Skip to main content

Advertisement

Log in

Dyshomeostasis of Iron and Its Transporter Proteins in Cypermethrin-Induced Parkinson’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The etiology of Parkinson’s disease (PD) is highly complex and is still indefinable. However, a number of studies have indicated the involvement of pesticides and transition metals. Copper, magnesium, iron, and zinc have emerged as important metal contributors. Exposure to pesticides causes an accumulation of transition metals in the substantia nigra (SN) region of the brain. The cypermethrin model of PD is characterized by mitochondrial dysfunction, autophagy impairment, oxidative stress, etc. However, the effect of cypermethrin on metal homeostasis is not yet explored. The study was designed to delineate the role of metals and their transporter proteins in cypermethrin-induced animal and cellular models of PD. The level of copper, magnesium, iron, and zinc was checked in the nigrostriatal tissue and serum by atomic absorption spectroscopy. Since cypermethrin consistently increased iron content in the nigrostriatal tissue and serum after 12 weeks of exposure, the level of iron transporter proteins, such as divalent metal transporter-1 (DMT-1), ceruloplasmin, transferrin, ferroportin, and hepcidin, and their in silico interaction with cypermethrin were checked. 3,3′-Diaminobenzidine-enhanced Perl’s staining showed an elevated number of iron-positive cells in the SN of cypermethrin-treated rats. Molecular docking studies revealed a strong binding affinity between cypermethrin and iron transporter protein receptors of humans and rats. Furthermore, cypermethrin increased the expression of DMT-1 and hepcidin while reducing the expression of transferrin, ceruloplasmin, and ferroportin in the nigrostriatal tissue and human neuroblastoma cells. These observations suggest that cypermethrin alters the expression of iron transporter proteins leading to iron dyshomeostasis, which could contribute to dopaminergic neurotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

While the data related to western blot analysis and AAS may be obtained from any corresponding authors, the docking studies-related data may be obtained by Saripella Srikrishna upon reasonable request.

References

  1. Zucca FA, Segura-Aguilar J, Ferrari E, Muñoz P, Paris I, Sulzer D, Sarna T, Casella L, Zecca L (2017) Interactions of iron, dopamine and neuromelanin pathways in brain aging and Parkinson’s disease. Prog Neurobiol 155:96–119. https://doi.org/10.1016/j.pneurobio.2015.09.012

    Article  CAS  PubMed  Google Scholar 

  2. Kwon K, Cho H, Lee S, Cho EJ, Yu W, Kok C, Je HS, Kim JI, Cho HJ, Kwon T (2022) Adaptive cellular response of the substantia nigra dopaminergic neurons upon age-dependent iron accumulation. Aging Cell 21(9):e13694. https://doi.org/10.1111/acel.13694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rajput C, Sarkar A, Singh MP (2021) Involvement of peroxiredoxin-3, thioredoxin-2, and protein deglycase-1 in cypermethrin-induced Parkinsonism. Mol Neurobiol 58(9):4745–4757. https://doi.org/10.1007/s12035-021-02456-0

    Article  CAS  PubMed  Google Scholar 

  4. Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA, Lei P (2021) Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther 6(1):49. https://doi.org/10.1038/s41392-020-00428-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Garza-Lombó C, Posadas Y, Quintanar L, Gonsebatt ME, Franco R (2018) Neurotoxicity linked to dysfunctional metal ion homeostasis and xenobiotic metal exposure: redox signaling and oxidative stress. Antioxid Redox Signal 28(18):1669–1703. https://doi.org/10.1089/ars.2017.7272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qureshi GA, Qureshi AA, Memon SA, Parvez SH (2006) Impact of selenium, iron, copper and zinc in on/off Parkinson’s patients on L-dopa therapy. J Neural Transm Suppl 71:229–236. https://doi.org/10.1007/978-3-211-33328-0_24

    Article  CAS  Google Scholar 

  7. Lan AP, Chen J, Chai ZF, Hu Y (2016) The neurotoxicity of iron, copper and cobalt in Parkinson’s disease through ROS-mediated mechanisms. Biometals 29(4):665–678. https://doi.org/10.1007/s10534-016-9942-4

    Article  CAS  PubMed  Google Scholar 

  8. Genoud S, Roberts BR, Gunn AP, Halliday GM, Lewis S, Ball HJ, Hare DJ, Double KL (2017) Subcellular compartmentalisation of copper, iron, manganese, and zinc in the Parkinson’s disease brain. Metallomics 9(10):1447–1455. https://doi.org/10.1039/c7mt00244k

    Article  CAS  PubMed  Google Scholar 

  9. Dexter DT, Statton SA, Whitmore C, Freinbichler W, Weinberger P, Tipton KF, Della Corte L, Ward RJ, Crichton RR (2011) Clinically available iron chelators induce neuroprotection in the 6-OHDA model of Parkinson’s disease after peripheral administration. J Neural Transm (Vienna) 118(2):223–231. https://doi.org/10.1007/s00702-010-0531-3

    Article  CAS  PubMed  Google Scholar 

  10. Murakami S, Miyazaki I, Sogawa N, Miyoshi K, Asanuma M (2014) Neuroprotective effects of metallothionein against rotenone-induced myenteric neurodegeneration in parkinsonian mice. Neurotox Res 26(3):285–298. https://doi.org/10.1007/s12640-014-9480-1

    Article  CAS  PubMed  Google Scholar 

  11. Wang J, Jiang H, Xie JX (2007) Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. Eur J Neurosci 25(9):2766–2772. https://doi.org/10.1111/j.1460-9568.2007.05515.x

    Article  PubMed  Google Scholar 

  12. McLeary FA, Rcom-H’cheo-Gauthier AN, Goulding M, Radford R, Okita Y, Faller P, Chung RS, Pountney DL (2019) Switching on endogenous metal binding proteins in Parkinson’s disease. Cells 8(2):179. https://doi.org/10.3390/cells8020179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Salazar J, Mena N, Hunot S, Prigent A, Alvarez-Fischer D, Arredondo M, Duyckaerts C, Sazdovitch V, Zhao L, Garrick LM, Nuñez MT, Garrick MD, Raisman-Vozari R, Hirsch EC (2008) Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc Natl Acad Sci U S A 105(47):18578–18583. https://doi.org/10.1073/pnas.0804373105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Li L, Holscher C, Chen BB, Zhang ZF, Liu YZ (2011) Hepcidin treatment modulates the expression of divalent metal transporter-1, ceruloplasmin, and ferroportin-1 in the rat cerebral cortex and hippocampus. Biol Trace Elem Res 143(3):1581–1593. https://doi.org/10.1007/s12011-011-8967-3

    Article  CAS  PubMed  Google Scholar 

  15. Ayton S, Lei P, Duce JA, Wong BX, Sedjahtera A, Adlard PA, Bush AI, Finkelstein DI (2013) Ceruloplasmin dysfunction and therapeutic potential for Parkinson disease. Ann Neurol 73(4):554–559. https://doi.org/10.1002/ana.23817

    Article  CAS  PubMed  Google Scholar 

  16. Du F, Qian ZM, Luo Q, Yung WH, Ke Y (2015) Hepcidin suppresses brain iron accumulation by downregulating iron transport proteins in iron-overloaded rats. Mol Neurobiol 52(1):101–114. https://doi.org/10.1007/s12035-014-8847-x

    Article  CAS  PubMed  Google Scholar 

  17. Ayton S, Lei P, Mclean C, Bush AI, Finkelstein DI (2016) Transferrin protects against Parkinsonian neurotoxicity and is deficient in Parkinson’s substantia nigra. Signal Transduct Target Ther 1:16015. https://doi.org/10.1038/sigtrans.2016.15

    Article  PubMed  PubMed Central  Google Scholar 

  18. Tarohda T, Ishida Y, Kawai K, Yamamoto M, Amano R (2005) Regional distributions of manganese, iron, copper, and zinc in the brains of 6-hydroxydopamine-induced parkinsonian rats. Anal Bioanal Chem 383(2):224–234. https://doi.org/10.1007/s00216-005-3423-x

    Article  CAS  PubMed  Google Scholar 

  19. Shindo Y, Yamanaka R, Suzuki K, Hotta K (1853) Oka K (2015) Intracellular magnesium level determines cell viability in the MPP(+) model of Parkinson’s disease. BiochimBiophys Acta 12:3182–3191. https://doi.org/10.1016/j.bbamcr.2015.08.013

    Article  CAS  Google Scholar 

  20. Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C (2008) Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF A different marker profile in four neurodegenerative diseases. Neurochem Res 33(9):1717–1723

    Article  CAS  PubMed  Google Scholar 

  21. Besold AN, Culbertson EM, Culotta VC (2016) The Yin and Yang of copper during infection. J BiolInorg Chem 21(2):137–144. https://doi.org/10.1007/s00775-016-1335-1

    Article  CAS  Google Scholar 

  22. Lee JY, Son HJ, Choi JH, Cho E, Kim J, Chung SJ, Hwang O, Koh JY (2009) Cytosolic labile zinc accumulation in degenerating dopaminergic neurons of mouse brain after MPTP treatment. Brain Res 1286:208–214. https://doi.org/10.1016/j.brainres.2009.06.046

    Article  CAS  PubMed  Google Scholar 

  23. Sheline CT, Zhu J, Zhang W, Shi C, Cai AL (2013) Mitochondrial inhibitor models of Huntington’s disease and Parkinson’s disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo. Neurodegener Dis 11(1):49–58. https://doi.org/10.1159/000336558

    Article  CAS  PubMed  Google Scholar 

  24. Mishra AK, Mishra S, Rajput C, Ur Rasheed MS, Patel DK, Singh MP (2018) Cypermethrin activates autophagosome formation albeit inhibits autophagy owing to poor lysosome quality: relevance to Parkinson’s disease. Neurotox Res 33(2):377–387. https://doi.org/10.1007/s12640-017-9800-3

    Article  CAS  PubMed  Google Scholar 

  25. Singh AK, Tiwari MN, Upadhyay G, Patel DK, Singh D, Prakash O, Singh MP (2012) Long term exposure to cypermethrin induces nigrostriatal dopaminergic neurodegeneration in adult rats: postnatal exposure enhances the susceptibility during adulthood. Neurobiol Aging 33(2):404–415. https://doi.org/10.1016/j.neurobiolaging.2010.02.018

    Article  CAS  PubMed  Google Scholar 

  26. Agrawal S, Singh A, Tripathi P, Mishra M, Singh PK, Singh MP (2015) Cypermethrin-induced nigrostriatal dopaminergic neurodegeneration alters the mitochondrial function: a proteomics study. Mol Neurobiol 51(2):448–465. https://doi.org/10.1007/s12035-014-8696-7

    Article  CAS  PubMed  Google Scholar 

  27. Yan Y, Yang Y, You J, Yang G, Xu Y, Huang N, Wang X, Ran D, Yuan X, Jin Y, Fan Y, Lei J, Li W, Gu H (2011) Permethrin modulates cholinergic mini-synaptic currents by partially blocking the calcium channel. Toxicol Lett 201(3):258–263. https://doi.org/10.1016/j.toxlet.2011.01.009

    Article  CAS  PubMed  Google Scholar 

  28. Chang CW, Yang SY, Yang CC, Chang CW, Wu YR (2020) Plasma and serum alpha-synuclein as a biomarker of diagnosis in patients with Parkinson’s disease. Front Neurol 10:1388. https://doi.org/10.3389/fneur.2019.01388

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sharma N, Nehru B (2018) Curcumin affords neuroprotection and inhibits α-synuclein aggregation in lipopolysaccharide-induced Parkinson’s disease model. Inflammopharmacology 26(2):349–360. https://doi.org/10.1007/s10787-017-0402-8

    Article  CAS  PubMed  Google Scholar 

  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  PubMed  Google Scholar 

  31. Wu KC, Liou HH, Lee CY, Lin CJ (2019) Down-regulation of natural resistance-associated macrophage protein-1 (Nramp1) is associated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)/1-methyl-4-phenylpyridinium (MPP+)-induced α-synuclein accumulation and neurotoxicity. Neuropathol Appl Neurobiol 45(2):157–173. https://doi.org/10.1111/nan.12493

    Article  CAS  PubMed  Google Scholar 

  32. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791. https://doi.org/10.1002/jcc.21256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. ACD/ChemSketch, version 2021.1.2, Advanced chemistry development, Inc. (ACD/Labs), Toronto, ON, Canada. www.acdlabs.com

  34. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612. https://doi.org/10.1002/jcc.20084

    Article  CAS  PubMed  Google Scholar 

  36. Dassault Systèmes BIOVIA (2017) Discovery studio modeling environment. Dassault Systèmes; San Diego, CA, USA

  37. Forsleff L, Schauss AG, Bier ID, Stuart S (1999) Evidence of functional zinc deficiency in Parkinson’s disease. J Altern Complement Med 5(1):57–64. https://doi.org/10.1089/acm.1999.5.57

    Article  CAS  PubMed  Google Scholar 

  38. Sikora J, Ouagazzal AM (2021) Synaptic zinc: an emerging player in Parkinson’s disease. Int J Mol Sci 22(9):4724. https://doi.org/10.3390/ijms22094724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Davies KM, Mercer JF, Chen N, Double KL (2016) Copper dyshomoeostasis in Parkinson’s disease: implications for pathogenesis and indications for novel therapeutics. Clin Sci (Lond) 130(8):565–574. https://doi.org/10.1042/CS20150153

    Article  PubMed  Google Scholar 

  40. Hashimoto T, Nishi K, Nagasao J, Tsuji S, Oyanagi K (2008) Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons. Brain Res 1197:143–151. https://doi.org/10.1016/j.brainres.2007.12.033

    Article  CAS  PubMed  Google Scholar 

  41. Wang JY, Zhuang QQ, Zhu LB, Zhu H, Li T, Li R, Chen SF, Huang CP, Zhang X, Zhu JH (2016) Meta-analysis of brain iron levels of Parkinson’s disease patients determined by postmortem and MRI measurements. Sci Rep 6:36669. https://doi.org/10.1038/srep36669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ghassaban K, He N, Sethi SK, Huang P, Chen S, Yan F, Haacke EM (2019) Regional high iron in the substantia nigra differentiates Parkinson’s disease patients from healthy controls. Front Aging Neurosci 11:106. https://doi.org/10.3389/fnagi.2019.00106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Méndez-Alvarez E, Soto-Otero R, Hermida-Ameijeiras A, López-Real AM, Labandeira-García JL (2002) Effects of aluminum and zinc on the oxidative stress caused by 6-hydroxydopamine autoxidation: relevance for the pathogenesis of Parkinson’s disease. BiochimBiophys Acta 1586(2):155–168. https://doi.org/10.1016/s0925-4439(01)00077-1

    Article  Google Scholar 

  44. Shen Y, Dai L, Tian H, Xu R, Li F, Li Z, Zhou J, Wang L, Dong J, Sun L (2019) Treatment of magnesium-l-threonate elevates the magnesium level in the cerebrospinal fluid and attenuates motor deficits and dopamine neuron loss in a mouse model of Parkinson’s disease. Neuropsychiatr Dis Treat 15:3143–3153. https://doi.org/10.2147/NDT.S230688

    Article  PubMed  PubMed Central  Google Scholar 

  45. Cruces-Sande A, Rodríguez-Pérez AI, Herbello-Hermelo P, Bermejo-Barrera P, Méndez-Álvarez E, Labandeira-García JL, Soto-Otero R (2019) Copper increases brain oxidative stress and enhances the ability of 6-hydroxydopamine to cause dopaminergic degeneration in a rat model of Parkinson’s disease. Mol Neurobiol 56(4):2845–2854. https://doi.org/10.1007/s12035-018-1274-7

    Article  CAS  PubMed  Google Scholar 

  46. Tai S, Zheng Q, Zhai S, Cai T, Xu L, Yang L, Jiao L, Zhang C (2020) Alpha-lipoic acid mediates clearance of iron accumulation by regulating iron metabolism in a Parkinson’s disease model induced by 6-ohda. Front Neurosci 14:612. https://doi.org/10.3389/fnins.2020.00612

    Article  PubMed  PubMed Central  Google Scholar 

  47. Jiang H, Song N, Jiao Q, Shi L, Du X (2019) Iron pathophysiology in Parkinson diseases. Adv Exp Med Biol 1173:45–66. https://doi.org/10.1007/978-981-13-9589-5_4

    Article  CAS  PubMed  Google Scholar 

  48. Sharma S, Raj K, Singh S (2020) Neuroprotective effect of quercetin in combination with piperine against rotenone- and iron supplement-induced Parkinson’s disease in experimental rats. Neurotox Res 37(1):198–209. https://doi.org/10.1007/s12640-019-00120-z

    Article  CAS  PubMed  Google Scholar 

  49. Berry TM, Moustafa AA (2021) A novel treatment strategy to prevent Parkinson’s disease: focus on iron regulatory protein 1 (IRP1). Int J Neurosci 1–10. https://doi.org/10.1080/00207454.2021.1885403

  50. Jansen van Rensburg Z, Abrahams S, Bardien S, Kenyon C (2021) Toxic feedback loop involving iron, reactive oxygen species, α-synuclein and neuromelanin in parkinson’s disease and intervention with turmeric. Mol Neurobiol 58(11):5920–5936. https://doi.org/10.1007/s12035-021-02516-5

    Article  CAS  PubMed  Google Scholar 

  51. Ward RJ, Dexter DT, Martin-Bastida A, Crichton RR (2021) Is chelation therapy a potential treatment for Parkinson’s disease. Int J Mol Sci 22(7):3338. https://doi.org/10.3390/ijms22073338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR (2021) Parkinson’s disease: alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Bio 41:101896. https://doi.org/10.1016/j.redox.2021.101896

    Article  CAS  Google Scholar 

  53. Masaldan S, Bush AI, Devos D, Rolland AS, Moreau C (2019) Striking while the iron is hot: iron metabolism and ferroptosis in neurodegeneration. Free Radic Biol Med 133:221–233. https://doi.org/10.1016/j.freeradbiomed.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  54. Xu Q, Kanthasamy AG, Jin H, Reddy MB (2016) Hepcidin plays a key role in 6-ohda induced iron overload and apoptotic cell death in a cell culture model of Parkinson’s disease. Parkinsons Dis 2016:8684130. https://doi.org/10.1155/2016/8684130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Indian Council of Medical Research, New Delhi, India is gratefully acknowledged for providing a research fellowship to Nidhi Sachan. The CSIR-IITR communication number of this article is IITR/SEC/MS/2022/90.

Funding

The study was supported by the intramural grant of CSIR-IITR. Saripella Srikrishna and Diksha Katiyar received incentive grants from the Institutions of Eminence (IoE), Banaras Hindu University.

Author information

Authors and Affiliations

Authors

Contributions

Nidhi Sachan generated the data, captured images, and analyzed the western blots, DAB-enhanced Perl’s staining, and AAS data. She also arranged the figures/tables and wrote the first draft of the manuscript. AAS experiment was performed by Devendra Kumar Patel. Neha Tiwari, Diksha Katiyar, and Saripella Srikrishna designed and performed the docking studies and wrote the related portion of the manuscript. The study was planned by Mahendra Pratap Singh whereas the docking study was planned by Saripella Srikrishna. The text content of the manuscript is revised by Mahendra Pratap Singh and Saripella Srikrishna. The final version of the manuscript is endorsed by all the authors.

Corresponding authors

Correspondence to Saripella Srikrishna or Mahendra Pratap Singh.

Ethics declarations

Ethics Approval

The institutional animal ethics committee approved the studies involving experimental animals.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

CSIR-IITR communication number: IITR/SEC/MS/2022/90.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1591 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachan, N., Tiwari, N., Patel, D.K. et al. Dyshomeostasis of Iron and Its Transporter Proteins in Cypermethrin-Induced Parkinson’s Disease. Mol Neurobiol 60, 5838–5852 (2023). https://doi.org/10.1007/s12035-023-03436-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03436-2

Keywords

Navigation