Skip to main content
Log in

Intracellular Iron Accumulation Induces Inflammatory and Oxidative Status of the Host After Japanese Encephalitis Viral Infection

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The factors mitigating the microglia/macrophage activation and inflammatory damage in Japanese encephalitis (JE) virus infected CNS are still being ascertained. We aim to characterize the changes in iron transporter and iron storage proteins along with inflammatory and oxidative stress-mediated signaling during the JE viral infection. Cortical tissue samples from mice with JE viral infection were processed for biochemical, histological, and molecular analysis. Iron storage protein, i.e., ferritin, was found significantly increased post-JE viral infection, and iron accumulation was noted in cortical tissue. Key proinflammatory associated markers, such as TNF-α, IL-6, and its regulator TLR4, were found to be increased, while SOCS1 (anti-inflammatory regulator) transcription decreased with increased levels of oxidative stress markers NOX2-mediated NF-ΚB/p65 and protein carbonyl. Furthermore, it is noted that hepcidin level increased and ferroportin level decreased, and iron transporter gene expression got imbalanced after JE viral infection. This observation was further confirmed by deferoxamine (DFO) treatment to JE viral infection mice model, where the decline in hepcidin transcription level and iron load in cortical tissue of JE viral infected animals was noted. However, no change was found in the ferroportin level compared to JE viral infected animals. Together, these findings suggest that iron overload and hepcidin-ferroportin regulation are involved in JE viral infection disease pathologies and associated with the inflammatory and oxidative status of the host during infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Data will be made available on request.

References

  1. Chen Z, Zhong D, Li G (2019) The role of microglia in viral encephalitis: a review. J Neuroinflammation 16:1–12. https://doi.org/10.1186/S12974-019-1443-2/FIGURES/2

    Article  Google Scholar 

  2. Lauro C, Limatola C (2020) Metabolic reprograming of microglia in the regulation of the innate inflammatory response. Front Immunol 11:493. https://doi.org/10.3389/FIMMU.2020.00493/BIBTEX

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rathnasamy G, Ling E-A, Kaur C (2013) Consequences of iron accumulation in microglia and its implications in neuropathological conditions. CNS Neurol Disord Drug Targets 12:785–798. https://doi.org/10.2174/18715273113126660169

    Article  CAS  PubMed  Google Scholar 

  4. Singh S, Singh G, Tiwari S, Kumar A (2020) CCR2 inhibition reduces neurotoxic microglia activation phenotype after Japanese encephalitis viral infection. Front Cell Neurosci 14:230. https://doi.org/10.3389/FNCEL.2020.00230

  5. Kumar A, Kalita J, Sinha RA et al (2020) Impaired autophagy flux is associated with proinflammatory microglia activation following Japanese encephalitis virus infection. Neurochem Res 45:2184–2195. https://doi.org/10.1007/S11064-020-03080-5

    Article  CAS  PubMed  Google Scholar 

  6. Bulk M, Hegeman-Kleinn I, Kenkhuis B, et al (2020) Pathological characterization of T2*-weighted MRI contrast in the striatum of Huntington’s disease patients. Neuroimage Clin 28:. https://doi.org/10.1016/J.NICL.2020.102498

  7. Rouault TA (2013) Iron metabolism in the CNS: implications for neurodegenerative diseases. Nat Rev Neurosci 14:551–564. https://doi.org/10.1038/NRN3453

    Article  CAS  PubMed  Google Scholar 

  8. Zhao Z (2019) Iron and oxidizing species in oxidative stress and Alzheimer’s disease. Aging Medicine 2:82–87. https://doi.org/10.1002/AGM2.12074

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nemeth E, Tuttle MS, Powelson J et al (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306:2090–2093. https://doi.org/10.1126/SCIENCE.1104742

    Article  CAS  PubMed  Google Scholar 

  10. Choi SH, Aid S, Kim HW et al (2012) Inhibition of NADPH oxidase promotes alternative and anti-inflammatory microglial activation during neuroinflammation. J Neurochem 120:292–301. https://doi.org/10.1111/J.1471-4159.2011.07572.X

    Article  CAS  PubMed  Google Scholar 

  11. Qin L, Liu Y, Wang T et al (2004) NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 279:1415–1421. https://doi.org/10.1074/JBC.M307657200

    Article  CAS  PubMed  Google Scholar 

  12. Kenkhuis B, Somarakis A, de Haan L et al (2021) Iron loading is a prominent feature of activated microglia in Alzheimer’s disease patients. Acta Neuropathol Commun 9:1–15. https://doi.org/10.1186/S40478-021-01126-5/FIGURES/6

    Article  Google Scholar 

  13. Kaur C, Ling EA (1999) Increased expression of transferrin receptors and iron in amoeboid microglial cells in postnatal rats following an exposure to hypoxia. Neurosci Lett 262:183–186. https://doi.org/10.1016/S0304-3940(99)00075-0

    Article  CAS  PubMed  Google Scholar 

  14. Urrutia P, Aguirre P, Esparza A et al (2013) Inflammation alters the expression of DMT1, FPN1 and hepcidin, and it causes iron accumulation in central nervous system cells. J Neurochem 126:541–549. https://doi.org/10.1111/JNC.12244

    Article  CAS  PubMed  Google Scholar 

  15. Fleming RE, Sly WS (2001) Hepcidin: a putative iron-regulatory hormone relevant to hereditary hemochromatosis and the anemia of chronic disease. Proc Natl Acad Sci U S A 98:8160. https://doi.org/10.1073/PNAS.161296298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lee P, Peng H, Gelbart T et al (2005) Regulation of hepcidin transcription by interleukin-1 and interleukin-6. Proc Natl Acad Sci U S A 102:1906. https://doi.org/10.1073/PNAS.0409808102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ganz T (2005) Hepcidin—a regulator of intestinal iron absorption and iron recycling by macrophages. Best Pract Res Clin Haematol 18:171–182. https://doi.org/10.1016/J.BEHA.2004.08.020

    Article  CAS  PubMed  Google Scholar 

  18. Singh G, Kumar A (2023) Japanese encephalitis virus infection causes an imbalance in the activation of mitochondrial fusion/fission genes and triggers the activation of NOX2-mediated oxidative stress and neuronal cell death. Neurochem Res 48(7):2196–2205. https://doi.org/10.1007/s11064-023-03898-9

    Article  CAS  PubMed  Google Scholar 

  19. Reznick AZ, Packer L (1994) [38] Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol 233:357–363. https://doi.org/10.1016/S0076-6879(94)33041-7

    Article  CAS  PubMed  Google Scholar 

  20. Riemer J, Hoepken HH, Czerwinska H et al (2004) Colorimetric ferrozine-based assay for the quantitation of iron in cultured cells. Anal Biochem 331:370–375. https://doi.org/10.1016/J.AB.2004.03.049

    Article  CAS  PubMed  Google Scholar 

  21. Frank MG, Wieseler-Frank JL, Watkins LR, Maier SF (2006) Rapid isolation of highly enriched and quiescent microglia from adult rat hippocampus: immunophenotypic and functional characteristics. J Neurosci Methods 151:121–130. https://doi.org/10.1016/J.JNEUMETH.2005.06.026

    Article  PubMed  Google Scholar 

  22. Murphy MP, Bayir H, Belousov V et al (2022) Guidelines for measuring reactive oxygen species and oxidative damage in cells and in vivo. Nat Metab 4:651–662

    Article  PubMed  PubMed Central  Google Scholar 

  23. Schilling T, Eder C (2011) Amyloid-β-induced reactive oxygen species production and priming are differentially regulated by ion channels in microglia. J Cell Physiol 226:3295–3302. https://doi.org/10.1002/JCP.22675

    Article  CAS  PubMed  Google Scholar 

  24. Kim I-B, Chae S-L, Choi W-Y, et al (2003) In vivo study on the Japanese encephalitis: viral localization and histopathology in the mouse brain. Korean J Anat:427–433

  25. Kalita J, Misra UK, Pandey S, Dhole TN (2003) A comparison of clinical and radiological findings in adults and children with Japanese encephalitis. Arch Neurol 60:1760–1764. https://doi.org/10.1001/ARCHNEUR.60.12.1760

    Article  CAS  PubMed  Google Scholar 

  26. German AC, Myint KSA, Mai NTH et al (2006) A preliminary neuropathological study of Japanese encephalitis in humans and a mouse model. Trans R Soc Trop Med Hyg 100:1135–1145. https://doi.org/10.1016/J.TRSTMH.2006.02.008

    Article  PubMed  Google Scholar 

  27. Fernández-Real JM, Manco M (2014) Effects of iron overload on chronic metabolic diseases. Lancet Diabetes Endocrinol 2:513–526. https://doi.org/10.1016/S2213-8587(13)70174-8

    Article  CAS  PubMed  Google Scholar 

  28. Sindrilaru A, Peters T, Wieschalka S et al (2011) An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 121:985–997. https://doi.org/10.1172/JCI44490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mehta V, Pei W, Yang G, et al (2013) Iron is a sensitive biomarker for inflammation in multiple sclerosis lesions. PLoS One 8:. https://doi.org/10.1371/JOURNAL.PONE.0057573

  30. Rathore KI, Redensek A, David S (2012) Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia 60:738–750. https://doi.org/10.1002/GLIA.22303

    Article  PubMed  Google Scholar 

  31. Jiao Y, Zhang T, Zhang C, et al (2021) Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care 25:. https://doi.org/10.1186/S13054-021-03775-3

  32. Chang Y, Chen X, Tian Y, et al (2020) Downregulation of microRNA-155–5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci 257:. https://doi.org/10.1016/J.LFS.2020.118057

  33. Huang X, Xiu H, Zhang S, Zhang G (2018) The role of macrophages in the pathogenesis of ALI/ARDS. Mediators Inflamm 2018:. https://doi.org/10.1155/2018/1264913

  34. Mathur A, Bharadwaj M, Chaturvedi UC (1990) Alterations in iron levels in Japanese encephalitis virus infection. J Exp Pathol (Oxford) 71:307

    CAS  PubMed  Google Scholar 

  35. Chauhan W, Zennadi R (2023) Keap1-Nrf2 heterodimer: a therapeutic target to ameliorate sickle cell disease. Antioxidants 12:740. https://doi.org/10.3390/ANTIOX12030740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Colucci S, Marques O, Altamura S (2021) 20 years of hepcidin: how far we have come. Semin Hematol 58:132–144. https://doi.org/10.1053/J.SEMINHEMATOL.2021.05.001

    Article  PubMed  Google Scholar 

  37. Chen X, Li J, Kang R et al (2021) Ferroptosis: machinery and regulation. Autophagy 17:2054–2081. https://doi.org/10.1080/15548627.2020.1810918

    Article  CAS  PubMed  Google Scholar 

  38. Boag MK, Roberts A, Uversky VN, et al (2022) Ferritinophagy and α-synuclein: pharmacological targeting of autophagy to restore iron regulation in Parkinson’s disease. Int J Mol Sci 23:. https://doi.org/10.3390/IJMS23042378

  39. Anderson CP, Shen M, Eisenstein RS, Leibold EA (2012) Mammalian iron metabolism and its control by iron regulatory proteins. Biochim Biophys Acta 1823:1468–1483. https://doi.org/10.1016/J.BBAMCR.2012.05.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McCarthy RC, Sosa JC, Gardeck AM et al (2018) Inflammation-induced iron transport and metabolism by brain microglia. J Biol Chem 293:7853–7863. https://doi.org/10.1074/JBC.RA118.001949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ingrassia R, Garavaglia B, Memo M (2019) DMT1 expression and iron levels at the crossroads between aging and neurodegeneration. Front Neurosci 13:575. https://doi.org/10.3389/FNINS.2019.00575/BIBTEX

    Article  PubMed  PubMed Central  Google Scholar 

  42. Agoro R, Taleb M, Quesniaux VFJ, Mura C (2018) Cell iron status influences macrophage polarization. PLoS One 13:. https://doi.org/10.1371/JOURNAL.PONE.0196921

  43. Vela D (2018) Hepcidin, an emerging and important player in brain iron homeostasis. J Transl Med 16:1–18. https://doi.org/10.1186/S12967-018-1399-5

    Article  Google Scholar 

  44. Kang J-B, Park D-J, Shah M-A, et al (2019) Lipopolysaccharide induces neuroglia activation and NF-κB activation in cerebral cortex of adult mice. Lab Anim Res 35:. https://doi.org/10.1186/S42826-019-0018-9

  45. Hiscott J, Nguyen TLA, Arguello M et al (2006) Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 25:6844–6867. https://doi.org/10.1038/SJ.ONC.1209941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The following study was supported by the Ramalingaswami Re-entry Fellowship (BT/RLF/Re-entry/13/2014) from the Department of Biotechnology, Ministry of Science and Technology, Govt. of India and Grant-in-aid Scheme of the Department of Health Research (DHR-GIA; R.11013/66/2021-GIA/HR), New Delhi to AK.

Author information

Authors and Affiliations

Authors

Contributions

A.K. and G.S.: writing original draft; A.K., A.S., S.M, D.D., and G.S.: methodology and data curation. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Alok Kumar.

Ethics declarations

Ethical Approval

All animal works and experiments are ethically approved and carried out in accordance with the SGPGIMS, institutional guidelines.

Consent to Participate

Not applicable

Consent for Publication

Not applicable

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, G., Singh, A., Mishra, S. et al. Intracellular Iron Accumulation Induces Inflammatory and Oxidative Status of the Host After Japanese Encephalitis Viral Infection. Mol Neurobiol 61, 175–187 (2024). https://doi.org/10.1007/s12035-023-03538-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03538-x

Keywords

Navigation