Skip to main content

Advertisement

Log in

Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The metabolic needs of the premature/premyelinating oligodendrocytes (pre-OLs) and mature oligodendrocytes (OLs) are distinct. The metabolic control of oligodendrocyte maturation from the pre-OLs to the OLs is not fully understood. Here, we show that the terminal maturation and higher mitochondrial respiration in the OLs is an integrated process controlled through pyruvate dehydrogenase complex (Pdh). Combined bioenergetics and metabolic studies show that OLs show elevated mitochondrial respiration than the pre-OLs. Our signaling studies show that the increased mitochondrial respiration activity in the OLs is mediated by the activation of Pdh due to inhibition of the pyruvate dehydrogenase kinase-1 (Pdhk1) that phosphorylates and inhibits Pdh activity. Accordingly, when Pdhk1 is directly expressed in the pre-OLs, they fail to mature into the OLs. While Pdh converts pyruvate into the acetyl-CoA by its oxidative decarboxylation, our study shows that Pdh-dependent acetyl-CoA generation from pyruvate contributes to the acetylation of the bHLH family transcription factor, oligodendrocyte transcription factor 1 (Olig1) which is known to be involved in the OL maturation. Pdh inhibition via direct expression of Pdhk1 in the pre-OLs blocks the Olig1-acetylation and OL maturation. Using the cuprizone model of demyelination, we show that Pdh is deactivated during the demyelination phase, which is however reversed in the remyelination phase upon cuprizone withdrawal. In addition, Pdh activity status correlates with the Olig1-acetylation status in the cuprizone model. Hence, the Pdh metabolic node activation allows a robust mitochondrial respiration and activation of a molecular program necessary for the terminal maturation of oligodendrocytes. Our findings open a new dialogue in the developmental biology that links cellular development and metabolism. These findings have far-reaching implications in the development of therapies for a variety of demyelinating disorders including multiple sclerosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All the data sets generated are not publically available do to the originality of the work and being submitted first time for the publication. However, these data are retained and will be made available after a reasonable request is made to the corresponding authors.

References

  1. Fletcher JL, Makowiecki K, Cullen CL, Young KM (2021) Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 118:14–23. https://doi.org/10.1016/j.semcdb.2021.03.017

    Article  CAS  PubMed  Google Scholar 

  2. Gibson EM, Purger D, Mount CW, Goldstein AK, Lin GL, Wood LS, Inema I, Miller SE et al (2014) Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183):1252304. https://doi.org/10.1126/science.1252304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Steadman PE, Xia F, Ahmed M, Mocle AJ, Penning ARA, Geraghty AC, Steenland HW, Monje M et al (2020) Disruption of oligodendrogenesis impairs memory consolidation in adult mice. Neuron 105(1):150-164.e156. https://doi.org/10.1016/j.neuron.2019.10.013

    Article  CAS  PubMed  Google Scholar 

  4. Bacmeister CM, Barr HJ, McClain CR, Thornton MA, Nettles D, Welle CG, Hughes EG (2020) Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat Neurosci 23(7):819–831. https://doi.org/10.1038/s41593-020-0637-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hughes EG, Orthmann-Murphy JL, Langseth AJ, Bergles DE (2018) Myelin remodeling through experience-dependent oligodendrogenesis in the adult somatosensory cortex. Nat Neurosci 21(5):696–706. https://doi.org/10.1038/s41593-018-0121-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Etemadifar M, Ashourizadeh H, Nouri H, Kargaran PK, Salari M, Rayani M, Aghababaee A, Abhari AP (2021) MRI signs of CNS demyelinating diseases. Mult Scler Relat Disord 47:102665. https://doi.org/10.1016/j.msard.2020.102665

    Article  PubMed  Google Scholar 

  7. Höftberger R, Lassmann H (2017) Inflammatory demyelinating diseases of the central nervous system. Handb Clin Neurol 145:263–283. https://doi.org/10.1016/b978-0-12-802395-2.00019-5

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lassmann H (2018) Multiple sclerosis pathology. Cold Spring Harb Perspect Med 8(3):a028936. https://doi.org/10.1101/cshperspect.a028936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bora E, Özakbaş S, Velakoulis D, Walterfang M (2016) Social cognition in multiple sclerosis: a meta-analysis. Neuropsychol Rev 26(2):160–172. https://doi.org/10.1007/s11065-016-9320-6

    Article  PubMed  Google Scholar 

  10. Charvet LE, Cleary RE, Vazquez K, Belman AL, Krupp LB (2014) Social cognition in pediatric-onset multiple sclerosis (MS). Mult Scler 20(11):1478–1484. https://doi.org/10.1177/1352458514526942

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kalb R, Beier M, Benedict RH, Charvet L, Costello K, Feinstein A, Gingold J, Goverover Y et al (2018) Recommendations for cognitive screening and management in multiple sclerosis care. Mult Scler 24(13):1665–1680. https://doi.org/10.1177/1352458518803785

    Article  PubMed  PubMed Central  Google Scholar 

  12. Langdon DW (2011) Cognition in multiple sclerosis. Curr Opin Neurol 24(3):244–249. https://doi.org/10.1097/WCO.0b013e328346a43b

    Article  PubMed  Google Scholar 

  13. Lin X, Zhang X, Liu Q, Zhao P, Zhong J, Pan P, Wang G, Yi Z (2021) Social cognition in multiple sclerosis and its subtypes: a meta-analysis. Mult Scler Relat Disord 52:102973. https://doi.org/10.1016/j.msard.2021.102973

    Article  PubMed  Google Scholar 

  14. Marrie RA, Leavitt VM (2020) Disease-modifying therapies as cognition-modifying therapies? Treating Cogn Impair MS Neurol 94(22):957–958. https://doi.org/10.1212/wnl.0000000000009524

    Article  Google Scholar 

  15. Antontseva EV, Bondar NP (2021) Chromatin remodeling in oligodendrogenesis. Vavilovskii Zhurnal Genet Selektsii 25(5):573–579. https://doi.org/10.18699/vj21.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Grade S, Bernardino L, Malva JO (2013) Oligodendrogenesis from neural stem cells: perspectives for remyelinating strategies. Int J Dev Neurosci 31(7):692–700. https://doi.org/10.1016/j.ijdevneu.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  17. Nicolay DJ, Doucette JR, Nazarali AJ (2007) Transcriptional control of oligodendrogenesis. Glia 55(13):1287–1299. https://doi.org/10.1002/glia.20540

    Article  PubMed  Google Scholar 

  18. Sueda R, Kageyama R (2021) Oscillatory expression of Ascl1 in oligodendrogenesis. Gene Expr Patterns 41:119198. https://doi.org/10.1016/j.gep.2021.119198

    Article  CAS  PubMed  Google Scholar 

  19. Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346(3):165–173. https://doi.org/10.1056/NEJMoa010994

    Article  PubMed  Google Scholar 

  20. Amaral AI, Tavares JM, Sonnewald U, Kotter MR (2016) Oligodendrocytes: development, physiology and glucose metabolism. Adv Neurobiol 13:275–294. https://doi.org/10.1007/978-3-319-45096-4_10

    Article  PubMed  Google Scholar 

  21. Rivera AD, Chacon-De-La-Rocha I, Pieropan F, Papanikolau M, Azim K, Butt AM (2021) Keeping the ageing brain wired: a role for purine signalling in regulating cellular metabolism in oligodendrocyte progenitors. Pflugers Arch 473(5):775–783. https://doi.org/10.1007/s00424-021-02544-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Simons M, Nave KA (2015) Oligodendrocytes: myelination and axonal support. Cold Spring Harb Perspect Biol 8(1):a020479. https://doi.org/10.1101/cshperspect.a020479

    Article  PubMed  Google Scholar 

  23. Weng Q, Wang J, Wang J, Tan B, Wang J, Wang H, Zheng T, Lu QR et al (2017) Folate metabolism regulates oligodendrocyte survival and differentiation by modulating AMPKα activity. Sci Rep 7(1):1705. https://doi.org/10.1038/s41598-017-01732-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Neumann B, Baror R, Zhao C, Segel M, Dietmann S, Rawji KS, Foerster S, McClain CR et al (2019) Metformin restores CNS remyelination capacity by rejuvenating aged stem cells. Cell Stem Cell 25(4):473-485.e478. https://doi.org/10.1016/j.stem.2019.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Amaral AI, Hadera MG, Tavares JM, Kotter MR, Sonnewald U (2016) Characterization of glucose-related metabolic pathways in differentiated rat oligodendrocyte lineage cells. Glia 64(1):21–34. https://doi.org/10.1002/glia.22900

    Article  PubMed  Google Scholar 

  26. Schoenfeld R, Wong A, Silva J, Li M, Itoh A, Horiuchi M, Itoh T, Pleasure D et al (2010) Oligodendroglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion 10(2):143–150. https://doi.org/10.1016/j.mito.2009.12.141

    Article  CAS  PubMed  Google Scholar 

  27. Ziabreva I, Campbell G, Rist J, Zambonin J, Rorbach J, Wydro MM, Lassmann H, Franklin RJ et al (2010) Injury and differentiation following inhibition of mitochondrial respiratory chain complex IV in rat oligodendrocytes. Glia 58(15):1827–1837. https://doi.org/10.1002/glia.21052

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ruckh JM, Zhao JW, Shadrach JL, van Wijngaarden P, Rao TN, Wagers AJ, Franklin RJ (2012) Rejuvenation of regeneration in the aging central nervous system. Cell Stem Cell 10(1):96–103. https://doi.org/10.1016/j.stem.2011.11.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zangari J, Petrelli F, Maillot B, Martinou JC (2020) The multifaceted pyruvate metabolism: role of the mitochondrial pyruvate carrier. Biomolecules 10(7). https://doi.org/10.3390/biom10071068

  30. Wang X, Shen X, Yan Y, Li H (2021) Pyruvate dehydrogenase kinases (PDKs): an overview toward clinical applications. Biosci Rep 41 (4).

  31. Echeverri Ruiz NP, Mohan V, Wu J, Scott S, Kreamer M, Benej M, Golias T, Papandreou I et al (2021) Dynamic regulation of mitochondrial pyruvate metabolism is necessary for orthotopic pancreatic tumor growth. Cancer Metab 9(1):39. https://doi.org/10.1186/s40170-021-00275-4

    Article  PubMed  PubMed Central  Google Scholar 

  32. Schumacher M, Hussain R, Gago N, Oudinet JP, Mattern C, Ghoumari AM (2012) Progesterone synthesis in the nervous system: implications for myelination and myelin repair. Front Neurosci 6:10. https://doi.org/10.3389/fnins.2012.00010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hossain AJ, Islam R, Kim JG, Dogsom O, Cap KC, Park JB (2022) Pyruvate dehydrogenase A1 phosphorylated by insulin associates with pyruvate kinase M2 and induces LINC00273 through histone acetylation. Biomedicines 10(6):1256. https://doi.org/10.3390/biomedicines10061256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fernandez-Fuente G, Rigby MJ, Puglielli L (2023) Intracellular citrate/acetyl-CoA flux and endoplasmic reticulum acetylation: connectivity is the answer. Mol Metab 67:101653. https://doi.org/10.1016/j.molmet.2022.101653

    Article  CAS  PubMed  Google Scholar 

  35. Mews P, Donahue G, Drake AM, Luczak V, Abel T, Berger SL (2017) Acetyl-CoA synthetase regulates histone acetylation and hippocampal memory. Nature 546(7658):381–386. https://doi.org/10.1038/nature22405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moussaieff A, Rouleau M, Kitsberg D, Cohen M, Levy G, Barasch D, Nemirovski A, Shen-Orr S et al (2015) Glycolysis-mediated changes in acetyl-CoA and histone acetylation control the early differentiation of embryonic stem cells. Cell Metab 21(3):392–402. https://doi.org/10.1016/j.cmet.2015.02.002

    Article  CAS  PubMed  Google Scholar 

  37. Wu Z, Guan KL (2022) Acetyl-CoA, protein acetylation, and liver cancer. Mol Cell 82(22):4196–4198. https://doi.org/10.1016/j.molcel.2022.10.015

    Article  CAS  PubMed  Google Scholar 

  38. Dai J, Bercury KK, Jin W, Macklin WB (2015) Olig1 Acetylation and Nuclear Export Mediate Oligodendrocyte Development. J Neurosci 35(48):15875–15893. https://doi.org/10.1523/jneurosci.0882-15.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J (2020) Experimental models of demyelination and remyelination. Neurologia (Engl Ed) 35(1):32–39. https://doi.org/10.1016/j.nrl.2017.07.002

    Article  CAS  PubMed  Google Scholar 

  40. Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M (2020) The Cuprizone model: dos and do nots. Cells 9(4):843. https://doi.org/10.3390/cells9040843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guglielmetti C, Najac C, Didonna A, Van der Linden A, Ronen SM, Chaumeil MM (2017) Hyperpolarized (13)C MR metabolic imaging can detect neuroinflammation in vivo in a multiple sclerosis murine model. Proc Natl Acad Sci U S A 114(33):E6982-e6991. https://doi.org/10.1073/pnas.1613345114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zahoor I, Suhail H, Datta I, Ahmed ME, Poisson LM, Waters J, Rashid F, Bin R et al (2022) Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc Natl Acad Sci U S A 119(25):e2123265119. https://doi.org/10.1073/pnas.2123265119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen Y, Balasubramaniyan V, Peng J, Hurlock EC, Tallquist M, Li J, Lu QR (2007) Isolation and culture of rat and mouse oligodendrocyte precursor cells. Nat Protoc 2(5):1044–1051. https://doi.org/10.1038/nprot.2007.149

    Article  CAS  PubMed  Google Scholar 

  44. Armstrong RC, Dorn HH, Kufta CV, Friedman E, Dubois-Dalcq ME (1992) Pre-oligodendrocytes from adult human CNS. J Neurosci 12(4):1538–1547. https://doi.org/10.1523/jneurosci.12-04-01538.1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Dar S, Chhina J, Mert I, Chitale D, Buekers T, Kaur H, Giri S, Munkarah A et al (2017) Bioenergetic adaptations in chemoresistant ovarian cancer cells. Sci Rep 7(1):8760. https://doi.org/10.1038/s41598-017-09206-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Udumula MP, Sakr S, Dar S, Alvero AB, Ali-Fehmi R, Abdulfatah E, Li J, Jiang J et al (2021) Ovarian cancer modulates the immunosuppressive function of CD11b(+)Gr1(+) myeloid cells via glutamine metabolism. Mol Metab 53:101272. https://doi.org/10.1016/j.molmet.2021.101272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mir S, Sen T, Sen N (2014) Cytokine-induced GAPDH sulfhydration affects PSD95 degradation and memory. Mol Cell 56(6):786–795. https://doi.org/10.1016/j.molcel.2014.10.019

    Article  CAS  PubMed  Google Scholar 

  48. Butovsky O, Landa G, Kunis G, Ziv Y, Avidan H, Greenberg N, Schwartz A, Smirnov I et al (2006) Induction and blockage of oligodendrogenesis by differently activated microglia in an animal model of multiple sclerosis. J Clin Invest 116(4):905–915. https://doi.org/10.1172/jci26836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jensen SK, Yong VW (2016) Activity-dependent and experience-driven myelination provide new directions for the management of multiple sclerosis. Trends Neurosci 39(6):356–365. https://doi.org/10.1016/j.tins.2016.04.003

    Article  CAS  PubMed  Google Scholar 

  50. Skihar V, Silva C, Chojnacki A, Döring A, Stallcup WB, Weiss S, Yong VW (2009) Promoting oligodendrogenesis and myelin repair using the multiple sclerosis medication glatiramer acetate. Proc Natl Acad Sci U S A 106(42):17992–17997. https://doi.org/10.1073/pnas.0909607106

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lombardi M, Parolisi R, Scaroni F, Bonfanti E, Gualerzi A, Gabrielli M, Kerlero de Rosbo N, Uccelli A et al (2019) Detrimental and protective action of microglial extracellular vesicles on myelin lesions: astrocyte involvement in remyelination failure. Acta Neuropathol 138(6):987–1012. https://doi.org/10.1007/s00401-019-02049-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rone MB, Cui QL, Fang J, Wang LC, Zhang J, Khan D, Bedard M, Almazan G et al (2016) Oligodendrogliopathy in multiple sclerosis: low glycolytic metabolic rate promotes oligodendrocyte survival. J Neurosci 36(17):4698–4707. https://doi.org/10.1523/jneurosci.4077-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, Brundin L, Frisén J (2019) Dynamics of oligodendrocyte generation in multiple sclerosis. Nature 566(7745):538–542. https://doi.org/10.1038/s41586-018-0842-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sajad M, Chawla R, Zargan J, Umar S, Sadaqat M, Khan HA (2011) Cytokinetics of adult rat SVZ after EAE. Brain Res 1371:140–149. https://doi.org/10.1016/j.brainres.2010.11.050

    Article  CAS  PubMed  Google Scholar 

  55. Dimas P, Montani L, Pereira JA, Moreno D, Trötzmüller M, Gerber J, Semenkovich CF, Köfeler HC, Suter U (2019) CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. Elife 8. https://doi.org/10.7554/eLife.44702

  56. Montani L, Suter U (2018) Building lipids for myelin. Aging 10(5):861–862. https://doi.org/10.18632/aging.101458

    Article  PubMed  PubMed Central  Google Scholar 

  57. Naffaa V, Magny R, Regazzetti A, Van Steenwinckel J, Gressens P, Laprévote O, Auzeil N, Schang AL (2022) Shift in phospholipid and fatty acid contents accompanies brain myelination. Biochimie 203:20–31. https://doi.org/10.1016/j.biochi.2022.08.010

    Article  CAS  PubMed  Google Scholar 

  58. Poitelon Y, Kopec AM, Belin S (2020) Myelin fat facts: an overview of lipids and fatty acid metabolism. Cells 9(4):812. https://doi.org/10.3390/cells9040812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yehuda S, Rabinovitz S, Mostofsky DI (2005) Essential fatty acids and the brain: from infancy to aging. Neurobiol Aging 26(Suppl 1):98–102. https://doi.org/10.1016/j.neurobiolaging.2005.09.013

    Article  CAS  PubMed  Google Scholar 

  60. Zhou X, He C, Ren J, Dai C, Stevens SR, Wang Q, Zamler D, Shingu T et al (2020) Mature myelin maintenance requires Qki to coactivate PPARβ-RXRα-mediated lipid metabolism. J Clin Invest 130(5):2220–2236. https://doi.org/10.1172/jci131800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Johnson MT, Mahmood S, Hyatt SL, Yang HS, Soloway PD, Hanson RW, Patel MS (2001) Inactivation of the murine pyruvate dehydrogenase (Pdha1) gene and its effect on early embryonic development. Mol Genet Metab 74(3):293–302. https://doi.org/10.1006/mgme.2001.3249

    Article  CAS  PubMed  Google Scholar 

  62. Della-Flora Nunes G, Mueller L, Silvestri N, Patel MS, Wrabetz L, Feltri ML, Poitelon Y (2017) Acetyl-CoA production from pyruvate is not necessary for preservation of myelin. Glia 65(10):1626–1639. https://doi.org/10.1002/glia.23184

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chevalier AC, Rosenberger TA (2017) Increasing acetyl-CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis. J Neurochem 141(5):721–737. https://doi.org/10.1111/jnc.14032

    Article  CAS  PubMed  Google Scholar 

  64. Burton A (2005) Olig1 needed for remyelination. Lancet Neurol 4(2):80. https://doi.org/10.1016/s1474-4422(05)00978-6

    Article  PubMed  Google Scholar 

  65. Guo X, Harada C, Namekata K, Mitamura Y, Yoshida H, Matsumoto Y, Harada T (2010) Delayed onset of experimental autoimmune encephalomyelitis in Olig1 deficient mice. PLoS One 5(9). https://doi.org/10.1371/journal.pone.0013083

  66. Sabo JK, Heine V, Silbereis JC, Schirmer L, Levison SW, Rowitch DH (2017) Olig1 is required for noggin-induced neonatal myelin repair. Ann Neurol 81(4):560–571. https://doi.org/10.1002/ana.24907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Whitman LM, Blanc CA, Schaumburg CS, Rowitch DH, Lane TE (2012) Olig1 function is required for remyelination potential of transplanted neural progenitor cells in a model of viral-induced demyelination. Exp Neurol 235(1):380–387. https://doi.org/10.1016/j.expneurol.2012.03.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dai J, Bercury KK, Ahrendsen JT, Macklin WB (2015) Olig1 function is required for oligodendrocyte differentiation in the mouse brain. J Neurosci 35(10):4386–4402. https://doi.org/10.1523/jneurosci.4962-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Niu J, Mei F, Wang L, Liu S, Tian Y, Mo W, Li H, Lu QR et al (2012) Phosphorylated olig1 localizes to the cytosol of oligodendrocytes and promotes membrane expansion and maturation. Glia 60(9):1427–1436. https://doi.org/10.1002/glia.22364

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank confocal laser scanning facility at the Department of Neurosurgery, Henry Ford Health (HFH). We would also like to thank Polyplus™ for sharing transfection reagents with us as a generous gift.

Funding

This work is in-part supported by research grants from the National Multiple Sclerosis Society (US) (RG-2111–38733), the US National Institutes of Health (NS112727 and AI144004) and Henry Ford Hospital Internal support (A10270 and A30967) to SG. The funders had no role in the study design, data collection, and interpretation, or the decision to submit the work for publication.

Author information

Authors and Affiliations

Authors

Contributions

M. Sajad, Faraz Rashid, and Insha Zahoor collected the data; M. Sajad, Insha Zahoor, and Faraz Rashid analyzed the data. Ramandeep Rattan helped in the analysis of metabolic seahorse data. M. Sajad wrote the manuscript, and Shailendra Giri edited the manuscript. All the authors have approved the final data and the final version of the manuscript.

Corresponding authors

Correspondence to M. Sajad or Shailendra Giri.

Ethics declarations

Ethics Approval

These studies were performed after due approval from the ICUC committee from Henry Ford Health System (complying with the national guidelines for the use of animal subjects in the research) vide number protocol number 1363 dated June 01, 2022. The biological materials were obtained as detailed in the humane endpoints instituted in the study protocols.

Consent to Participate

No human subjects are involved in study.

Consent for Publication

No human subjects are involved in study.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOXS 14.6 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajad, M., Zahoor, I., Rashid, F. et al. Pyruvate Dehydrogenase-Dependent Metabolic Programming Affects the Oligodendrocyte Maturation and Remyelination. Mol Neurobiol 61, 397–410 (2024). https://doi.org/10.1007/s12035-023-03546-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03546-x

Keywords

Navigation