee S, Kundu K, Dutta K, Mahadevan A, Shankar SK, Basu A (2014) TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection. Neurobiol Dis 69:235–247. https://doi.org/10.1016/j.nbd.2014.05.036

    Article  CAS  PubMed  Google Scholar 

  56. O’Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 7(5):353–364. https://doi.org/10.1038/nri2079

    Article  CAS  PubMed  Google Scholar 

  57. Laffont S, Seillet C, Guery JC (2017) Estrogen receptor-dependent regulation of dendritic cell development and function. Front Immunol 8:108. https://doi.org/10.3389/fimmu.2017.00108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Hung YF, Chen CY, Li WC, Wang TF, Hsueh YP (2018) Tlr7 deletion alters expression profiles of genes related to neural function and regulates mouse behaviors and contextual memory. Brain Behav Immun 72:101–113. https://doi.org/10.1016/j.bbi.2018.06.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank and express their heartfelt gratitude to Hongying Chen, Yan Wang, Huifang Li, Xiangyi Ren, Mengli Zhu, Li Fu, and Cong Li. (Cytology and Molecular Platform, Core Facilities of West China Hospital) for their assistance and guidance.

Funding

This work was supported by the National Natural Science Foundation of China (No.82171185, No. 81870858 to Dr. Chan Chen); The National Key R&D Program of China (No. 2018YFC2001800, to Dr. Tao Zhu) and the National Natural Science Foundation of China (No. 81671062, to Dr. Tao Zhu); The National Natural Science Foundation of China (No. 82201426 to Rui Gao); The Natural Science Foundation of Sichuan Province (No. 2022NSFSC1322 to Rui Gao); The China Postdoctoral Science Foundation (No. 2020 M673234 to Rui Gao); The Postdoctoral Research Project, West China Hospital, Sichuan University (No. 2020HXBH022 to Rui Gao).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Liyun Deng, Rui Gao, and Chan Chen; Methodology: Bo Jiao and Changteng Zhang; Formal analysis and investigation: Liyun Deng, Liuxing Wei, and Caiyi Yan; Writing—original draft preparation: Liyun Deng, Rui Gao; Writing—review and editing: Chan Chen and Tao Zhu; Funding acquisition: Rui Gao, Tao Zhu, and Chan Chen; Resources: Hai Chen, Shixin Ye-Lehmann; Supervision: Tao Zhu, Chan Chen. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chan Chen.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Animal Care and Use Committee of Sichuan University (Permit Number: 2021625A).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplement Figure 1

Changes in cognitive function at different days after unilateral nephrectomy. a Percentage of freezing time in the fear conditioning test of aged mice on the 1st, 3rd, and 7th day after unilateral nephrectomy. b Percentage of novel arm time in the Y maze test of aged mice on the 1st, 3rd, and 7th day after unilateral nephrectomy. c Mean velocity in open field test of aged mice on the 1st, 3rd, and 7th day after unilateral nephrectomy. d The number of rearing in open field test of aged mice on the 1st, 3rd, and 7th day after unilateral nephrectomy. e Total travel distance in open field test of aged mice on the 1st, 3rd, and 7th day after unilateral nephrectomy. Data are presented as mean ± SEM (= 6 per group).(PNG 81 kb)

High Resolution (TIF 5707 kb)

Supplement Figure 2

The stereotactic injection and decreased expression of TLR7 did not influence the cognitive function of aged mice in the physiological state. a Schematic outline of the experimental protocol. b. The representative image of the needle track and distribution of the mouse receiving injection of 2μl Evans blue in the CA1 of each hemisphere. On the right side, the injection channel can be identified. c Percentage of freezing time and representative chart fear conditioning test experiment. d Percentage of novel arm time in Y-maze. e Mean velocity, number of rearing, and total travel distance in open field test of aged mice following unilateral nephrectomy. Data are presented as mean ± SEM (n = 6 per group).(PNG 289 kb)

High Resolution (TIF 7295 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, L., Gao, R., Chen, H. et al. Let-7b-TLR7 Signaling Axis Contributes to the Anesthesia/Surgery-Induced Cognitive Impairment. Mol Neurobiol 61, 1818–1832 (2024). https://doi.org/10.1007/s12035-023-03658-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03658-4

Keywords

Navigation