Skip to main content

Advertisement

Log in

Post-traumatic Stress Disorder: Focus on Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Post-traumatic stress disorder (PTSD), gaining increasing attention, is a multifaceted psychiatric disorder that occurs following a stressful or traumatic event or series of events. Recently, several studies showed a close relationship between PTSD and neuroinflammation. Neuroinflammation, a defense response of the nervous system, is associated with the activation of neuroimmune cells such as microglia and astrocytes and with changes in inflammatory markers. In this review, we first analyzed the relationship between neuroinflammation and PTSD: the effect of stress-derived activation of the hypothalamic–pituitary–adrenal (HPA) axis on the main immune cells in the brain and the effect of stimulated immune cells in the brain on the HPA axis. We then summarize the alteration of inflammatory markers in brain regions related to PTSD. Astrocytes are neural parenchymal cells that protect neurons by regulating the ionic microenvironment around neurons. Microglia are macrophages of the brain that coordinate the immunological response. Recent studies on these two cell types provided new insight into neuroinflammation in PTSD. These contribute to promoting comprehension of neuroinflammation, which plays a pivotal role in the pathogenesis of PTSD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, Karam EG, Meron Ruscio A, Benjet C, Scott K, Atwoli L, Petukhova M, Lim CCW, Aguilar-Gaxiola S, Al-Hamzawi A, Alonso J, Bunting B, Ciutan M, de Girolamo G et al (2017) Posttraumatic stress disorder in the world mental health surveys. Psychol Med 47(13):2260–2274. https://doi.org/10.1017/S0033291717000708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Watson P (2019) PTSD as a public mental health priority. Curr Psychiatry Rep 21(7):61. https://doi.org/10.1007/s11920-019-1032-1

    Article  PubMed  Google Scholar 

  3. Koenen KC, Sumner JA, Gilsanz P, Glymour MM, Ratanatharathorn A, Rimm EB, Roberts AL, Winning A, Kubzansky LD (2017) Post-traumatic stress disorder and cardiometabolic disease: improving causal inference to inform practice. Psychological Medicine 47(2):209–225. https://doi.org/10.1017/s0033291716002294

    Article  CAS  PubMed  Google Scholar 

  4. Roberts AL, Malspeis S, Kubzansky LD, Feldman CH, Chang SC, Koenen KC, Costenbader KH (2017) Association of trauma and posttraumatic stress disorder with incident systemic lupus erythematosus in a longitudinal cohort of women. Arthritis Rheumatol 69(11):2162–2169. https://doi.org/10.1002/art.40222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ryder AL, Azcarate PM, Cohen BE (2018) PTSD and physical health. Current Psychiatry Reports 20(12):116. https://doi.org/10.1007/s11920-018-0977-9

    Article  PubMed  Google Scholar 

  6. Tuerk PW, Wangelin B, Rauch SA, Dismuke CE, Yoder M, Myrick H, Eftekhari A, Acierno R (2013) Health service utilization before and after evidence-based treatment for PTSD. Psychol Serv 10(4):401–409. https://doi.org/10.1037/a0030549

    Article  PubMed  Google Scholar 

  7. Quinones MM, Gallegos AM, Lin FV, Heffner K (2020) Dysregulation of inflammation, neurobiology, and cognitive function in PTSD: an integrative review. Cogn Affect Behav Neurosci 20(3):455–480. https://doi.org/10.3758/s13415-020-00782-9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Spinhoven P, Penninx BW, van Hemert AM, de Rooij M, Elzinga BM (2014) Comorbidity of PTSD in anxiety and depressive disorders: prevalence and shared risk factors. Child Abuse Negl 38(8):1320–1330. https://doi.org/10.1016/j.chiabu.2014.01.017

    Article  PubMed  Google Scholar 

  9. Michopoulos V, Norrholm SD, Jovanovic T (2015) Diagnostic biomarkers for posttraumatic stress disorder: promising horizons from translational neuroscience research. Biol Psychiatry 78(5):344–353. https://doi.org/10.1016/j.biopsych.2015.01.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yehuda R (2005) Neuroendocrine aspects of PTSD. Handb Exp Pharmacol 169:371–403. https://doi.org/10.1007/3-540-28082-0_13

    Article  CAS  Google Scholar 

  11. Bethea CL, Lu NZ, Gundlah C, Streicher JM (2002) Diverse actions of ovarian steroids in the serotonin neural system. Front Neuroendocrinol 23(1):41–100. https://doi.org/10.1006/frne.2001.0225

    Article  CAS  PubMed  Google Scholar 

  12. Zeidan MA, Igoe SA, Linnman C, Vitalo A, Levine JB, Klibanski A, Goldstein JM, Milad MR (2011) Estradiol modulates medial prefrontal cortex and amygdala activity during fear extinction in women and female rats. Biol Psychiatry 70(10):920–927. https://doi.org/10.1016/j.biopsych.2011.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goetz SM, Tang L, Thomason ME, Diamond MP, Hariri AR, Carré JM (2014) Testosterone rapidly increases neural reactivity to threat in healthy men: a novel two-step pharmacological challenge paradigm. Biol. Psychiatry 76(4):324–331. https://doi.org/10.1016/j.biopsych.2014.01.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Klein SL (2000) Hormones and mating system affect sex and species differences in immune function among vertebrates. Behav Processes 51(1-3):149–166. https://doi.org/10.1016/s0376-6357(00)00125-x

    Article  CAS  PubMed  Google Scholar 

  15. Dong Y, Li S, Lu Y, Li X, Liao Y, Peng Z, Li Y, Hou L, Yuan Z, Cheng J (2020) Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. J. Neuroinflammation 17:205. https://doi.org/10.1186/s12974-020-01842-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Passos IC, Vasconcelos-Moreno MP, Costa LG, Kunz M, Brietzke E, Quevedo J, Salum G, Magalhães PV, Kapczinski F, Kauer-Sant'Anna M (2015) Inflammatory markers in post-traumatic stress disorder: a systematic review, meta-analysis, and meta-regression. The Lancet Psychiatry 2(11):1002–1012. https://doi.org/10.1016/s2215-0366(15)00309-0

    Article  PubMed  Google Scholar 

  17. Gill J, Luckenbaugh D, Charney D, Vythilingam M (2010) Sustained elevation of serum interleukin-6 and relative insensitivity to hydrocortisone differentiates posttraumatic stress disorder with and without depression. Biol Psychiatry 68(11):999–1006. https://doi.org/10.1016/j.biopsych.2010.07.033

    Article  CAS  PubMed  Google Scholar 

  18. Michopoulos V, Powers A, Gillespie CF, Ressler KJ, Jovanovic T (2017) Inflammation in fear- and anxiety-based disorders: PTSD, GAD, and beyond. Neuropsychopharmacology 42(1):254–270. https://doi.org/10.1038/npp.2016.146

    Article  CAS  PubMed  Google Scholar 

  19. Ding L, Xu X, Li C, Wang Y, Xia X, Zheng JC (2021) Glutaminase in microglia: a novel regulator of neuroinflammation. Brain Behav Immun 92:139–156. https://doi.org/10.1016/j.bbi.2020.11.038

    Article  CAS  PubMed  Google Scholar 

  20. Mai CL, Tan Z, Xu YN, Zhang JJ, Huang ZH, Wang D, Zhang H, Gui WS, Zhang J, Lin ZJ, Meng YT, Wei X, Jie YT, Grace PM, Wu LJ, Zhou LJ, Liu XG (2021) CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain. Theranostics 11(3):1059–1078. https://doi.org/10.7150/thno.44364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240. https://doi.org/10.1038/sj.bjp.0706400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sumner JA, Chen Q, Roberts AL, Winning A, Rimm EB, Gilsanz P, Glymour MM, Tworoger SS, Koenen KC, Kubzansky LD (2018) Posttraumatic stress disorder onset and inflammatory and endothelial function biomarkers in women. Brain Behav Immun 69:203–209. https://doi.org/10.1016/j.bbi.2017.11.013

    Article  CAS  PubMed  Google Scholar 

  23. Eraly SA, Nievergelt CM, Maihofer AX, Barkauskas DA, Biswas N, Agorastos A, O'Connor DT, Baker DG (2014) Assessment of plasma C-reactive protein as a biomarker of posttraumatic stress disorder risk. JAMA Psychiatry 71(4):423–431. https://doi.org/10.1001/jamapsychiatry.2013.4374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Saigh PA (1982) The Lebanese fear inventory: a normative report. J Clin Psychol 38(2):352–355. https://doi.org/10.1002/1097-4679(198204)38:2<352::aid-jclp2270380223>3.0.co;2-y

    Article  CAS  PubMed  Google Scholar 

  25. Bozzuto JC (1975) Cinematic neurosis following "The Exorcist". Report of four cases. J Nerv Ment Dis 161 (1):43-48. https://doi.org/10.1097/00005053-197507000-00005

  26. Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33(7):479–486. https://doi.org/10.1016/0006-3223(93)90001-t

    Article  CAS  PubMed  Google Scholar 

  27. Ottenweller JE, Natelson BH, Pitman DL, Drastal SD (1989) Adrenocortical and behavioral responses to repeated stressors: toward an animal model of chronic stress and stress-related mental illness. Biol Psychiatry 26(8):829–841. https://doi.org/10.1016/0006-3223(89)90123-6

    Article  CAS  PubMed  Google Scholar 

  28. Chaaya N, Battle AR, Johnson LR (2018) An update on contextual fear memory mechanisms: Transition between Amygdala and Hippocampus. Neurosci Biobehav Rev 92:43–54. https://doi.org/10.1016/j.neubiorev.2018.05.013

    Article  PubMed  Google Scholar 

  29. Bali A, Jaggi AS (2015) Electric foot shock stress: a useful tool in neuropsychiatric studies. Rev Neurosci 26(6):655–677. https://doi.org/10.1515/revneuro-2015-0015

    Article  PubMed  Google Scholar 

  30. Gonzalez ST, Marty V, Spigelman I, Reise SP, Fanselow MS (2021) Impact of stress resilience and susceptibility on fear learning, anxiety, and alcohol intake. Neurobiol Stress 15:100335. https://doi.org/10.1016/j.ynstr.2021.100335

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA (2018) Single-prolonged stress: a review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psychiatry 9:196. https://doi.org/10.3389/fpsyt.2018.00196

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cohen H, Kozlovsky N, Alona C, Matar MA, Joseph Z (2012) Animal model for PTSD: from clinical concept to translational research. Neuropharmacology 62(2):715–724. https://doi.org/10.1016/j.neuropharm.2011.04.023

    Article  CAS  PubMed  Google Scholar 

  33. Aspesi D, Pinna G (2019) Animal models of post-traumatic stress disorder and novel treatment targets. Behav Pharmacol 30(2 and 3-Spec Issue):130–150. https://doi.org/10.1097/FBP.0000000000000467

    Article  CAS  PubMed  Google Scholar 

  34. Pai CS, Sharma PK, Huang HT, Loganathan S, Lin H, Hsu YL, Phasuk S, Liu IY (2018) The activating transcription factor 3 (Atf3) homozygous knockout mice exhibit enhanced conditioned fear and down regulation of hippocampal GELSOLIN. Front Mol Neurosci 11:37. https://doi.org/10.3389/fnmol.2018.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xue B, Xue J, Yu Y, Wei SG, Beltz TG, Felder RB, Johnson AK (2020) Predator scent-induced sensitization of hypertension and anxiety-like behaviors. Cell Mol Neurobiol 42(4):1141–1152. https://doi.org/10.1007/s10571-020-01005-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Merino JJ, Muneton-Gomez V, Muneton-Gomez C, Perez-Izquierdo MA, Loscertales M, Toledano Gasca A (2020) Hippocampal CCR5/RANTES elevations in a rodent model of post-traumatic stress disorder: Maraviroc (a CCR5 antagonist) increases corticosterone levels and enhances fear memory consolidation. Biomolecules 10(2):212. https://doi.org/10.3390/biom10020212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie PY, Ji LL, Fu CH, Peng JB, Wang ZY, Tong L (2021) miR-132 Regulates PTSD-like behaviors in rats following single-prolonged stress through fragile X-related protein 1. Cell Mol Neurobiol 41(2):327–340. https://doi.org/10.1007/s10571-020-00854-x

    Article  CAS  PubMed  Google Scholar 

  38. Wang W, Wang R, Jiang Z, Li H, Zhu Z, Khalid A, Liu D, Pan F (2021) Inhibiting Brd4 alleviated PTSD-like behaviors and fear memory through regulating immediate early genes expression and neuroinflammation in rats. J Neurochem 158(4):912–927. https://doi.org/10.1111/jnc.15439

    Article  CAS  PubMed  Google Scholar 

  39. Jones ME, Lebonville CL, Barrus D, Lysle DT (2015) The role of brain interleukin-1 in stress-enhanced fear learning. Neuropsychopharmacology 40(5):1289–1296. https://doi.org/10.1038/npp.2014.317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Elkhatib SK, Moshfegh CM, Watson GF, Case AJ (2020) Peripheral inflammation is strongly linked to elevated zero maze behavior in repeated social defeat stress. Brain Behav Immun 90:279–285. https://doi.org/10.1016/j.bbi.2020.08.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM (2014) From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol Learn Mem 113:3–18. https://doi.org/10.1016/j.nlm.2013.11.014

    Article  PubMed  Google Scholar 

  42. Bremner JD (2006) Traumatic stress: effects on the brain. Dialogues Clin Neurosci 8(4):445–461. https://doi.org/10.31887/DCNS.2006.8.4/jbremner

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60(4):329–336. https://doi.org/10.1016/j.biopsych.2005.10.012

    Article  PubMed  Google Scholar 

  44. Izquierdo I, Furini CR, Myskiw JC (2016) Fear memory. Physiol Rev 96(2):695–750. https://doi.org/10.1152/physrev.00018.2015

    Article  PubMed  Google Scholar 

  45. Dunlop BW, Wong A (2019) The hypothalamic-pituitary-adrenal axis in PTSD: pathophysiology and treatment interventions. Prog Neuropsychopharmacol Biol Psychiatry 89:361–379. https://doi.org/10.1016/j.pnpbp.2018.10.010

    Article  CAS  PubMed  Google Scholar 

  46. Bremner JD, Krystal JH, Southwick SM, Charney DS (1995) Functional neuroanatomical correlates of the effects of stress on memory. J Trauma Stress 8(4):527–553. https://doi.org/10.1007/BF02102888

    Article  CAS  PubMed  Google Scholar 

  47. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45(9):2019–2033. https://doi.org/10.1016/j.brat.2007.02.012

    Article  PubMed  Google Scholar 

  48. Omura J, Fuchikami M, Araki M, Miyagi T, Okamoto Y, Morinobu S (2021) Chemogenetic activation of the mPFC alleviates impaired fear memory extinction in an animal model of PTSD. Prog Neuropsychopharmacol Biol Psychiatry 108:110090. https://doi.org/10.1016/j.pnpbp.2020.110090

    Article  CAS  PubMed  Google Scholar 

  49. Zuj DV, Palmer MA, Hsu CM, Nicholson EL, Cushing PJ, Gray KE, Felmingham KL (2016) Impaired fear extinction associated with ptsd increases with hours-since-waking. Depress Anxiety 33(3):203–210. https://doi.org/10.1002/da.22463

    Article  PubMed  Google Scholar 

  50. Harnett NG, Goodman AM, Knight DC (2020) PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp Neurol 330:113331. https://doi.org/10.1016/j.expneurol.2020.113331

    Article  CAS  PubMed  Google Scholar 

  51. Maren S, Holt W (2000) The hippocampus and contextual memory retrieval in Pavlovian conditioning. Behav Brain Res 110(1-2):97–108. https://doi.org/10.1016/s0166-4328(99)00188-6

    Article  CAS  PubMed  Google Scholar 

  52. de Gelder B, Terburg D, Morgan B, Hortensius R, Stein DJ, van Honk J (2014) The role of human basolateral amygdala in ambiguous social threat perception. Cortex 52:28–34. https://doi.org/10.1016/j.cortex.2013.12.010

    Article  PubMed  Google Scholar 

  53. Knight DC, Nguyen HT, Bandettini PA (2005) The role of the human amygdala in the production of conditioned fear responses. Neuroimage 26(4):1193–1200. https://doi.org/10.1016/j.neuroimage.2005.03.020

    Article  PubMed  Google Scholar 

  54. Davis M, Whalen PJ (2001) The amygdala: vigilance and emotion. Mol Psychiatry 6(1):13–34. https://doi.org/10.1038/sj.mp.4000812

    Article  CAS  PubMed  Google Scholar 

  55. Maroun M (2013) Medial prefrontal cortex: multiple roles in fear and extinction. Neuroscientist 19(4):370–383. https://doi.org/10.1177/1073858412464527

    Article  PubMed  Google Scholar 

  56. Bian XL, Qin C, Cai CY, Zhou Y, Tao Y, Lin YH, Wu HY, Chang L, Luo CX, Zhu DY (2019) Anterior cingulate cortex to ventral hippocampus circuit mediates contextual fear generalization. J Neurosci 39(29):5728–5739. https://doi.org/10.1523/JNEUROSCI.2739-18.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Godsil BP, Kiss JP, Spedding M, Jay TM (2013) The hippocampal–prefrontal pathway: the weak link in psychiatric disorders? Eur Neuropsychopharmacol 23(10):1165–1181. https://doi.org/10.1016/j.euroneuro.2012.10.018

    Article  CAS  PubMed  Google Scholar 

  58. Postel C, Viard A, Andre C, Guenole F, de Flores R, Baleyte JM, Gerardin P, Eustache F, Dayan J, Guillery-Girard B (2019) Hippocampal subfields alterations in adolescents with post-traumatic stress disorder. Hum Brain Mapp 40(4):1244–1252. https://doi.org/10.1002/hbm.24443

    Article  PubMed  Google Scholar 

  59. Henigsberg N, Kalember P, Petrovic ZK, Secic A (2019) Neuroimaging research in posttraumatic stress disorder - focus on amygdala, hippocampus and prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 90:37–42. https://doi.org/10.1016/j.pnpbp.2018.11.003

    Article  PubMed  Google Scholar 

  60. Kunimatsu A, Yasaka K, Akai H, Kunimatsu N, Abe O (2020) MRI findings in posttraumatic stress disorder. J Magn Reson Imaging 52(2):380–396. https://doi.org/10.1002/jmri.26929

    Article  PubMed  Google Scholar 

  61. Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP, Stevens JS, Densmore M, Haswell CC, Ipser J, Koch SBJ, Korgaonkar M, Lebois LAM, Peverill M, Baker JT, Boedhoe PSW, Frijling JL, Gruber SA, Harpaz-Rotem I, Jahanshad N et al (2018) Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from posttraumatic stress disorder consortia. Biol Psychiatry 83(3):244–253. https://doi.org/10.1016/j.biopsych.2017.09.006

    Article  PubMed  Google Scholar 

  62. Oyola MG, Handa RJ (2017) Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 20(5):476–494. https://doi.org/10.1080/10253890.2017.1369523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6(2):603–621. https://doi.org/10.1002/cphy.c150015

    Article  PubMed  PubMed Central  Google Scholar 

  64. Picard K, Bisht K, Poggini S, Garofalo S, Golia MT, Basilico B, Abdallah F, Ciano Albanese N, Amrein I, Vernoux N, Sharma K, Hui CW, CS J, Limatola C, Ragozzino D, Maggi L, Branchi I, Tremblay ME (2021) Microglial-glucocorticoid receptor depletion alters the response of hippocampal microglia and neurons in a chronic unpredictable mild stress paradigm in female mice. Brain Behav Immun 97:423–439. https://doi.org/10.1016/j.bbi.2021.07.022

    Article  CAS  PubMed  Google Scholar 

  65. Kim JS, Iremonger KJ (2019) Temporally tuned corticosteroid feedback regulation of the stress axis. Trends Endocrinol Metab 30(11):783–792. https://doi.org/10.1016/j.tem.2019.07.005

    Article  CAS  PubMed  Google Scholar 

  66. de Kloet CS, Vermetten E, Geuze E, Kavelaars A, Heijnen CJ, Westenberg HG (2006) Assessment of HPA-axis function in posttraumatic stress disorder: pharmacological and non-pharmacological challenge tests, a review. J Psychiatr Res 40(6):550–567. https://doi.org/10.1016/j.jpsychires.2005.08.002

    Article  PubMed  Google Scholar 

  67. van Zuiden M, Kavelaars A, Geuze E, Olff M, Heijnen CJ (2013) Predicting PTSD: pre-existing vulnerabilities in glucocorticoid-signaling and implications for preventive interventions. Brain Behav Immun 30:12–21. https://doi.org/10.1016/j.bbi.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  68. Mendoza C, Barreto GE, Avila-Rodriguez M, Echeverria V (2016) Role of neuroinflammation and sex hormones in war-related PTSD. Mol Cell Endocrinol 434:266–277. https://doi.org/10.1016/j.mce.2016.05.016

    Article  CAS  PubMed  Google Scholar 

  69. Kempuraj D, Papadopoulou NG, Lytinas M, Huang M, Kandere-Grzybowska K, Madhappan B, Boucher W, Christodoulou S, Athanassiou A, Theoharides TC (2004) Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 145(1):43–48. https://doi.org/10.1210/en.2003-0805

    Article  CAS  PubMed  Google Scholar 

  70. Olson EA, Kaiser RH, Pizzagalli DA, Rauch SL, Rosso IM (2019) Regional prefrontal resting-state functional connectivity in posttraumatic stress disorder. Biol Psychiatry Cogn Neurosci Neuroimaging 4(4):390–398. https://doi.org/10.1016/j.bpsc.2018.09.012

    Article  PubMed  Google Scholar 

  71. Garcia-Keller C, Carter JS, Kruyer A, Kearns AM, Hopkins JL, Hodebourg R, Kalivas PW, Reichel CM (2021) Behavioral and accumbens synaptic plasticity induced by cues associated with restraint stress. Neuropsychopharmacology 46(10):1848–1856. https://doi.org/10.1038/s41386-021-01074-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bagot RC, Parise EM, Peña CJ, Zhang HX, Maze I, Chaudhury D, Persaud B, Cachope R, Bolaños-Guzmán CA, Cheer JF, Deisseroth K, Han MH, Nestler EJ (2015) Ventral hippocampal afferents to the nucleus accumbens regulate susceptibility to depression. Nat Commun 6:7062. https://doi.org/10.1038/ncomms8062

    Article  CAS  PubMed  Google Scholar 

  73. Asim M, Hao B, Waris A, Liang YM, Wang XG (2022) Ketamine attenuates the PTSD-like effect via regulation of glutamatergic signaling in the nucleus accumbens of mice. Mol Cell Neurosci 120:103723. https://doi.org/10.1016/j.mcn.2022.103723

    Article  CAS  PubMed  Google Scholar 

  74. Morris LS, McCall JG, Charney DS, Murrough JW (2020) The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 4:2398212820930321. https://doi.org/10.1177/2398212820930321

    Article  PubMed  PubMed Central  Google Scholar 

  75. Haubrich J, Bernabo M, Nader K (2020) Noradrenergic projections from the locus coeruleus to the amygdala constrain fear memory reconsolidation. Elife 9:e57010. https://doi.org/10.7554/eLife.57010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Seo DO, Zhang ET, Piantadosi SC, Marcus DJ, Motard LE, Kan BK, Gomez AM, Nguyen TK, Xia L, Bruchas MR (2021) A locus coeruleus to dentate gyrus noradrenergic circuit modulates aversive contextual processing. Neuron 109(13):2116–2130.e6. https://doi.org/10.1016/j.neuron.2021.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morris LS, Tan A, Smith DA, Grehl M, Han-Huang K, Naidich TP, Charney DS, Balchandani P, Kundu P, Murrough JW (2020) Sub-millimeter variation in human locus coeruleus is associated with dimensional measures of psychopathology: an in vivo ultra-high field 7-Tesla MRI study. Neuroimage Clin 25:102148. https://doi.org/10.1016/j.nicl.2019.102148

    Article  PubMed  PubMed Central  Google Scholar 

  78. Spiegel D (1984) Multiple personality as a post-traumatic stress disorder. Psychiatr Clin North Am 7(1):101–110

    Article  CAS  PubMed  Google Scholar 

  79. White WF, Burgess A, Dalgleish T, Halligan S, Hiller R, Oxley A, Smith P, Meiser-Stedman R (2022) Prevalence of the dissociative subtype of post-traumatic stress disorder: a systematic review and meta-analysis. Psychol Med 52(9):1629–1644. https://doi.org/10.1017/S0033291722001647

    Article  PubMed  Google Scholar 

  80. Lanius RA, Vermetten E, Loewenstein RJ, Brand B, Schmahl C, Bremner JD, Spiegel D (2010) Emotion modulation in PTSD: clinical and neurobiological evidence for a dissociative subtype. Am J Psychiatry 167(6):640–647. https://doi.org/10.1176/appi.ajp.2009.09081168

    Article  PubMed  PubMed Central  Google Scholar 

  81. O'Callaghan JP, Sriram K, Miller DB (2008) Defining "neuroinflammation". Ann N Y Acad Sci 1139:318–330. https://doi.org/10.1196/annals.1432.032

    Article  CAS  PubMed  Google Scholar 

  82. Dobos N, Korf J, Luiten PG, Eisel UL (2010) Neuroinflammation in Alzheimer's disease and major depression. Biol Psychiatry 67(6):503–504. https://doi.org/10.1016/j.biopsych.2010.01.023

    Article  PubMed  Google Scholar 

  83. O'Callaghan JP, Miller DB (2019) Neuroinflammation disorders exacerbated by environmental stressors. Metabolism 100S:153951. https://doi.org/10.1016/j.metabol.2019.153951

    Article  CAS  PubMed  Google Scholar 

  84. Li M, Li C, Yu H, Cai X, Shen X, Sun X, Wang J, Zhang Y, Wang C (2017) Lentivirus-mediated interleukin-1beta (IL-1beta) knock-down in the hippocampus alleviates lipopolysaccharide (LPS)-induced memory deficits and anxiety- and depression-like behaviors in mice. J Neuroinflammation 14(1):190. https://doi.org/10.1186/s12974-017-0964-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zheng ZH, Tu JL, Li XH, Hua Q, Liu WZ, Liu Y, Pan BX, Hu P, Zhang WH (2021) Neuroinflammation induces anxiety- and depressive-like behavior by modulating neuronal plasticity in the basolateral amygdala. Brain Behav Immun 91:505–518. https://doi.org/10.1016/j.bbi.2020.11.007

    Article  CAS  PubMed  Google Scholar 

  86. Milner MT, Maddugoda M, Gotz J, Burgener SS, Schroder K (2021) The NLRP3 inflammasome triggers sterile neuroinflammation and Alzheimer's disease. Curr Opin Immunol 68:116–124. https://doi.org/10.1016/j.coi.2020.10.011

    Article  CAS  PubMed  Google Scholar 

  87. Han X, Sun S, Sun Y, Song Q, Zhu J, Song N, Chen M, Sun T, Xia M, Ding J, Lu M, Yao H, Hu G (2019) Small molecule-driven NLRP3 inflammation inhibition via interplay between ubiquitination and autophagy: implications for Parkinson disease. Autophagy 15(11):1860–1881. https://doi.org/10.1080/15548627.2019.1596481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sorrells SF, Caso JR, Munhoz CD, Sapolsky RM (2009) The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64(1):33–39. https://doi.org/10.1016/j.neuron.2009.09.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Munhoz CD, Sorrells SF, Caso JR, Scavone C, Sapolsky RM (2010) Glucocorticoids exacerbate lipopolysaccharide-induced signaling in the frontal cortex and hippocampus in a dose-dependent manner. J Neurosci 30(41):13690–13698. https://doi.org/10.1523/JNEUROSCI.0303-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Sierra A, Gottfried-Blackmore A, Milner TA, McEwen BS, Bulloch K (2008) Steroid hormone receptor expression and function in microglia. Glia 56(6):659–674. https://doi.org/10.1002/glia.20644

    Article  PubMed  Google Scholar 

  91. Walker FR, Nilsson M, Jones K (2013) Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 14(11):1262–1276. https://doi.org/10.2174/13894501113149990208

    Article  CAS  PubMed  Google Scholar 

  92. Kunz-Ebrecht SR, Mohamed-Ali V, Feldman PJ, Kirschbaum C, Steptoe A (2003) Cortisol responses to mild psychological stress are inversely associated with proinflammatory cytokines. Brain Behav Immun 17(5):373–383. https://doi.org/10.1016/s0889-1591(03)00029-1

    Article  CAS  PubMed  Google Scholar 

  93. Carrillo-de Sauvage MA, Maatouk L, Arnoux I, Pasco M, Sanz Diez A, Delahaye M, Herrero MT, Newman TA, Calvo CF, Audinat E, Tronche F, Vyas S (2013) Potent and multiple regulatory actions of microglial glucocorticoid receptors during CNS inflammation. Cell Death Differ 20(11):1546–1557. https://doi.org/10.1038/cdd.2013.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Drew PD, Chavis JA (2000) Inhibition of microglial cell activation by cortisol. Brain Res Bull 52(5):391–396. https://doi.org/10.1016/s0361-9230(00)00275-6

    Article  CAS  PubMed  Google Scholar 

  95. Frank MG, Thompson BM, Watkins LR, Maier SF (2012) Glucocorticoids mediate stress-induced priming of microglial pro-inflammatory responses. Brain Behav Immun 26(2):337–345. https://doi.org/10.1016/j.bbi.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  96. Hermoso MA, Matsuguchi T, Smoak K, Cidlowski JA (2004) Glucocorticoids and tumor necrosis factor alpha cooperatively regulate toll-like receptor 2 gene expression. Mol Cell Biol 24(11):4743–4756. https://doi.org/10.1128/mcb.24.11.4743-4756.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain, Behavior, and Immunity 24(1):19–30. https://doi.org/10.1016/j.bbi.2009.07.008

    Article  CAS  PubMed  Google Scholar 

  98. Frank MG, Hershman SA, Weber MD, Watkins LR, Maier SF (2014) Chronic exposure to exogenous glucocorticoids primes microglia to pro-inflammatory stimuli and induces NLRP3 mRNA in the hippocampus. Psychoneuroendocrinology 40:191–200. https://doi.org/10.1016/j.psyneuen.2013.11.006

    Article  CAS  PubMed  Google Scholar 

  99. Busillo JM, Azzam KM, Cidlowski JA (2011) Glucocorticoids sensitize the innate immune system through regulation of the NLRP3 inflammasome. J Biol Chem 286(44):38703–38713. https://doi.org/10.1074/jbc.M111.275370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Unemura K, Kume T, Kondo M, Maeda Y, Izumi Y, Akaike A (2012) Glucocorticoids decrease astrocyte numbers by reducing glucocorticoid receptor expression in vitro and in vivo. J Pharmacol Sci 119(1):30–39. https://doi.org/10.1254/jphs.12047FP

    Article  CAS  PubMed  Google Scholar 

  101. Lou Y-X, Li J, Wang Z-Z, Xia C-Y, Chen N-H (2018) Glucocorticoid receptor activation induces decrease of hippocampal astrocyte number in rats. Psychopharmacology 235(9):2529–2540. https://doi.org/10.1007/s00213-018-4936-2

    Article  CAS  PubMed  Google Scholar 

  102. Orlovsky MA, Dosenko VE, Spiga F, Skibo GG, Lightman SL (2014) Hippocampus remodeling by chronic stress accompanied by GR, proteasome and caspase-3 overexpression. Brain Res 1593:83–94. https://doi.org/10.1016/j.brainres.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  103. Dunn AJ (2000) Cytokine activation of the HPA axis. Ann N Y Acad Sci 917(1):608–617. https://doi.org/10.1111/j.1749-6632.2000.tb05426.x

    Article  CAS  PubMed  Google Scholar 

  104. Weiss JM, Sundar SK, Cierpial MA, Ritchie JC (1991) Effects of interleukin-1 infused into brain are antagonized by alpha-MSH in a dose-dependent manner. Eur J Pharmacol 192(1):177–179. https://doi.org/10.1016/0014-2999(91)90087-7

    Article  CAS  PubMed  Google Scholar 

  105. Silverman MN, Pearce BD, Biron CA, Miller AH (2005) Immune modulation of the hypothalamic-pituitary-adrenal (HPA) axis during viral infection. Viral Immunol 18(1):41–78. https://doi.org/10.1089/vim.2005.18.41

    Article  CAS  PubMed  Google Scholar 

  106. Raffaele S, Lombardi M, Verderio C, Fumagalli M (2020) TNF production and release from microglia via extracellular vesicles: impact on brain functions. Cells 9(10):2145. https://doi.org/10.3390/cells9102145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sanchis P, Fernandez-Gayol O, Vizueta J, Comes G, Canal C, Escrig A, Molinero A, Giralt M, Hidalgo J (2020) Microglial cell-derived interleukin-6 influences behavior and inflammatory response in the brain following traumatic brain injury. Glia 68(5):999–1016. https://doi.org/10.1002/glia.23758

    Article  PubMed  Google Scholar 

  108. Erta M, Quintana A, Hidalgo J (2012) Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 8(9):1254–1266. https://doi.org/10.7150/ijbs.4679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ghosh S, Mohammed Z, Singh I (2021) Bruton's tyrosine kinase drives neuroinflammation and anxiogenic behavior in mouse models of stress. J Neuroinflammation 18(1):289. https://doi.org/10.1186/s12974-021-02322-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Lou C, Fang M, Ye S, Fang Z, Amin N, Chen Y (2022) Fluoxetine protects against inflammation and promotes autophagy in mice model of post-traumatic stress disorder. Behav Brain Res 433:114004. https://doi.org/10.1016/j.bbr.2022.114004

    Article  CAS  PubMed  Google Scholar 

  111. Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P (2016) Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology 63:217–227. https://doi.org/10.1016/j.psyneuen.2015.10.001

    Article  CAS  PubMed  Google Scholar 

  112. Gao J, Wang H, Liu Y, Li YY, Chen C, Liu LM, Wu YM, Li S, Yang C (2014) Glutamate and GABA imbalance promotes neuronal apoptosis in hippocampus after stress. Med Sci Monit 20:499–512. https://doi.org/10.12659/MSM.890589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Oeckinghaus A, Ghosh S (2009) The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol 1(4):a000034. https://doi.org/10.1101/cshperspect.a000034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Geng S, Yang L, Cheng F, Zhang Z, Li J, Liu W, Li Y, Chen Y, Bao Y, Chen L, Fei Z, Li X, Hou J, Lin Y, Liu Z, Zhang S, Wang H, Zhang Q, Wang H et al (2020) Gut microbiota are associated with psychological stress-induced defections in intestinal and blood–brain barriers. Front Microbiol 10:3067. https://doi.org/10.3389/fmicb.2019.03067

    Article  PubMed  PubMed Central  Google Scholar 

  115. Fan R, Zhang Y, Botchway BOA, Liu X (2021) Resveratrol can attenuate astrocyte activation to treat spinal cord injury by inhibiting inflammatory responses. Mol Neurobiol 58(11):5799–5813. https://doi.org/10.1007/s12035-021-02509-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E et al (2019) The microbiota-gut-brain axis. Physiol Rev 99(4):1877–2013. https://doi.org/10.1152/physrev.00018.2018

    Article  CAS  PubMed  Google Scholar 

  117. Liu FF, Yang LD, Sun XR, Zhang H, Pan W, Wang XM, Yang JJ, Ji MH, Yuan HM (2016) NOX2 mediated-parvalbumin interneuron loss might contribute to anxiety-like and enhanced fear learning behavior in a rat model of post-traumatic stress disorder. Mol Neurobiol 53(10):6680–6689. https://doi.org/10.1007/s12035-015-9571-x

    Article  CAS  PubMed  Google Scholar 

  118. Li F, Xiang H, Lu J, Chen Z, Huang C, Yuan X (2020) Lycopene ameliorates PTSD-like behaviors in mice and rebalances the neuroinflammatory response and oxidative stress in the brain. Physiol Behav 224:113026. https://doi.org/10.1016/j.physbeh.2020.113026

    Article  CAS  PubMed  Google Scholar 

  119. Wang SC, Lin CC, Chen CC, Tzeng NS, Liu YP (2018) Effects of oxytocin on fear memory and neuroinflammation in a rodent model of posttraumatic stress disorder. Int J Mol Sci 19(12):3848. https://doi.org/10.3390/ijms19123848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Gautam A, Kumar R, Chakraborty N, Muhie S, Hoke A, Hammamieh R, Jett M (2018) Altered fecal microbiota composition in all male aggressor-exposed rodent model simulating features of post-traumatic stress disorder. J Neurosci Res 96(7):1311–1323. https://doi.org/10.1002/jnr.24229

    Article  CAS  PubMed  Google Scholar 

  121. Peng Z, Wang H, Zhang R, Chen Y, Xue F, Nie H, Chen Y, Wu D, Wang Y, Wang H, Tan Q (2013) Gastrodin ameliorates anxiety-like behaviors and inhibits IL-1beta level and p38 MAPK phosphorylation of hippocampus in the rat model of posttraumatic stress disorder. Physiol Res 62(5):537–545. https://doi.org/10.33549/physiolres.932507

    Article  CAS  PubMed  Google Scholar 

  122. Uniyal A, Singh R, Akhtar A, Bansal Y, Kuhad A, Sah SP (2019) Co-treatment of piracetam with risperidone rescued extinction deficits in experimental paradigms of post-traumatic stress disorder by restoring the physiological alterations in cortex and hippocampus. Pharmacol Biochem Behav 185:172763. https://doi.org/10.1016/j.pbb.2019.172763

    Article  CAS  PubMed  Google Scholar 

  123. Lee B, Shim I, Lee H, Hahm DH (2018) Melatonin ameliorates cognitive memory by regulation of cAMP-response element-binding protein expression and the anti-inflammatory response in a rat model of post-traumatic stress disorder. BMC Neurosci 19(1):38. https://doi.org/10.1186/s12868-018-0439-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wang M, Duan F, Wu J, Min Q, Huang Q, Luo M, He Z (2018) Effect of cyclooxygenase2 inhibition on the development of posttraumatic stress disorder in rats. Mol Med Rep 17(4):4925–4932. https://doi.org/10.3892/mmr.2018.8525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Levkovitz Y, Fenchel D, Kaplan Z, Zohar J, Cohen H (2015) Early post-stressor intervention with minocycline, a second-generation tetracycline, attenuates post-traumatic stress response in an animal model of PTSD. Eur Neuropsychopharmacol 25(1):124–132. https://doi.org/10.1016/j.euroneuro.2014.11.012

    Article  CAS  PubMed  Google Scholar 

  126. Wu WL, Adame MD, Liou CW, Barlow JT, Lai TT, Sharon G, Schretter CE, Needham BD, Wang MI, Tang W, Ousey J, Lin YY, Yao TH, Abdel-Haq R, Beadle K, Gradinaru V, Ismagilov RF, Mazmanian SK (2021) Microbiota regulate social behaviour via stress response neurons in the brain. Nature 595(7867):409–414. https://doi.org/10.1038/s41586-021-03669-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Wilson CB, McLaughlin LD, Ebenezer PJ, Nair AR, Dange R, Harre JG, Shaak TL, Diamond DM, Francis J (2014) Differential effects of sertraline in a predator exposure animal model of post-traumatic stress disorder. Front Behav Neurosci 8:256. https://doi.org/10.3389/fnbeh.2014.00256

    Article  PubMed  PubMed Central  Google Scholar 

  128. Lee SC, Dickson DW, Brosnan CF (1995) Interleukin-1, nitric oxide and reactive astrocytes. Brain Behav Immun 9(4):345–354. https://doi.org/10.1006/brbi.1995.1032

    Article  CAS  PubMed  Google Scholar 

  129. Huang Y, Smith DE, Ibanez-Sandoval O, Sims JE, Friedman WJ (2011) Neuron-specific effects of interleukin-1beta are mediated by a novel isoform of the IL-1 receptor accessory protein. J Neurosci 31(49):18048–18059. https://doi.org/10.1523/JNEUROSCI.4067-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Chevalier CM, Krampert L, Schreckenbach M, Schubert CF, Reich J, Novak B, Schmidt MV, Rutten BPF, Schmidt U (2021) MMP9 mRNA is a potential diagnostic and treatment monitoring marker for PTSD: evidence from mice and humans. Eur Neuropsychopharmacol 51:20–32. https://doi.org/10.1016/j.euroneuro.2021.04.014

    Article  CAS  PubMed  Google Scholar 

  131. Hsu MP, Frausto R, Rose-John S, Campbell IL (2015) Analysis of IL-6/gp130 family receptor expression reveals that in contrast to astroglia, microglia lack the oncostatin M receptor and functional responses to oncostatin M. Glia 63(1):132–141. https://doi.org/10.1002/glia.22739

    Article  PubMed  Google Scholar 

  132. Rothaug M, Becker-Pauly C, Rose-John S (2016) The role of interleukin-6 signaling in nervous tissue. Biochim Biophys Acta 1863(6 Pt A):1218–1227. https://doi.org/10.1016/j.bbamcr.2016.03.018

    Article  CAS  PubMed  Google Scholar 

  133. Lerman I, Davis BA, Bertram TM, Proudfoot J, Hauger RL, Coe CL, Patel PM, Baker DG (2016) Posttraumatic stress disorder influences the nociceptive and intrathecal cytokine response to a painful stimulus in combat veterans. Psychoneuroendocrinology 73:99–108. https://doi.org/10.1016/j.psyneuen.2016.07.202

    Article  CAS  PubMed  Google Scholar 

  134. Baker DG, Nievergelt CM, O'Connor DT (2012) Biomarkers of PTSD: neuropeptides and immune signaling. Neuropharmacology 62(2):663–673. https://doi.org/10.1016/j.neuropharm.2011.02.027

    Article  CAS  PubMed  Google Scholar 

  135. Leonard BE (2018) Inflammation and depression: a causal or coincidental link to the pathophysiology? Acta Neuropsychiatr 30(1):1–16. https://doi.org/10.1017/neu.2016.69

    Article  PubMed  Google Scholar 

  136. Jones KA, Thomsen C (2013) The role of the innate immune system in psychiatric disorders. Mol Cell Neurosci 53:52–62. https://doi.org/10.1016/j.mcn.2012.10.002

    Article  CAS  PubMed  Google Scholar 

  137. Muhie S, Gautam A, Chakraborty N, Hoke A, Meyerhoff J, Hammamieh R, Jett M (2017) Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl Psychiatry 7(5):e1135. https://doi.org/10.1038/tp.2017.91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Rock KL, Latz E, Ontiveros F, Kono H (2010) The sterile inflammatory response. Annu Rev Immunol 28:321–342. https://doi.org/10.1146/annurev-immunol-030409-101311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Liddelow SA, Marsh SE, Stevens B (2020) Microglia and astrocytes in disease: dynamic duo or partners in crime? Trends Immunol 41(9):820–835. https://doi.org/10.1016/j.it.2020.07.006

    Article  CAS  PubMed  Google Scholar 

  140. Jha MK, Jo M, Kim JH, Suk K (2019) Microglia-astrocyte crosstalk: an intimate molecular conversation. Neuroscientist 25(3):227–240. https://doi.org/10.1177/1073858418783959

    Article  CAS  PubMed  Google Scholar 

  141. Lozzi B, Huang TW, Sardar D, Huang AY, Deneen B (2020) Regionally distinct astrocytes display unique transcription factor profiles in the adult brain. Front Neurosci 14:61. https://doi.org/10.3389/fnins.2020.00061

    Article  PubMed  PubMed Central  Google Scholar 

  142. Oberheim Bush NA, Nedergaard M (2017) Do evolutionary changes in astrocytes contribute to the computational power of the hominid brain? Neurochem Res 42(9):2577–2587. https://doi.org/10.1007/s11064-017-2363-0

    Article  CAS  PubMed  Google Scholar 

  143. Barres BA (2008) The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60(3):430–440. https://doi.org/10.1016/j.neuron.2008.10.013

    Article  CAS  PubMed  Google Scholar 

  144. Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18(7):942–952. https://doi.org/10.1038/nn.4043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Nagai J, Yu X, Papouin T, Cheong E, Freeman MR, Monk KR, Hastings MH, Haydon PG, Rowitch D, Shaham S, Khakh BS (2021) Behaviorally consequential astrocytic regulation of neural circuits. Neuron 109(4):576–596. https://doi.org/10.1016/j.neuron.2020.12.008

    Article  CAS  PubMed  Google Scholar 

  146. Yu X, Nagai J, Khakh BS (2020) Improved tools to study astrocytes. Nat Rev Neurosci 21(3):121–138. https://doi.org/10.1038/s41583-020-0264-8

    Article  CAS  PubMed  Google Scholar 

  147. Preeti K, Sood A, Fernandes V (2021) Metabolic regulation of glia and their neuroinflammatory role in Alzheimer's disease. Cell Mol Neurobiol. 42(8):2527–2551. https://doi.org/10.1007/s10571-021-01147-7

    Article  CAS  PubMed  Google Scholar 

  148. Matsunaga Y, Nakagawa S, Morofuji Y, Dohgu S, Watanabe D, Horie N, Izumo T, Niwa M, Walter FR, Santa-Maria AR, Deli MA, Matsuo T (2021) MAP Kinase pathways in brain endothelial cells and crosstalk with pericytes and astrocytes mediate contrast-induced blood-brain barrier disruption. pharmaceutics 13(8):1272. https://doi.org/10.3390/pharmaceutics13081272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Giannoni P, Badaut J, Dargazanli C, Maudave AFHD, Klement W, Costalat V, Marchi N (2018) The pericyte–glia interface at the blood–brain barrier. Clin Sci (Lond) 132(3):361–374. https://doi.org/10.1042/CS20171634

    Article  PubMed  Google Scholar 

  150. Bennett FC, Molofsky AV (2019) The immune system and psychiatric disease: a basic science perspective. Clin Exp Immunol 197(3):294–307. https://doi.org/10.1111/cei.13334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Sofroniew MV (2020) Astrocyte reactivity: subtypes, states, and functions in CNS innate immunity. Trends Immunol 41(9):758–770. https://doi.org/10.1016/j.it.2020.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81(2):229–248. https://doi.org/10.1016/j.neuron.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Giovannoni F, Quintana FJ (2020) The role of astrocytes in CNS inflammation. Trends Immunol 41(9):805–819. https://doi.org/10.1016/j.it.2020.07.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Linnerbauer M, Wheeler MA, Quintana FJ (2020) Astrocyte crosstalk in CNS inflammation. Neuron 108(4):608–622. https://doi.org/10.1016/j.neuron.2020.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Saur L, Baptista PP, Bagatini PB, Neves LT, de Oliveira RM, Vaz SP, Ferreira K, Machado SA, Mestriner RG, Xavier LL (2016) Experimental post-traumatic stress disorder decreases astrocyte density and changes astrocytic polarity in the CA1 hippocampus of male rats. Neurochem Res 41(4):892–904. https://doi.org/10.1007/s11064-015-1770-3

    Article  CAS  PubMed  Google Scholar 

  156. Choi M, Ahn S, Yang EJ, Kim H, Chong YH, Kim HS (2016) Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus. Mol Brain 9(1):72. https://doi.org/10.1186/s13041-016-0253-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Xia L, Zhai M, Wang L, Miao D, Zhu X, Wang W (2013) FGF2 blocks PTSD symptoms via an astrocyte-based mechanism. Behav Brain Res 256:472–480. https://doi.org/10.1016/j.bbr.2013.08.048

    Article  CAS  PubMed  Google Scholar 

  158. Wang J, Gao F, Cui S, Yang S, Gao F, Wang X, Zhu G (2022) Utility of 7,8-dihydroxyflavone in preventing astrocytic and synaptic deficits in the hippocampus elicited by PTSD. Pharmacol Res 176:106079. https://doi.org/10.1016/j.phrs.2022.106079

    Article  CAS  PubMed  Google Scholar 

  159. Sugama S, Takenouchi T, Sekiyama K, Kitani H, Hashimoto M (2011) Immunological responses of astroglia in the rat brain under acute stress: interleukin 1 beta co-localized in astroglia. Neuroscience 192:429–437. https://doi.org/10.1016/j.neuroscience.2011.06.051

    Article  CAS  PubMed  Google Scholar 

  160. Jones ME, Lebonville CL, Paniccia JE, Balentine ME, Reissner KJ, Lysle DT (2018) Hippocampal interleukin-1 mediates stress-enhanced fear learning: a potential role for astrocyte-derived interleukin-1β. Brain Behav Immun 67:355–263. https://doi.org/10.1016/j.bbi.2017.09.016

    Article  CAS  PubMed  Google Scholar 

  161. Rose CR, Ziemens D, Untiet V, Fahlke C (2018) Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 136:3–16. https://doi.org/10.1016/j.brainresbull.2016.12.013

    Article  CAS  PubMed  Google Scholar 

  162. Charles-Messance H, Blot G, Couturier A, Vignaud L, Touhami S, Beguier F, Siqueiros L, Forster V, Barmo N, Augustin S, Picaud S, Sahel JA, Rendon A, Grosche A, Tadayoni R, Sennlaub F, Guillonneau X (2020) IL-1beta induces rod degeneration through the disruption of retinal glutamate homeostasis. J Neuroinflammation 17(1):1. https://doi.org/10.1186/s12974-019-1655-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Feng D, Guo B, Liu G, Wang B, Wang W, Gao G, Qin H, Wu S (2015) FGF2 alleviates PTSD symptoms in rats by restoring GLAST function in astrocytes via the JAK/STAT pathway. Eur Neuropsychopharmacol 25(8):1287–1299. https://doi.org/10.1016/j.euroneuro.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  164. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. https://doi.org/10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  165. Meyerhoff DJ, Mon A, Metzler T, Neylan TC (2014) Cortical gamma-aminobutyric acid and glutamate in posttraumatic stress disorder and their relationships to self-reported sleep quality. Sleep 37(5):893–900. https://doi.org/10.5665/sleep.3654

    Article  PubMed  PubMed Central  Google Scholar 

  166. Nie H, Peng Z, Lao N, Wang H, Chen Y, Fang Z, Hou W, Gao F, Li X, Xiong L, Tan Q (2014) Rosmarinic acid ameliorates PTSD-like symptoms in a rat model and promotes cell proliferation in the hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 51:16–22. https://doi.org/10.1016/j.pnpbp.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  167. Nwaobi SE, Cuddapah VA, Patterson KC, Randolph AC, Olsen ML (2016) The role of glial-specific Kir4.1 in normal and pathological states of the CNS. Acta Neuropathol 132(1):1–21. https://doi.org/10.1007/s00401-016-1553-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Ohno Y (2018) Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders. Neural Regen Res 13(4):651–652. https://doi.org/10.4103/1673-5374.230355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Zurolo E, de Groot M, Iyer A, Anink J, van Vliet EA, Heimans JJ, Reijneveld JC, Gorter JA, Aronica E (2012) Regulation of Kir4.1 expression in astrocytes and astrocytic tumors: a role for interleukin-1 beta. J Neuroinflammation 9:280. https://doi.org/10.1186/1742-2094-9-280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang Z, Song Z, Shen F, Xie P, Wang J, Zhu A-s, Zhu G (2020) Ginsenoside Rg1 Prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the hippocampus. Mol Neurobiol 58:1550–1563. https://doi.org/10.1007/s12035-020-02213-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21(1):47–59. https://doi.org/10.1016/j.bbi.2006.03.005

    Article  CAS  PubMed  Google Scholar 

  172. Cotrone TS, Hocog CB, Ramsey JT, Sanchez MA, Sullivan HM, Scrimgeour AG (2021) Phenotypic characterization of frontal cortex microglia in a rat model of post-traumatic stress disorder. Brain Behav 11:e02011. https://doi.org/10.1002/brb3.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Wang W, Wang R, Xu J, Qin X, Jiang H, Khalid A, Liu D, Pan F, Ho CSH, Ho RCM (2018) Minocycline attenuates stress-induced behavioral changes via its anti-inflammatory effects in an animal model of post-traumatic stress disorder. Front Psychiatry 9:558. https://doi.org/10.3389/fpsyt.2018.00558

    Article  PubMed  PubMed Central  Google Scholar 

  174. Wohleb ES, Fenn AM, Pacenta AM, Powell ND, Sheridan JF, Godbout JP (2012) Peripheral innate immune challenge exaggerated microglia activation, increased the number of inflammatory CNS macrophages, and prolonged social withdrawal in socially defeated mice. Psychoneuroendocrinology 37(9):1491–1505. https://doi.org/10.1016/j.psyneuen.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Wohleb ES, Powell ND, Godbout JP, Sheridan JF (2013) Stress-induced recruitment of bone marrow-derived monocytes to the brain promotes anxiety-like behavior. J Neurosci 33(34):13820–13833. https://doi.org/10.1523/JNEUROSCI.1671-13.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Garrido-Mesa N, Zarzuelo A, Galvez J (2013) Minocycline: far beyond an antibiotic. Br J Pharmacol 169(2):337–352. https://doi.org/10.1111/bph.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Li S, Liao Y, Dong Y, Li X, Li J, Cheng Y, Cheng J, Yuan Z (2021) Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J Neuroinflammation 18(1):7. https://doi.org/10.1186/s12974-020-02069-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Barakat R, Redzic Z (2016) The role of activated microglia and resident macrophages in the neurovascular unit during cerebral ischemia: is the jury still out? Med Princ Pract 25(Suppl 1):3–14. https://doi.org/10.1159/000435858

    Article  PubMed  Google Scholar 

  179. Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19(8):987–991. https://doi.org/10.1038/nn.4338

    Article  CAS  PubMed  Google Scholar 

  180. Cherry JD, Olschowka JA, O'Banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation 11:98. https://doi.org/10.1186/1742-2094-11-98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Zhang L, Zhang J, You Z (2018) Switching of the microglial activation phenotype is a possible treatment for depression disorder. Front Cell Neurosci 12:306. https://doi.org/10.3389/fncel.2018.00306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Liu LR, Liu JC, Bao JS, Bai QQ, Wang GQ (2020) Interaction of microglia and astrocytes in the neurovascular unit. Front Immunol 11:1024. https://doi.org/10.3389/fimmu.2020.01024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Huang B, Yang XD, Zhou MM, Ozato K, Chen LF (2009) Brd4 coactivates transcriptional activation of NF-kappaB via specific binding to acetylated RelA. Mol Cell Biol 29(5):1375–1387. https://doi.org/10.1128/MCB.01365-08

    Article  CAS  PubMed  Google Scholar 

  184. Dresselhaus EC, Meffert MK (2019) Cellular specificity of NF-kappaB function in the nervous system. Front Immunol 10:1043. https://doi.org/10.3389/fimmu.2019.01043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Schnappauf O, Aksentijevich I (2020) Mendelian diseases of dysregulated canonical NF-kappaB signaling: from immunodeficiency to inflammation. J Leukoc Biol 108(2):573–589. https://doi.org/10.1002/JLB.2MR0520-166R

    Article  CAS  PubMed  Google Scholar 

  186. Gasparini C, Feldmann M (2012) NF-κB as a target for modulating inflammatory responses. Curr Pharm Des 18(35):5735–5745. https://doi.org/10.2174/138161212803530763

    Article  CAS  PubMed  Google Scholar 

  187. Sarkar SN, Russell AE, Engler-Chiurazzi EB, Porter KN, Simpkins JW (2019) MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis 10(2):329–352. https://doi.org/10.14336/AD.2018.0409

    Article  PubMed  PubMed Central  Google Scholar 

  188. Zhao J, He Z, Wang J (2021) MicroRNA-124: a key player in microglia-mediated inflammation in neurological diseases. Front Cell Neurosci 15:771898. https://doi.org/10.3389/fncel.2021.771898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Nie PY, Tong L, Li MD, Fu CH, Peng JB, Ji LL (2021) miR-142 downregulation alleviates rat PTSD-like behaviors, reduces the level of inflammatory cytokine expression and apoptosis in hippocampus, and upregulates the expression of fragile X mental retardation protein. J Neuroinflammation 18(1):17. https://doi.org/10.1186/s12974-020-02064-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. (2019) Summary of the clinical practice guideline for the treatment of posttraumatic stress disorder (PTSD) in adults. Am Psychol 74:596–607. https://doi.org/10.1037/amp0000473

  191. Merz J, Schwarzer G, Gerger H (2019) Comparative efficacy and acceptability of pharmacological, psychotherapeutic, and combination treatments in adults with posttraumatic stress disorder: a network meta-analysis. JAMA Psychiatry 76(9):904–913. https://doi.org/10.1001/jamapsychiatry.2019.0951

    Article  PubMed  PubMed Central  Google Scholar 

  192. Feduccia AA, Jerome L, Yazar-Klosinski B, Emerson A, Mithoefer MC, Doblin R (2019) Breakthrough for trauma treatment: safety and efficacy of MDMA-assisted psychotherapy compared to paroxetine and sertraline. Front Psychiatry 10:650. https://doi.org/10.3389/fpsyt.2019.00650

    Article  PubMed  PubMed Central  Google Scholar 

  193. Kermanian F, Seghatoleslam M, Mahakizadeh S (2022) MDMA related neuro-inflammation and adenosine receptors. Neurochem Int 153:105275. https://doi.org/10.1016/j.neuint.2021.105275

    Article  CAS  PubMed  Google Scholar 

  194. Hill MN, Campolongo P, Yehuda R, Patel S (2018) Integrating endocannabinoid signaling and cannabinoids into the biology and treatment of posttraumatic stress disorder. Neuropsychopharmacology 43(1):80–102. https://doi.org/10.1038/npp.2017.162

    Article  PubMed  Google Scholar 

  195. Zhou C, Assareh N, Arnold JC (2022) The cannabis constituent cannabigerol does not disrupt fear memory processes or stress-induced anxiety in mice. Cannabis Cannabinoid Res 7(3):294–303. https://doi.org/10.1089/can.2021.0027

    Article  PubMed  Google Scholar 

  196. Carrier EJ, Patel S, Hillard CJ (2005) Endocannabinoids in neuroimmunology and stress. Curr Drug Targets CNS Neurol Disord 4(6):657–665. https://doi.org/10.2174/156800705774933023

    Article  CAS  PubMed  Google Scholar 

  197. Sholler DJ, Schoene L, Spindle TR (2020) Therapeutic efficacy of cannabidiol (CBD): a review of the evidence from clinical trials and human laboratory studies. Curr Addict Rep 7(3):405–412. https://doi.org/10.1007/s40429-020-00326-8

    Article  PubMed  PubMed Central  Google Scholar 

  198. Hori H, Kim Y (2019) Inflammation and post-traumatic stress disorder. Psychiatry Clin Neurosci 73:143–153. https://doi.org/10.1111/pcn.12820/full

    Article  PubMed  Google Scholar 

  199. Song H, Fang F, Tomasson G, Arnberg FK, Mataix-Cols D, Fernandez de la Cruz L, Almqvist C, Fall K, Valdimarsdottir UA (2018) Association of stress-related disorders with subsequent autoimmune disease. JAMA 319(23):2388–2400. https://doi.org/10.1001/jama.2018.7028

    Article  PubMed  PubMed Central  Google Scholar 

  200. Rytwinski NK, Scur MD, Feeny NC, Youngstrom EA (2013) The co-occurrence of major depressive disorder among individuals with posttraumatic stress disorder: a meta-analysis. J Trauma Stress 26(3):299–309. https://doi.org/10.1002/jts.21814

    Article  PubMed  Google Scholar 

  201. Rijkers C, Schoorl M, van Hoeken D, Hoek HW (2019) Eating disorders and posttraumatic stress disorder. Curr Opin Psychiatry 32(6):510–517. https://doi.org/10.1097/YCO.0000000000000545

    Article  PubMed  Google Scholar 

  202. Butler MJ, Perrini AA, Eckel LA (2021) The role of the gut microbiome, immunity, and neuroinflammation in the pathophysiology of eating disorders. Nutrients 13(2):500. https://doi.org/10.3390/nu13020500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Troubat R, Barone P, Leman S, Desmidt T, Cressant A, Atanasova B, Brizard B, El Hage W, Surget A, Belzung C, Camus V (2021) Neuroinflammation and depression: a review. Eur J Neurosci 53(1):151–171. https://doi.org/10.1111/ejn.14720

    Article  CAS  PubMed  Google Scholar 

  204. Roeckner AR, Sogani S, Michopoulos V, Hinrichs R, van Rooij SJH, Rothbaum BO, Jovanovic T, Ressler KJ, Stevens JS (2022) Sex-dependent risk factors for PTSD: a prospective structural MRI study. Neuropsychopharmacology 47(13):2213–2220. https://doi.org/10.1038/s41386-022-01452-9

    Article  PubMed  Google Scholar 

  205. Wohleb ES, McKim DB, Shea DT, Powell ND, Tarr AJ, Sheridan JF, Godbout JP (2014) Re-establishment of anxiety in stress-sensitized mice is caused by monocyte trafficking from the spleen to the brain. Biol Psychiatry 75(12):970–981. https://doi.org/10.1016/j.biopsych.2013.11.029

    Article  CAS  PubMed  Google Scholar 

  206. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. https://doi.org/10.1126/science.1110591

    Article  PubMed  PubMed Central  Google Scholar 

  207. Hanscom M, Loane DJ, Shea-Donohue T (2021) Brain-gut axis dysfunction in the pathogenesis of traumatic brain injury. J Clin Invest 131(12):e143777. https://doi.org/10.1172/JCI143777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Megur A, Baltriukiene D, Bukelskiene V, Burokas A (2020) The microbiota-gut-brain axis and Alzheimer's disease: neuroinflammation is to blame? Nutrients 13(1):37. https://doi.org/10.3390/nu13010037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Bajaj JS, Sikaroodi M, Fagan A, Heuman D, Gilles H, Gavis EA, Fuchs M, Gonzalez-Maeso J, Nizam S, Gillevet PM, Wade JB (2019) Posttraumatic stress disorder is associated with altered gut microbiota that modulates cognitive performance in veterans with cirrhosis. Am J Physiol Gastrointest Liver Physiol 317(5):G661–G669. https://doi.org/10.1152/ajpgi.00194.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Voigt RM, Zalta AK, Raeisi S, Zhang L, Brown JM, Forsyth CB, Boley RA, Held P, Pollack MH, Keshavarzian A (2022) Abnormal intestinal milieu in post-traumatic stress disorder is not impacted by treatment that improves symptoms. Am J Physiol Gastrointest Liver Physiol. 323(2):G61–G70. https://doi.org/10.1152/ajpgi.00066.2022

    Article  CAS  PubMed  Google Scholar 

  211. Chausse B, Kakimoto PA, Kann O (2021) Microglia and lipids: how metabolism controls brain innate immunity. Semin Cell Dev Biol 112:137–144. https://doi.org/10.1016/j.semcdb.2020.08.001

    Article  CAS  PubMed  Google Scholar 

  212. Rousseau PF, Malbos E, Verger A, Nicolas F, Lancon C, Khalfa S, Guedj E (2019) Increase of precuneus metabolism correlates with reduction of PTSD symptoms after EMDR therapy in military veterans: an 18F-FDG PET study during virtual reality exposure to war. Eur J Nucl Med Mol Imaging 46(9):1817–1821. https://doi.org/10.1007/s00259-019-04360-1

    Article  CAS  PubMed  Google Scholar 

  213. Fesharaki-Zadeh A, Miyauchi JT, St Laurent-Arriot K, Tsirka SE, Bergold PJ (2020) Increased behavioral deficits and inflammation in a mouse model of co-morbid traumatic brain injury and post-traumatic stress disorder. ASN Neuro 12:1759091420979567. https://doi.org/10.1177/1759091420979567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Wang H, Huang W, Liang M, Shi Y, Zhang C, Li Q, Liu M, Shou Y, Yin H, Zhu X, Sun X, Hu Y, Shen Z (2018) (+)-JQ1 attenuated LPS-induced microglial inflammation via MAPK/NFkappaB signaling. Cell Biosci 8:60. https://doi.org/10.1186/s13578-018-0258-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Yoshii T, Oishi N, Ikoma K, Nishimura I, Sakai Y, Matsuda K, Yamada S, Tanaka M, Kawata M, Narumoto J, Fukui K (2017) Brain atrophy in the visual cortex and thalamus induced by severe stress in animal model. Sci Rep 7(1):12731. https://doi.org/10.1038/s41598-017-12917-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Sun R, Zhang Z, Lei Y, Liu Y, Lu Ce, Rong H, Yu’e Sun, Zhang W, Ma Z, Gu X (2016) Hippocampal activation of microglia may underlie the shared neurobiology of comorbid posttraumatic stress disorder and chronic pain. Molecular Pain 12:1-13. https://doi.org/10.1177/1744806916679166

Download references

Funding

This work was supported by grants from the National Undergraduate Innovation and Entrepreneurship Training Program (X202210159093).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and original draft: J L. Review and editing: L T and BC S. Supervision: LL J. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Li-Li Ji.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to publish

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Tong, L., Schock, B.C. et al. Post-traumatic Stress Disorder: Focus on Neuroinflammation. Mol Neurobiol 60, 3963–3978 (2023). https://doi.org/10.1007/s12035-023-03320-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-023-03320-z

Keywords

Navigation