Skip to main content

Advertisement

Log in

Promoting Endogenous Neurogenesis as a Treatment for Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alzheimer’s disease (AD) is the most universal neurodegenerative disorder characterized by memory loss and cognitive impairment. AD is biologically defined by production and aggregation of misfolded protein including extracellular amyloid β (Aβ) peptide and intracellular microtubule-associated protein tau tangles in neurons, leading to irreversible neuronal loss. At present, regulation of endogenous neurogenesis to supplement lost neurons has been proposed as a promising strategy for treatment of AD. However, the exact underlying mechanisms of impaired neurogenesis in AD have not been fully explained and effective treatments targeting neurogenesis for AD are limited. In this review, we mainly focus on the latest research of impaired neurogenesis in AD. Then we discuss the factors affecting stages of neurogenesis and the interplay between neural stem cells (NSCs) and neurogenic niche under AD pathological conditions. This review aims to explore potential therapeutic strategies that promote endogenous neurogenesis for AD treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

AD:

Alzheimer’s disease

AHN:

Adult hippocampal neurogenesis

aNSCs:

Activated neural stem cells

APP:

Amyloid precursor protein

Aβ:

Amyloid β

BDNF:

Brain-derived neurotrophic factor

bHLH:

Basic helix-loop-helix

BMP:

Bone morphogenetic protein

BLBP:

Brain lipid-binding protein

CCK:

Cholecystokinin

CDK:

Cyclin-dependent kinase

DCX:

Doublecortin X

DG:

Dentate gyrus

Ebd1:

Earthbound1/jerky

EE:

Environmental enrichment

GABA:

γ-Aminobutyric acid

Gadd45γ:

Growth arrest and DNA damage 45 gamma

GC:

Granule cells

GCL:

Granule cell layer

GFAP:

Glial fibrillary acidic protein

IGF-1:

Insulin-like growth factor 1

Klf9:

Kruppel-like factor 9

MC:

Mossy cells

MCT1:

Monocarboxylic acid transporter 1

MFGE8:

Milk fat globule-epidermal growth factor (EGF) 8

mGluR5:

Metabotropic glutamate receptor subtype 5

MOL:

Molecular layer

NGF:

Nerve growth factor

Ngn2:

Neurogenin2

NMDA:

N-Methyl-d-aspartate

NPC:

Neural progenitor cells

NSCs:

Neural stem cells

NT-3:

Neurotrophin-3

PV:

Parvalbumin

qNSCs:

Quiescent neural stem cells

REST:

RE-1 silencing transcription factor

SGZ:

Subgranular zone

SOX2:

Sry-related HMG box transcription factor 2

SST:

Somatostatin

TLR4:

Toll-like receptor 4

VEGF:

Vascular endothelial growth factor

References

  1. Zheng JY et al (2017) Chronic Estradiol administration during the early stage of Alzheimer’s disease pathology rescues adult hippocampal neurogenesis and ameliorates cognitive deficits in Abeta1-42 mice. Mol Neurobiol 54(10):7656–7669. https://doi.org/10.1007/s12035-016-0181-z

    Article  CAS  Google Scholar 

  2. Dubois B et al (2016) Preclinical Alzheimer’s disease: definition, natural history, and diagnostic criteria. Alzheimers Dement 12(3):292–323. https://doi.org/10.1016/j.jalz.2016.02.002

    Article  Google Scholar 

  3. Winblad B et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532

    Article  Google Scholar 

  4. Reisberg B et al (2003) Memantine in moderate-to-severe Alzheimer’s disease. N Engl J Med 348(14):1333–1341. https://doi.org/10.1016/S1474-4422(16)00062-4

    Article  CAS  Google Scholar 

  5. Folch J et al (2018) Memantine for the treatment of dementia: a review on its current and future applications. J Alzheimers Dis 62(3):1223–1240. https://doi.org/10.3233/JAD-170672

    Article  CAS  Google Scholar 

  6. Meguro KOY, Akanuma K, Meguro M, Kasai M (2014) Donepezil can improve daily activities and promote rehabilitation for severe Alzheimer inverted question marks patients in long-term care health facilities. BMC Neurol 14(1):243. https://doi.org/10.1186/s12883-014-0243-7

    Article  CAS  Google Scholar 

  7. Chen YSJ, Peng S, Liao H, Zhang Y, Lehmann J (2013) Tacrine-flurbiprofen hybrids as multifunctional drug candidates for the treatment of Alzheimer’s disease. Arch Pharm (Weinheim) 346(12):865–71. https://doi.org/10.1002/ardp.201300074

    Article  CAS  Google Scholar 

  8. Hager K et al (2014) Effects of galantamine in a 2-year, randomized, placebo-controlled study in Alzheimer’s disease. Neuropsychiatr Dis Treat 10:391–401. https://doi.org/10.2147/NDT.S57909

    Article  CAS  Google Scholar 

  9. D’Onofrio G et al (2015) A pilot randomized controlled trial evaluating an integrated treatment of rivastigmine transdermal patch and cognitive stimulation in patients with Alzheimer’s disease. Int J Geriatr Psychiatry 30(9):965–975. https://doi.org/10.1002/gps.4247

    Article  Google Scholar 

  10. Brogi S et al (2014) Disease-modifying anti-Alzheimer’s drugs: inhibitors of human cholinesterases interfering with beta-amyloid aggregation. CNS Neurosci Ther 20(7):624–632. https://doi.org/10.1111/cns.12290

    Article  CAS  Google Scholar 

  11. Song C et al (2022) Immunotherapy for Alzheimer’s disease: targeting beta-amyloid and beyond. Transl Neurodegener 11(1):18. https://doi.org/10.1186/s40035-022-00292-3

    Article  CAS  Google Scholar 

  12. Dhillon S (2021) Aducanumab: First Approval. Drugs 81(12):1437–1443. https://doi.org/10.1007/s40265-021-01569-z

    Article  CAS  Google Scholar 

  13. Tariot PN, Aisen PS (2009) Can lithium or valproate untie tangles in Alzheimer’s disease? J Clin Psychiatry 70(6):919–921. https://doi.org/10.4088/jcp.09com05331

    Article  CAS  Google Scholar 

  14. Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148(6):1204–22. https://doi.org/10.1016/j.cell.2012.02.040

    Article  CAS  Google Scholar 

  15. Alexander GC, Emerson S, Kesselheim AS (2021) Evaluation of Aducanumab for Alzheimer disease: scientific evidence and regulatory review involving efficacy, safety, and futility. JAMA 325(17):1717–1718. https://doi.org/10.1001/jama.2021.3854

    Article  Google Scholar 

  16. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annu Rev Pharmacol Toxicol 43:545–584. https://doi.org/10.1146/annurev.pharmtox.43.100901.140248

    Article  CAS  Google Scholar 

  17. Haas C (2012) Strategies, development, and pitfalls of therapeutic options for Alzheimer’s disease. J Alzheimers Dis 28(2):241–281. https://doi.org/10.3233/JAD-2011-110986

    Article  Google Scholar 

  18. Anacker CHR (2017) Adult hippocampal neurogenesis and cognitive flexibility—linking memory and mood. Nat Rev Neurosci 18(6):335–446. https://doi.org/10.1038/nrn.2017.45

    Article  CAS  Google Scholar 

  19. Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobiol 138–140:1–18. https://doi.org/10.1016/j.pneurobio.2015.12.006

    Article  Google Scholar 

  20. Hainmueller T, Bartos M (2020) Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci 21(3):153–168. https://doi.org/10.1038/s41583-019-0260-z

    Article  CAS  Google Scholar 

  21. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  Google Scholar 

  22. Sahab Negah S et al (2018) Laminin-derived Ile-Lys-Val-ala-Val: a promising bioactive peptide in neural tissue engineering in traumatic brain injury. Cell Tissue Res 371(2):223–236. https://doi.org/10.1007/s00441-017-2717-6

    Article  CAS  Google Scholar 

  23. Pellegrino G et al (2018) A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 526(9):1419–1443. https://doi.org/10.1002/cne.24376

    Article  CAS  Google Scholar 

  24. Anacker C et al (2018) Hippocampal neurogenesis confers stress resilience by inhibiting the ventral dentate gyrus. Nature 559(7712):98–102. https://doi.org/10.1038/s41586-018-0262-4

    Article  CAS  Google Scholar 

  25. Sahay ASK, Hill AS, O’Carroll CM, Kheirbek MA, Burghardt NS, Fenton AA, Dranovsky A, Hen R (2011) Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation. Nature 472(7344):466–70. https://doi.org/10.1038/nature09817

    Article  CAS  Google Scholar 

  26. Altman J (1969) Autoradiographic and histological studies of postnatal neurogenesis IV Cell proliferation and migration in the anterior forebrain, with special reference to persisting neurogenesis in the olfactory bulb. J Comp Neurol 137(4):433–57. https://doi.org/10.1002/cne.901370404

    Article  CAS  Google Scholar 

  27. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319–335. https://doi.org/10.1002/cne.901240303

    Article  CAS  Google Scholar 

  28. Goncalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167(4):897–914. https://doi.org/10.1016/j.cell.2016.10.021

    Article  CAS  Google Scholar 

  29. Levone BR, Cryan JF, O’Leary OF (2015) Role of adult hippocampal neurogenesis in stress resilience. Neurobiol Stress 1:147–155. https://doi.org/10.1016/j.ynstr.2014.11.003

    Article  Google Scholar 

  30. Miller SM, Sahay A (2019) Functions of adult-born neurons in hippocampal memory interference and indexing. Nat Neurosci 22(10):1565–1575. https://doi.org/10.1038/s41593-019-0484-2

    Article  CAS  Google Scholar 

  31. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. https://doi.org/10.1016/j.cell.2008.01.033

    Article  CAS  Google Scholar 

  32. Fukuda S et al (2003) Two distinct subpopulations of nestin-positive cells in adult mouse dentate gyrus. J Neurosci 23(28):9357–9366. https://doi.org/10.1523/JNEUROSCI.23-28-09357.2003

    Article  CAS  Google Scholar 

  33. Garcia AD et al (2004) GFAP-expressing progenitors are the principal source of constitutive neurogenesis in adult mouse forebrain. Nat Neurosci 7(11):1233–1241. https://doi.org/10.1038/nn1340

    Article  CAS  Google Scholar 

  34. Suh H et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1(5):515–528. https://doi.org/10.1016/j.stem.2007.09.002

    Article  CAS  Google Scholar 

  35. Li L et al (2022) SoxD genes are required for adult neural stem cell activation. Cell Rep 38(5):110313. https://doi.org/10.1016/j.celrep.2022.110313

    Article  CAS  Google Scholar 

  36. Berg DA et al (2019) A common embryonic origin of stem cells drives developmental and adult neurogenesis. Cell 177(3):654–668. https://doi.org/10.1016/j.cell.2019.02.010

    Article  CAS  Google Scholar 

  37. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395. https://doi.org/10.1016/j.stem.2015.09.003

    Article  CAS  Google Scholar 

  38. Codega PS-VV, Paul A, Maldonado-Soto AR, Deleo AM, Pastrana E, Doetsch F (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82(3):545–59. https://doi.org/10.1016/j.neuron.2014.02.039

    Article  CAS  Google Scholar 

  39. Kronenberg G et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467(4):455–463. https://doi.org/10.1002/cne.10945

    Article  Google Scholar 

  40. Tozuka Y et al (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47(6):803–815. https://doi.org/10.1016/j.neuron.2005.08.023

    Article  CAS  Google Scholar 

  41. Dayer AG et al (2003) Short-term and long-term survival of new neurons in the rat dentate gyrus. J Comp Neurol 460(4):563–572. https://doi.org/10.1002/cne.10675

    Article  Google Scholar 

  42. Sun GJ et al (2013) Seamless reconstruction of intact adult-born neurons by serial end-block imaging reveals complex axonal guidance and development in the adult hippocampus. J Neurosci 33(28):11400–11411. https://doi.org/10.1523/JNEUROSCI.1374-13.2013

    Article  CAS  Google Scholar 

  43. Kempermann G et al (2003) Early determination and long-term persistence of adult-generated new neurons in the hippocampus of mice. Dev 130(2):391–399. https://doi.org/10.1242/dev.00203

    Article  CAS  Google Scholar 

  44. Piatti VCD-SMG, Esposito MS, Mongiat LA, Trinchero MF, Schinder AF (2011) The timing for neuronal maturation in the adult hippocampus is modulated by local network activity. J. Neurosci 31(21):7715–7728. https://doi.org/10.1523/JNEUROSCI.1380-11.2011

    Article  CAS  Google Scholar 

  45. Kempermann G et al (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452. https://doi.org/10.1016/j.tins.2004.05.013

    Article  CAS  Google Scholar 

  46. Saraulli D et al (2017) The Long Run: Neuroprotective Effects of Physical Exercise on Adult Neurogenesis from Youth to Old Age. Curr Neuropharmacol 15(4):519–533. https://doi.org/10.2174/1570159X14666160412150223

    Article  CAS  Google Scholar 

  47. Kitabatake Y et al (2007) Adult neurogenesis and hippocampal memory function: new cells, more plasticity, new memories? Neurosurg Clin N Am 18(1):105–13. https://doi.org/10.1016/j.nec.2006.10.008

    Article  Google Scholar 

  48. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7(9):a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  Google Scholar 

  49. Lazarov OMR (2010) Neurogenesis and Alzheimer’s disease: at the crossroads. Exp Neurol 223(2):267–81. https://doi.org/10.1016/j.expneurol.2009.08.009

    Article  CAS  Google Scholar 

  50. Hollands C et al (2017) Depletion of adult neurogenesis exacerbates cognitive deficits in Alzheimer’s disease by compromising hippocampal inhibition. Mol Neurodegener 12(1):64. https://doi.org/10.1186/s13024-017-0207-7

    Article  CAS  Google Scholar 

  51. Choi SH et al (2018) Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science 361(6406) https://doi.org/10.1126/science.aan8821

  52. Mu Y, Gage FH (2011) Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener 6:85. https://doi.org/10.1186/1750-1326-6-85

    Article  Google Scholar 

  53. Sorrells SF et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696):377–381. https://doi.org/10.1038/nature25975

    Article  CAS  Google Scholar 

  54. Franjic D et al (2022) Transcriptomic taxonomy and neurogenic trajectories of adult human, macaque, and pig hippocampal and entorhinal cells. Neuron 110(3):452–469. https://doi.org/10.1016/j.neuron.2021.10.036 (e14)

    Article  CAS  Google Scholar 

  55. Zhou Y et al (2022) Molecular landscapes of human hippocampal immature neurons across lifespan. Nature 607(7919):527–533. https://doi.org/10.1038/s41586-022-04912-w

    Article  CAS  Google Scholar 

  56. Flor-Garcia M et al (2020) Unraveling human adult hippocampal neurogenesis. Nat Protoc 15(2):668–693. https://doi.org/10.1038/s41596-019-0267-y

    Article  CAS  Google Scholar 

  57. Boldrini M et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(4):589–599. https://doi.org/10.1016/j.stem.2018.03.015 (e5)

    Article  CAS  Google Scholar 

  58. Spalding KL et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153(6):1219–1227. https://doi.org/10.1016/j.cell.2013.05.002

    Article  CAS  Google Scholar 

  59. Gatt A et al (2019) Expression of neurogenic markers in Alzheimer’s disease: a systematic review and metatranscriptional analysis. Neurobiol Aging 76:166–180. https://doi.org/10.1016/j.neurobiolaging.2018.12.016

    Article  CAS  Google Scholar 

  60. Perry EKJM, Ekonomou A, Perry RH, Ballard C, Attems J (2012) Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis 47(2):155–62. https://doi.org/10.1016/j.nbd.2012.03.033

    Article  CAS  Google Scholar 

  61. Moreno-Jiménez EPF-GM, Terreros-Roncal J, Rábano A, Cafini F, Pallas-Bazarra N, Ávila J, Llorens-Martín M (2019) Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer’s disease. Nat Med 25(4):554–61. https://doi.org/10.1038/s41591-019-0375-9

    Article  CAS  Google Scholar 

  62. Tobin MKMK, Disouky A, Shetti A, Bheri A, Honer WG, Kim N, Dawe RJ, Bennett DA, Arfanakis K, Lazarov O (2019) Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell 24(6):9. https://doi.org/10.1016/j.stem.2019.05.003

    Article  CAS  Google Scholar 

  63. Young JK (2020) Neurogenesis makes a crucial contribution to the neuropathology of Alzheimer’s disease. J Alzheimers Dis Rep 4(1):365–371. https://doi.org/10.3233/ADR-200218

    Article  Google Scholar 

  64. Villeda SA et al (2011) The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature 477(7362):90–94. https://doi.org/10.1038/nature10357

    Article  CAS  Google Scholar 

  65. Audesse AJ, Webb AE (2020) Mechanisms of enhanced quiescence in neural stem cell aging. Mech Ageing Dev 191:111323. https://doi.org/10.1016/j.mad.2020.111323

    Article  CAS  Google Scholar 

  66. Ermini FV et al (2008) Neurogenesis and alterations of neural stem cells in mouse models of cerebral amyloidosis. Am J Pathol 172(6):1520–8. https://doi.org/10.2353/ajpath.2008.060520

    Article  CAS  Google Scholar 

  67. Ziebell FDS, Martin-Villalba A, Marciniak-Czochra A (2018) Revealing age-related changes of adult hippocampal neurogenesis using mathematical models. Development 145(1):153544. https://doi.org/10.1242/dev.153544

    Article  CAS  Google Scholar 

  68. Encinas JM et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8(5):566–579. https://doi.org/10.1016/j.stem.2011.03.010

    Article  CAS  Google Scholar 

  69. Kalamakis G et al (2019) Quiescence modulates stem cell maintenance and regenerative capacity in the aging brain. Cell 176(6):1407–1419. https://doi.org/10.1016/j.cell.2019.01.040

    Article  CAS  Google Scholar 

  70. Maybury-Lewis SYBA, Yeary M, Sloutskin A, Dhakal S, Juven-Gershon T, Webb AE (2021) Changing and stable chromatin accessibility supports transcriptional overhaul during neural stem cell activation and is altered with age. Aging Cell 20(11):e13499. https://doi.org/10.1111/acel.13499

    Article  CAS  Google Scholar 

  71. Kobayashi T et al (2019) Enhanced lysosomal degradation maintains the quiescent state of neural stem cells. Nat Commun 10(1):5446. https://doi.org/10.1038/s41467-019-13203-4

    Article  CAS  Google Scholar 

  72. Leeman DS et al (2018) Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science 359(6381):1277–1283. https://doi.org/10.1126/science.aag3048

    Article  CAS  Google Scholar 

  73. Audesse AJ et al (2019) FOXO3 directly regulates an autophagy network to functionally regulate proteostasis in adult neural stem cells. PLoS Genet 15(4):e1008097. https://doi.org/10.1371/journal.pgen.1008097

    Article  CAS  Google Scholar 

  74. Morrow CSPT, Xu N, Arndt ZP, Ako-Asare K, Heo HJ, Thompson EAN, Moore DL (2020) Vimentin coordinates protein turnover at the aggresome during neural stem cell quiescence Exit. Cell Stem Cell 26(4):558-568.e9. https://doi.org/10.1016/j.stem.2020.01.018

    Article  CAS  Google Scholar 

  75. Wu X et al (2016) Autophagy regulates Notch degradation and modulates stem cell development and neurogenesis. Nat Commun 7:10533. https://doi.org/10.1038/ncomms10533

    Article  CAS  Google Scholar 

  76. Zhang W et al (2022) Impairment of the autophagy-lysosomal pathway in Alzheimer’s diseases: Pathogenic mechanisms and therapeutic potential. Acta Pharm Sin B 12(3):1019–1040. https://doi.org/10.1016/j.apsb.2022.01.008

    Article  CAS  Google Scholar 

  77. Yousef H et al (2015) Age-associated increase in BMP signaling inhibits hippocampal neurogenesis. Stem Cells 33(5):1577–1588. https://doi.org/10.1002/stem.1943

    Article  CAS  Google Scholar 

  78. Zhang X et al (2021) BMP4 overexpression induces the upregulation of APP/Tau and memory deficits in Alzheimer’s disease. Cell Death Discov 7(1):51. https://doi.org/10.1038/s41420-021-00435-x

    Article  CAS  Google Scholar 

  79. Nieto-Gonzalez JL et al (2019) Loss of postnatal quiescence of neural stem cells through mTOR activation upon genetic removal of cysteine string protein-alpha. Proc Natl Acad Sci U S A 116(16):8000–8009. https://doi.org/10.1073/pnas.1817183116

    Article  CAS  Google Scholar 

  80. Castro DS et al (2011) A novel function of the proneural factor Ascl1 in progenitor proliferation identified by genome-wide characterization of its targets. Genes Dev 25(9):930–945. https://doi.org/10.1101/gad.627811

    Article  CAS  Google Scholar 

  81. Sueda R et al (2019) High Hes1 expression and resultant Ascl1 suppression regulate quiescent vs active neural stem cells in the adult mouse brain. Genes Dev 33(9–10):511–523. https://doi.org/10.1101/gad.323196.118

    Article  CAS  Google Scholar 

  82. Marinopoulou E et al (2021) HES1 protein oscillations are necessary for neural stem cells to exit from quiescence. iSci 24(10):103198. https://doi.org/10.1016/j.isci.2021.103198

    Article  CAS  Google Scholar 

  83. Imayoshi I et al (2013) Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Sci 342(6163):1203–1208. https://doi.org/10.1126/science.1242366

    Article  CAS  Google Scholar 

  84. Imayoshi I et al (2010) Essential roles of Notch signaling in maintenance of neural stem cells in developing and adult brains. J Neurosci 30(9):3489–3498. https://doi.org/10.1523/JNEUROSCI.4987-09.2010

    Article  CAS  Google Scholar 

  85. Manning CS et al (2019) Quantitative single-cell live imaging links HES5 dynamics with cell-state and fate in murine neurogenesis. Nat Commun 10(1):2835. https://doi.org/10.1038/s41467-019-10734-8

    Article  CAS  Google Scholar 

  86. Blomfield IMRB, Masdeu MDM, Mulugeta E, Vaga S, van den Berg DL, Huillard E, Guillemot F, Urbán N (2019) Id4 promotes the elimination of the pro-activation factor Ascl1 to maintain quiescence of adult hippocampal stem cells. Elife 8:e48561. https://doi.org/10.7554/eLife.48561

    Article  CAS  Google Scholar 

  87. Harris L et al (2021) Coordinated changes in cellular behavior ensure the lifelong maintenance of the hippocampal stem cell population. Cell Stem Cell 28(5):863-876 e6. https://doi.org/10.1016/j.stem.2021.01.003

    Article  CAS  Google Scholar 

  88. Zhang S et al (2016) Protective effect of melatonin on soluble Abeta1-42-induced memory impairment, astrogliosis, and synaptic dysfunction via the Musashi1/Notch1/Hes1 signaling pathway in the rat hippocampus. Alzheimers Res Ther 8(1):40. https://doi.org/10.1186/s13195-016-0206-x

    Article  CAS  Google Scholar 

  89. Uchida Y et al (2007) Differential regulation of basic helix-loop-helix factors Mash1 and Olig2 by beta-amyloid accelerates both differentiation and death of cultured neural stem/progenitor cells. J Biol Chem 282(27):19700–19709. https://doi.org/10.1074/jbc.M703099200

    Article  CAS  Google Scholar 

  90. Webb AE et al (2013) FOXO3 shares common targets with ASCL1 genome-wide and inhibits ASCL1-dependent neurogenesis. Cell Rep 4(3):477–491. https://doi.org/10.1016/j.celrep.2013.06.035

    Article  CAS  Google Scholar 

  91. McAvoy KM et al (2016) Modulating neuronal competition dynamics in the dentate gyrus to rejuvenate aging memory circuits. Neuron 91(6):1356–1373. https://doi.org/10.1016/j.neuron.2016.08.009

    Article  CAS  Google Scholar 

  92. Guo N et al (2022) Transcriptional regulation of neural stem cell expansion in the adult hippocampus. Elife 11 https://doi.org/10.7554/eLife.72195

  93. Potashkin JA et al (2019) Computational identification of key genes that may regulate gene expression reprogramming in Alzheimer’s patients. PLoS One 14(9):e0222921. https://doi.org/10.1371/journal.pone.0222921

    Article  CAS  Google Scholar 

  94. Marqués-Torrejón MÁWC, Southgate B, Alfazema N, Clements MP, Garcia-Diaz C, Blin C, Arranz-Emparan N, Fraser J, Gammoh N, Parrinello S, Pollard SM (2021) LRIG1 is a gatekeeper to exit from quiescence in adult neural stem cells. Nat Commun 12(1):2594. https://doi.org/10.1038/s41467-021-22813-w

    Article  CAS  Google Scholar 

  95. Andreu Z et al (2015) The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 33(1):219–229. https://doi.org/10.1002/stem.1832

    Article  CAS  Google Scholar 

  96. Garcia-Osta A et al (2022) The cell cycle and Alzheimer s disease. Int J Mol Sci 23(3):27. https://doi.org/10.3390/ijms23031211

    Article  CAS  Google Scholar 

  97. Rosenbloom AB et al (2020) beta-Catenin signaling dynamics regulate cell fate in differentiating neural stem cells. Proc Natl Acad Sci U S A 117(46):28828–28837. https://doi.org/10.1073/pnas.2008509117

    Article  CAS  Google Scholar 

  98. Gengatharan A et al (2021) Adult neural stem cell activation in mice is regulated by the day/night cycle and intracellular calcium dynamics. Cell 184(3):709-72213 e13. https://doi.org/10.1016/j.cell.2020.12.026

    Article  CAS  Google Scholar 

  99. Cai C et al (2021) c-Myc regulates neural stem cell quiescence and activation by coordinating the cell cycle and mitochondrial remodeling. Signal Transduct Target Ther 6(1):306. https://doi.org/10.1038/s41392-021-00664-7

    Article  CAS  Google Scholar 

  100. Zhou Y et al (2018) Autocrine Mfge8 signaling prevents developmental exhaustion of the adult neural stem cell pool. Cell Stem Cell 23(3):444-452 e4. https://doi.org/10.1016/j.stem.2018.08.005

    Article  CAS  Google Scholar 

  101. Huang J et al (2021) Histone lysine methyltransferase Pr-set7/SETD8 promotes neural stem cell reactivation. EMBO Rep 22(4):e50994. https://doi.org/10.15252/embr.202050994

    Article  CAS  Google Scholar 

  102. Zelentsova K et al (2017) Protein S regulates neural stem cell quiescence and neurogenesis. Stem Cells 35(3):679–693. https://doi.org/10.1002/stem.2522

    Article  CAS  Google Scholar 

  103. Li Puma DD, Piacentini R, Grassi C (2020) Does impairment of adult neurogenesis contribute to pathophysiology of Alzheimer’s disease? A Still Open Question. Front Mol Neurosci 13:578211. https://doi.org/10.3389/fnmol.2020.578211

    Article  CAS  Google Scholar 

  104. Llorens-Martin M et al (2013) GSK-3beta overexpression causes reversible alterations on postsynaptic densities and dendritic morphology of hippocampal granule neurons in vivo. Mol Psychiatry 18(4):451–460. https://doi.org/10.1038/mp.2013.4

    Article  CAS  Google Scholar 

  105. Komuro Y et al (2015) Human tau expression reduces adult neurogenesis in a mouse model of tauopathy. Neurobiol Aging 36(6):2034–2042. https://doi.org/10.1016/j.neurobiolaging.2015.03.002

    Article  CAS  Google Scholar 

  106. Liu F et al (2020) GSK-3beta activation accelerates early-stage consumption of hippocampal neurogenesis in senescent mice. Theranostics 10(21):9674–9685. https://doi.org/10.7150/thno.43829

    Article  CAS  Google Scholar 

  107. Shimizu TKT, Inoue T, Nonaka A, Takada S, Aburatani H, Taga T (2008) Stabilized beta-catenin functions through TCF/LEF proteins and the Notch/RBP-Jkappa complex to promote proliferation and suppress differentiation of neural precursor cells. Mol Cell Biol 28(24):7427–41. https://doi.org/10.1128/MCB.01962-07

    Article  CAS  Google Scholar 

  108. Pilz GA et al (2018) Live imaging of neurogenesis in the adult mouse hippocampus. Sci 359(6376):658–662. https://doi.org/10.1126/science.aao5056

    Article  CAS  Google Scholar 

  109. Sun Y et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365–376. https://doi.org/10.1016/s0092-8674(01)00224-0

    Article  CAS  Google Scholar 

  110. Chen P et al (2016) Transfer of three transcription factors via a lentiviral vector ameliorates spatial learning and memory impairment in a mouse model of Alzheimer’s disease. Gene 587(1):59–63. https://doi.org/10.1016/j.gene.2016.04.032

    Article  CAS  Google Scholar 

  111. Raposo AASFVF, Drechsel D, Marie C, Johnston C, Dolle D, Bithell A, Gillotin S, van den Berg DLC, Ettwiller L, Flicek P, Crawford GE, Parras CM, Berninger B, Buckley NJ, Guillemot F, Castro DS (2015) Ascl1 coordinately regulates gene expression and the chromatin landscape during neurogenesis. Cell Rep 10(9):1544–1556. https://doi.org/10.1016/j.celrep.2015.02.025

    Article  CAS  Google Scholar 

  112. Vasconcelos FF et al (2016) MyT1 Counteracts the neural progenitor program to promote vertebrate neurogenesis. Cell Rep 17(2):469–483. https://doi.org/10.1016/j.celrep.2016.09.024

    Article  CAS  Google Scholar 

  113. Kapoor A, Nation DA (2021) Role of notch signaling in neurovascular aging and Alzheimer’s disease. Semin Cell Dev Biol 116:90–97. https://doi.org/10.1016/j.semcdb.2020.12.011

    Article  Google Scholar 

  114. Kim HJ et al (2015) REST regulates non-cell-autonomous neuronal differentiation and maturation of neural progenitor cells via secretogranin II. J Neurosci 35(44):14872–14884. https://doi.org/10.1523/JNEUROSCI.4286-14.2015

    Article  CAS  Google Scholar 

  115. Thiel G, Ekici M, Rossler OG (2015) RE-1 silencing transcription factor (REST): a regulator of neuronal development and neuronal/endocrine function. Cell Tissue Res 359(1):99–109. https://doi.org/10.1007/s00441-014-1963-0

    Article  CAS  Google Scholar 

  116. Gonzalez-Mundo I et al (2020) DNA methylation of the RE-1 silencing transcription factor in peripheral blood mononuclear cells and gene expression of antioxidant enzyme in patients with late-onset Alzheimer disease. Exp Gerontol 136:110951. https://doi.org/10.1016/j.exger.2020.110951

    Article  CAS  Google Scholar 

  117. Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  Google Scholar 

  118. Tashiro A et al (2006) NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature 442(7105):929–933. https://doi.org/10.1038/nature05028

    Article  CAS  Google Scholar 

  119. Zocher S et al (2021) De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 40(18):e107100. https://doi.org/10.15252/embj.2020107100

    Article  CAS  Google Scholar 

  120. Heppt J et al (2020) beta-catenin signaling modulates the tempo of dendritic growth of adult-born hippocampal neurons. EMBO J 39(21):e104472. https://doi.org/10.15252/embj.2020104472

    Article  CAS  Google Scholar 

  121. Merz KHS, Lie DC (2011) CREB in adult neurogenesis—master and partner in the development of adult-born neurons? Eur J Neurosci 33(6):1078–86. https://doi.org/10.1111/j.1460-9568.2011.07606.x

    Article  Google Scholar 

  122. Bartolotti NSL, Lazarov O (2016) Diminished CRE-induced plasticity is linked to memory deficits in familial Alzheimer’s disease Mice. J Alzheimers Dis 50(2):477–89. https://doi.org/10.3233/JAD-150650

    Article  CAS  Google Scholar 

  123. Scobie KN et al (2009) Kruppel-like factor 9 is necessary for late-phase neuronal maturation in the developing dentate gyrus and during adult hippocampal neurogenesis. J Neurosci 29(31):9875–9887. https://doi.org/10.1523/JNEUROSCI.2260-09.2009

    Article  CAS  Google Scholar 

  124. Reimann MW et al (2017) Morphological diversity strongly constrains synaptic connectivity and plasticity. Cereb Cortex 27(9):4570–4585. https://doi.org/10.1093/cercor/bhx150

    Article  Google Scholar 

  125. Mishra R et al (2022) Augmenting neurogenesis rescues memory impairments in Alzheimer's disease by restoring the memory-storing neurons. J Exp Med 219(9) https://doi.org/10.1084/jem.20220391

  126. Vicidomini C, Guo N, Sahay A (2020) Communication, cross talk, and signal integration in the adult hippocampal neurogenic niche. Neuron 105(2):220–235. https://doi.org/10.1016/j.neuron.2019.11.029

    Article  CAS  Google Scholar 

  127. Terreros-Roncal J et al (2021) Impact of neurodegenerative diseases on human adult hippocampal neurogenesis. Sci 374(6571):1106–1113. https://doi.org/10.1126/science.abl5163

    Article  CAS  Google Scholar 

  128. Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425(4):479–494. https://doi.org/10.1002/1096-9861(20001002)425:4%3c479::aid-cne2%3e3.0.co;2-3

    Article  CAS  Google Scholar 

  129. Wang J et al (2019) Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell 25(6):754–767. https://doi.org/10.1016/j.stem.2019.09.009

    Article  CAS  Google Scholar 

  130. Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20(3):148–160. https://doi.org/10.1038/s41583-019-0132-6

    Article  CAS  Google Scholar 

  131. Licht T, Keshet E (2015) The vascular niche in adult neurogenesis. Mech Dev 138(Pt 1):56–62. https://doi.org/10.1016/j.mod.2015.06.001

    Article  CAS  Google Scholar 

  132. Licht T et al (2016) VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 113(48):E7828–E7836. https://doi.org/10.1073/pnas.1609592113

    Article  CAS  Google Scholar 

  133. Delgado AC et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83(3):572–585. https://doi.org/10.1016/j.neuron.2014.06.015

    Article  CAS  Google Scholar 

  134. Zhang YL et al (2022) The relationship between amyloid-beta and brain capillary endothelial cells in Alzheimer’s disease. Neural Regen Res 17(11):2355–2363. https://doi.org/10.4103/1673-5374.335829

    Article  Google Scholar 

  135. Escartin C et al (2021) Reactive astrocyte nomenclature, definitions, and future directions. Nat Neurosci 24(3):312–325. https://doi.org/10.1038/s41593-020-00783-4

    Article  CAS  Google Scholar 

  136. Clarke LE et al (2018) Normal aging induces A1-like astrocyte reactivity. Proc Natl Acad Sci U S A 115(8):E1896–E1905. https://doi.org/10.1073/pnas.1800165115

    Article  CAS  Google Scholar 

  137. Casse F, Richetin K, Toni N (2018) Astrocytes’ contribution to adult neurogenesis in physiology and Alzheimer’s disease. Front Cell Neurosci 12:432. https://doi.org/10.3389/fncel.2018.00432

    Article  CAS  Google Scholar 

  138. Choi SS et al (2014) Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9(4):e92325. https://doi.org/10.1371/journal.pone.0092325

    Article  CAS  Google Scholar 

  139. Belenguer G et al (2021) Adult neural stem cells are alerted by systemic inflammation through TNF-alpha receptor signaling. Cell Stem Cell 28(2):285-299 e9. https://doi.org/10.1016/j.stem.2020.10.016

    Article  CAS  Google Scholar 

  140. Papouin T et al (2017) Astroglial versus neuronal D-serine: fact checking. Trends Neurosci 40(9):517–520. https://doi.org/10.1016/j.tins.2017.05.007

    Article  CAS  Google Scholar 

  141. Semenza ER et al (2021) D-cysteine is an endogenous regulator of neural progenitor cell dynamics in the mammalian brain. Proc Natl Acad Sci U S A 118(39) https://doi.org/10.1073/pnas.2110610118.

  142. Madeira C et al (2015) d-serine levels in Alzheimer’s disease: implications for novel biomarker development. Transl Psychiatry 5:e561. https://doi.org/10.1038/tp.2015.52

    Article  CAS  Google Scholar 

  143. Lie DC et al (2005) Wnt signalling regulates adult hippocampal neurogenesis. Nature 437(7063):1370–1375. https://doi.org/10.1038/nature04108

    Article  CAS  Google Scholar 

  144. Arredondo SB et al (2022) Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells https://doi.org/10.1093/stmcls/sxac027

  145. Nagu PSV, Behl T, Pathan AKA, Mehta V (2022) Molecular insights to the Wnt signaling during Alzheimer’s disorder: a potential target for therapeutic interventions. J Mol Neurosci 72(4):679–690. https://doi.org/10.1007/s12031-021-01940-5

    Article  CAS  Google Scholar 

  146. Wei-PengLi, X.-H., Neng-YuanHu, JianHu, Xiao-WenLi, Jian-MingYang, Tian-MingGao (2022) Astrocytes mediate cholinergic regulation of adult hippocampal neurogenesis and memory through M1 muscarinic receptor. Biological Psychiatry prepint https://doi.org/10.1016/j.biopsych.2022.04.019

  147. de Pins B et al (2019) Conditional BDNF delivery from astrocytes rescues memory deficits, spine density, and synaptic properties in the 5xFAD mouse model of Alzheimer disease. J Neurosci 39(13):2441–2458. https://doi.org/10.1523/JNEUROSCI.2121-18.2019

    Article  Google Scholar 

  148. Diaz-Aparicio IPI, Sierra-Torre V, Plaza-Zabala A, Rodríguez-Iglesias N, Márquez-Ropero M, Beccari S, Huguet P, Abiega O, Alberdi E, Matute C, Bernales I, Schulz A, Otrokocsi L, Sperlagh B, Happonen KE, Lemke G, Maletic-Savatic M, Valero J, Sierra A (2020) Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. J Neurosci 40(7):1453–1482. https://doi.org/10.1523/JNEUROSCI.0993-19.2019

    Article  CAS  Google Scholar 

  149. Sierra AEJ, Deudero JJ, Chancey JH, Enikolopov G, Overstreet-Wadiche LS, Tsirka SE, Maletic-Savatic M (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7(4):483–95. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  Google Scholar 

  150. Ren X et al (2022) Microglial VPS35 deficiency impairs Abeta phagocytosis and Abeta-induced disease-associated microglia, and enhances Abeta associated pathology. J Neuroinflammation 19(1):61. https://doi.org/10.1186/s12974-022-02422-0

    Article  CAS  Google Scholar 

  151. Wang J et al (2021) Nogo receptor impairs the clearance of fibril amyloid-beta by microglia and accelerates Alzheimer’s-like disease progression. Aging Cell 20(12):e13515. https://doi.org/10.1111/acel.13515

    Article  CAS  Google Scholar 

  152. Hemonnot AL et al (2019) Microglia in Alzheimer disease: well-known targets and new opportunities. Front Aging Neurosci 11:233. https://doi.org/10.3389/fnagi.2019.00233

    Article  CAS  Google Scholar 

  153. Belarbi K et al (2012) Chronic neuroinflammation impacts the recruitment of adult-born neurons into behaviorally relevant hippocampal networks. Brain Behav Immun 26(1):18–23. https://doi.org/10.1016/j.bbi.2011.07.225

    Article  CAS  Google Scholar 

  154. Pluchino S et al (2008) Persistent inflammation alters the function of the endogenous brain stem cell compartment. Brain 131(Pt 10):2564–2578. https://doi.org/10.1093/brain/awn198

    Article  Google Scholar 

  155. Yan X, Jiang E, Weng HR (2015) Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta. J Neuroinflammation 12:222. https://doi.org/10.1186/s12974-014-0222-3

    Article  CAS  Google Scholar 

  156. Zaben M et al (2021) IL-1beta and HMGB1 are anti-neurogenic to endogenous neural stem cells in the sclerotic epileptic human hippocampus. J Neuroinflammation 18(1):218. https://doi.org/10.1186/s12974-021-02265-1

    Article  CAS  Google Scholar 

  157. Dong JPY, Wu XR, He LN, Liu XD, Feng DF, Xu TL, Sun S, Xu NJ (2019) A neuronal molecular switch through cell-cell contact that regulates quiescent neural stem cells. Sci Adv 5(2):eaav416. https://doi.org/10.1126/sciadv.aav4416

    Article  CAS  Google Scholar 

  158. Diaz-Moreno M et al (2018) Noggin rescues age-related stem cell loss in the brain of senescent mice with neurodegenerative pathology. Proc Natl Acad Sci U S A 115(45):11625–11630. https://doi.org/10.1073/pnas.1813205115

    Article  CAS  Google Scholar 

  159. Yeh CY et al (2018) Mossy cells control adult neural stem cell quiescence and maintenance through a dynamic balance between direct and indirect pathways. Neuron 99(3):493–510. https://doi.org/10.1016/j.neuron.2018.07.010

    Article  CAS  Google Scholar 

  160. Chancey JH et al (2014) Hilar mossy cells provide the first glutamatergic synapses to adult-born dentate granule cells. J Neurosci 34(6):2349–2354. https://doi.org/10.1523/JNEUROSCI.3620-13.2014

    Article  CAS  Google Scholar 

  161. Tambini MD, Yao W, D’Adamio L (2019) Facilitation of glutamate, but not GABA, release in Familial Alzheimer’s APP mutant Knock-in rats with increased beta-cleavage of APP. Aging Cell 18(6):e13033. https://doi.org/10.1111/acel.13033

    Article  CAS  Google Scholar 

  162. Muller Herde A et al (2019) Metabotropic glutamate receptor subtype 5 is altered in LPS-induced murine neuroinflammation model and in the brains of AD and ALS patients. Eur J Nucl Med Mol Imaging 46(2):407–420. https://doi.org/10.1007/s00259-018-4179-9

    Article  CAS  Google Scholar 

  163. Temido-Ferreira M et al (2020) Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interplay with mGluR5 and NMDA receptors. Mol Psychiatry 25(8):1876–1900. https://doi.org/10.1038/s41380-018-0110-9

    Article  CAS  Google Scholar 

  164. Deng M et al (2020) Mossy cell synaptic dysfunction causes memory imprecision via miR-128 inhibition of STIM2 in Alzheimer’s disease mouse model. Aging Cell 19(5):e13144. https://doi.org/10.1111/acel.13144

    Article  CAS  Google Scholar 

  165. Li S et al (2022) Alzheimer-like tau accumulation in dentate gyrus mossy cells induces spatial cognitive deficits by disrupting multiple memory-related signaling and inhibiting local neural circuit. Aging Cell e13600 https://doi.org/10.1111/acel.13600

  166. Reid HMO et al (2021) Understanding changes in hippocampal interneurons subtypes in the pathogenesis of Alzheimer’s disease: a systematic review. Brain Connect 11(3):159–179. https://doi.org/10.1089/brain.2020.0879

    Article  Google Scholar 

  167. Asrican B et al (2020) Neuropeptides modulate local astrocytes to regulate adult hippocampal neural stem cells. Neuron 108(2):349–366. https://doi.org/10.1016/j.neuron.2020.07.039

    Article  CAS  Google Scholar 

  168. Heigele S et al (2016) Bidirectional GABAergic control of action potential firing in newborn hippocampal granule cells. Nat Neurosci 19(2):263–270. https://doi.org/10.1038/nn.4218

    Article  CAS  Google Scholar 

  169. Song J et al (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489(7414):150–154. https://doi.org/10.1038/nature11306

    Article  CAS  Google Scholar 

  170. Song J et al (2013) Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci 16(12):1728–1730. https://doi.org/10.1038/nn.3572

    Article  CAS  Google Scholar 

  171. Bao H et al (2017) Long-range GABAergic inputs regulate neural stem cell quiescence and control adult hippocampal neurogenesis. Cell Stem Cell 21(5):604-617 e5. https://doi.org/10.1016/j.stem.2017.10.003

    Article  CAS  Google Scholar 

  172. Zheng JLH, Tian N, Liu F, Wang L, Yin Y, Yue L, Ma L, Wan Y, Wang JZ (2020) Interneuron accumulation of phosphorylated tau impairs adult hippocampal neurogenesis by suppressing GABAergic transmission. Cell Stem Cell 26(3):331–345. https://doi.org/10.1016/j.stem.2019.12.015

    Article  CAS  Google Scholar 

  173. Gibon J, Barker PA (2017) Neurotrophins and proneurotrophins: focus on synaptic activity and plasticity in the brain. Neuroscientist 23(6):587–604. https://doi.org/10.1177/1073858417697037

    Article  CAS  Google Scholar 

  174. Yang T et al (2016) A small molecule TrkB/TrkC neurotrophin receptor co-activator with distinctive effects on neuronal survival and process outgrowth. Neuropharmacol 110(Pt A):343–361. https://doi.org/10.1016/j.neuropharm.2016.06.015

    Article  CAS  Google Scholar 

  175. Meier S et al (2019) The p75 neurotrophin receptor is required for the survival of neuronal progenitors and normal formation of the basal forebrain, striatum, thalamus and neocortex. Development 146(18) https://doi.org/10.1242/dev.181933

  176. Ng TKS et al (2019) Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): a systematic review and meta-analysis. Int J Mol Sci 20(2) https://doi.org/10.3390/ijms20020257

  177. Beeri MS, Sonnen J (2016) Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurol 86(8):702–703. https://doi.org/10.1212/WNL.0000000000002389

    Article  Google Scholar 

  178. Heese K, Low JW, Inoue N (2006) Nerve growth factor, neural stem cells and Alzheimer’s disease. Neurosignals 15(1):1–12. https://doi.org/10.1159/000094383

    Article  CAS  Google Scholar 

  179. Liew AKY, Teo CH, Soga T (2022) The molecular effects of environmental enrichment on Alzheimer’s disease. Mol Neurobiol 59(12):7095–7118. https://doi.org/10.1007/s12035-022-03016-w

    Article  CAS  Google Scholar 

  180. Gao Y et al (2020) RGS6 mediates effects of voluntary running on adult hippocampal neurogenesis. Cell Rep 32(5):107997. https://doi.org/10.1016/j.celrep.2020.108114

    Article  CAS  Google Scholar 

  181. Wrann CD et al (2013) Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab 18(5):649–659. https://doi.org/10.1016/j.cmet.2013.09.008

    Article  CAS  Google Scholar 

  182. Lourenco MV et al (2019) Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer’s models. Nat Med 25(1):165–175. https://doi.org/10.1038/s41591-018-0275-4

    Article  CAS  Google Scholar 

  183. Chen C et al (2018) The prodrug of 7,8-dihydroxyflavone development and therapeutic efficacy for treating Alzheimer’s disease. Proc Natl Acad Sci U S A 115(3):578–583. https://doi.org/10.1073/pnas.1718683115

    Article  CAS  Google Scholar 

  184. Xu XF et al (2018) Elevating integrin-linked kinase expression has rescued hippocampal neurogenesis and memory deficits in an AD animal model. Brain Res 1695:65–77. https://doi.org/10.1016/j.brainres.2018.05.024

    Article  CAS  Google Scholar 

  185. Fatt M et al (2015) Metformin acts on two different molecular pathways to enhance adult neural precursor proliferation/self-renewal and differentiation. Stem Cell Reports 5(6):988–995. https://doi.org/10.1016/j.stemcr.2015.10.014

    Article  CAS  Google Scholar 

  186. Shin SJ et al (2021) Therapeutic effects of non-saponin fraction with rich polysaccharide from Korean red ginseng on aging and Alzheimer’s disease. Free Radic Biol Med 164:233–248. https://doi.org/10.1016/j.freeradbiomed.2020.12.454

    Article  CAS  Google Scholar 

  187. Mao J et al (2015) A herbal medicine for Alzheimer’s disease and its active constituents promote neural progenitor proliferation. Aging Cell 14(5):784–796. https://doi.org/10.1111/acel.12356

    Article  CAS  Google Scholar 

  188. Huang S et al (2017) Polysaccharides from Ganoderma lucidum promote cognitive function and neural progenitor proliferation in mouse model of Alzheimer’s disease. Stem Cell Reports 8(1):84–94. https://doi.org/10.1016/j.stemcr.2016.12.007

    Article  CAS  Google Scholar 

  189. Stuart T, Satija R (2019) Integrative single-cell analysis. Nat Rev Genet 20(5):257–272. https://doi.org/10.1038/s41576-019-0093-7

    Article  CAS  Google Scholar 

  190. Paiva I et al 2022 Caffeine intake exerts dual genome-wide effects on hippocampal metabolism and learning-dependent transcription. J Clin Invest https://doi.org/10.1172/JCI149371

  191. Chavoshinezhad S et al (2021) Optogenetic stimulation of entorhinal cortex reveals the implication of insulin signaling in adult rat’s hippocampal neurogenesis. Prog Neuropsychopharmacol Biol Psychiatry 111:110344. https://doi.org/10.1016/j.pnpbp.2021.110344

    Article  CAS  Google Scholar 

  192. Liang H et al (2019) Region-specific and activity-dependent regulation of SVZ neurogenesis and recovery after stroke. Proc Natl Acad Sci U S A 116(27):13621–13630. https://doi.org/10.1073/pnas.1811825116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

This review was supported by funding from Science and Technology Development Planning Program of Jilin Province (20190304029YY), Changchun Science and Technology Planning Project (21ZY18).

Author information

Authors and Affiliations

Authors

Contributions

Qiang Zhang conceived the review and drafted the manuscript. Jingyue Liu helped with editing and modifying the manuscript. Li Chen and Ming Zhang designed and revised this review. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Chen or Ming Zhang.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

All authors give their consent for publication.

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, J., Chen, L. et al. Promoting Endogenous Neurogenesis as a Treatment for Alzheimer’s Disease. Mol Neurobiol 60, 1353–1368 (2023). https://doi.org/10.1007/s12035-022-03145-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03145-2

Keywords

Navigation