Skip to main content
Log in

Off the Clock: the Non-canonical Roles of Cyclin-Dependent Kinases in Neural and Glioma Stem Cell Self-Renewal

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glioma stem cells (GSCs) are thought to drive growth and therapy resistance in glioblastoma (GBM) by “hijacking” at least a subset of signaling pathways active in normal neural stem cells (NSCs). Though the origins of GSCs still remain elusive, uncovering the mechanisms of self-renewing division and cell differentiation in normal NSCs has shed light on their dysfunction in GSCs. However, the distinction between self-renewing division pathways utilized by NSC and GSC becomes critical when considering options for therapeutically targeting signaling pathways that are specifically active or altered in GSCs. It is well-established that cyclin-dependent kinases (CDKs) regulate the cell cycle, yet more recent studies have shown that CDKs also play important roles in the regulation of neuronal survival, metabolism, differentiation, and self-renewal. The intimate relationship between cell cycle regulation and the cellular programs that determine self-renewing division versus cell differentiation is only beginning to be understood, yet seems to suggest potential differential vulnerabilities in GSCs. In this timely review, we focus on the role of CDKs in regulating the self-renewal properties of normal NSCs and GSCs, highlighting novel opportunities to therapeutically target self-renewing signaling pathways specifically in GBM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Flemming W (1965) Contributions to the knowledge of the cell and its vital processes. J Cell Biol 25(1):3–69

    Article  CAS  Google Scholar 

  2. Bischoff M, Parfitt DE, Zernicka-Goetz M (2008) Formation of the embryonic-abembryonic axis of the mouse blastocyst: relationships between orientation of early cleavage divisions and pattern of symmetric/asymmetric divisions. Development 135(5):953–962. https://doi.org/10.1242/dev.014316

    Article  CAS  PubMed  Google Scholar 

  3. Piotrowska-Nitsche K, Zernicka-Goetz M (2005) Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech Dev 122(4):487–500. https://doi.org/10.1016/j.mod.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  4. Tabansky I, Lenarcic A, Draft RW, Loulier K, Keskin DB, Rosains J, Rivera-Feliciano J, Lichtman JW et al (2013) Developmental bias in cleavage-stage mouse blastomeres. Curr Biol 23(1):21–31. https://doi.org/10.1016/j.cub.2012.10.054

    Article  CAS  PubMed  Google Scholar 

  5. Burton A, Muller J, Tu S, Padilla-Longoria P, Guccione E, Torres-Padilla ME (2013) Single-cell profiling of epigenetic modifiers identifies PRDM14 as an inducer of cell fate in the mammalian embryo. Cell Rep 5(3):687–701. https://doi.org/10.1016/j.celrep.2013.09.044

    Article  CAS  PubMed  Google Scholar 

  6. Plachta N, Bollenbach T, Pease S, Fraser SE, Pantazis P (2011) Oct4 kinetics predict cell lineage patterning in the early mammalian embryo. Nat Cell Biol 13(2):117–123. https://doi.org/10.1038/ncb2154

    Article  CAS  PubMed  Google Scholar 

  7. Torres-Padilla ME, Parfitt DE, Kouzarides T, Zernicka-Goetz M (2007) Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445(7124):214–218. https://doi.org/10.1038/nature05458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conklin EG (1905) Mosaic development in ascidian eggs. J Exp Zool 2(2):145–223. https://doi.org/10.1002/jez.1400020202

    Article  Google Scholar 

  9. Keller GM (1995) In vitro differentiation of embryonic stem cells. Curr Opin Cell Biol 7(6):862–869. https://doi.org/10.1016/0955-0674(95)80071-9

    Article  CAS  PubMed  Google Scholar 

  10. Surani MA, Hayashi K, Hajkova P (2007) Genetic and epigenetic regulators of pluripotency. Cell 128(4):747–762. https://doi.org/10.1016/j.cell.2007.02.010

    Article  CAS  PubMed  Google Scholar 

  11. Dhara SK, Stice SL (2008) Neural differentiation of human embryonic stem cells. J Cell Biochem 105(3):633–640. https://doi.org/10.1002/jcb.21891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mukherjee S, Kong J, Brat DJ (2015) Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 24(4):405–416. https://doi.org/10.1089/scd.2014.0442

    Article  PubMed  Google Scholar 

  13. Lewis KM, Petritsch C (2013) Asymmetric cell division: implications for glioma development and treatment. Transl Neurosci 4(4):484–503. https://doi.org/10.2478/s13380-013-0148-8

    Article  PubMed  Google Scholar 

  14. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Dev 140(15):3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  Google Scholar 

  15. He S, Nakada D, Morrison SJ (2009) Mechanisms of stem cell self-renewal. Annu Rev Cell Dev Biol 25:377–406. https://doi.org/10.1146/annurev.cellbio.042308.113248

    Article  CAS  PubMed  Google Scholar 

  16. Silva-Vargas V, Delgado AC, Doetsch F (2018) Symmetric Stem Cell Division at the Heart of Adult Neurogenesis. Neuron 98(2):246–248. https://doi.org/10.1016/j.neuron.2018.04.005

    Article  CAS  PubMed  Google Scholar 

  17. Beach D, Durkacz B, Nurse P (1982) Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300(5894):706–709. https://doi.org/10.1038/300706a0

    Article  CAS  PubMed  Google Scholar 

  18. Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T (1983) Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33(2):389–396. https://doi.org/10.1016/0092-8674(83)90420-8

    Article  CAS  PubMed  Google Scholar 

  19. Nurse P, Thuriaux P (1980) Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96(3):627–637

    Article  CAS  Google Scholar 

  20. Nurse P, Thuriaux P, Nasmyth K (1976) Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 146(2):167–178. https://doi.org/10.1007/BF00268085

    Article  CAS  PubMed  Google Scholar 

  21. Reed SI, Ferguson J, Groppe JC (1982) Preliminary characterization of the transcriptional and translational products of the Saccharomyces cerevisiae cell division cycle gene CDC28. Mol Cell Biol 2(4):412–425. https://doi.org/10.1128/mcb.2.4.412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sherr CJ (1994) G1 phase progression: cycling on cue. Cell 79(4):551–555. https://doi.org/10.1016/0092-8674(94)90540-1

    Article  CAS  PubMed  Google Scholar 

  23. Sherr CJ (1996) Cancer cell cycles. Sci 274(5293):1672–1677. https://doi.org/10.1126/science.274.5293.1672

    Article  CAS  Google Scholar 

  24. Pavletich NP (1999) Mechanisms of cyclin-dependent kinase regulation: structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287(5):821–828. https://doi.org/10.1006/jmbi.1999.2640

    Article  CAS  PubMed  Google Scholar 

  25. Shah K, Lahiri DK (2014) Cdk5 activity in the brain - multiple paths of regulation. J Cell Sci 127(Pt 11):2391–2400. https://doi.org/10.1242/jcs.147553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagace DC, Benavides DR, Kansy JW, Mapelli M, Greengard P, Bibb JA, Eisch AJ (2008) Cdk5 is essential for adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 105(47):18567–18571. https://doi.org/10.1073/pnas.0810137105

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shupp A, Casimiro MC, Pestell RG (2017) Biological functions of CDK5 and potential CDK5 targeted clinical treatments. Oncotarget 8(10):17373–17382. https://doi.org/10.18632/oncotarget.14538

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lew J, Beaudette K, Litwin CM, Wang JH (1992) Purification and characterization of a novel proline-directed protein kinase from bovine brain. J Biol Chem 267(19):13383–13390. https://doi.org/10.1016/S0021-9258(18)42222-3

    Article  CAS  PubMed  Google Scholar 

  29. Wang X, Tsai JW, Imai JH, Lian WN, Vallee RB, Shi SH (2009) Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 461(7266):947–955. https://doi.org/10.1038/nature08435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Costa MR, Wen G, Lepier A, Schroeder T, Gotz M (2008) Par-complex proteins promote proliferative progenitor divisions in the developing mouse cerebral cortex. Dev 135(1):11–22. https://doi.org/10.1242/dev.009951

    Article  CAS  Google Scholar 

  31. Morales AV, Mira H (2019) Adult Neural Stem Cells: Born to Last. Front Cell Dev Biol 7:96. https://doi.org/10.3389/fcell.2019.00096

    Article  PubMed  PubMed Central  Google Scholar 

  32. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Hanecker P, Ayers-Ringler J et al (2011) Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell 20(3):328–340. https://doi.org/10.1016/j.ccr.2011.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Louis DN, Perry A, Wesseling P, Brat DJ, Cree IA, Figarella-Branger D, Hawkins C, Ng HK et al (2021) The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro Oncol 23(8):1231–1251. https://doi.org/10.1093/neuonc/noab106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Beck B, Blanpain C (2013) Unravelling cancer stem cell potential. Nat Rev Cancer 13(10):727–738. https://doi.org/10.1038/nrc3597

    Article  CAS  PubMed  Google Scholar 

  35. Hitomi M, Chumakova AP, Silver DJ, Knudsen AM, Pontius WD, Murphy S, Anand N, Kristensen BW et al (2021) Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells. JCI Insight 6 (3). https://doi.org/10.1172/jci.insight.130510

  36. Lathia JD, Hitomi M, Gallagher J, Gadani SP, Adkins J, Vasanji A, Liu L, Eyler CE et al (2011) Distribution of CD133 reveals glioma stem cells self-renew through symmetric and asymmetric cell divisions. Cell Death Dis 2:e200. https://doi.org/10.1038/cddis.2011.80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. https://doi.org/10.1038/35102167

    Article  CAS  PubMed  Google Scholar 

  38. Xiang H, Yuan L, Gao X, Alexander PB, Lopez O, Lau C, Ding Y, Chong M et al (2017) UHRF1 is required for basal stem cell proliferation in response to airway injury. Cell Discov 3:17019. https://doi.org/10.1038/celldisc.2017.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lee JH, Lee JE, Kahng JY, Kim SH, Park JS, Yoon SJ, Um JY, Kim WK et al (2018) Human glioblastoma arises from subventricular zone cells with low-level driver mutations. Nature 560(7717):243–247. https://doi.org/10.1038/s41586-018-0389-3

    Article  CAS  PubMed  Google Scholar 

  40. Yamaki T, Shibahra I, Matsuda KI, Kanemura Y, Konta T, Kanamori M, Yamakawa M, Tominaga T et al (2020) Relationships between recurrence patterns and subventricular zone involvement or CD133 expression in glioblastoma. J Neurooncol 146(3):489–499. https://doi.org/10.1007/s11060-019-03381-y

    Article  CAS  PubMed  Google Scholar 

  41. Kwan K, Schneider JR, Patel NV, Boockvar JA (2019) Tracing the Origin of Glioblastoma: Subventricular Zone Neural Stem Cells. Neurosurg 84(1):E15-e16. https://doi.org/10.1093/neuros/nyy512

    Article  Google Scholar 

  42. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Lee EY, Zhu Y (2009) Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell 15(6):514–526. https://doi.org/10.1016/j.ccr.2009.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Daniel PM, Filiz G, Brown DV, Christie M, Waring PM, Zhang Y, Haynes JM, Pouton C et al (2018) PI3K activation in neural stem cells drives tumorigenesis which can be ameliorated by targeting the cAMP response element binding protein. Neuro Oncol 20(10):1344–1355. https://doi.org/10.1093/neuonc/noy068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Abel TW, Clark C, Bierie B, Chytil A, Aakre M, Gorska A, Moses HL (2009) GFAP-Cre-mediated activation of oncogenic K-ras results in expansion of the subventricular zone and infiltrating glioma. Mol Cancer Res 7(5):645–653. https://doi.org/10.1158/1541-7786.Mcr-08-0477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Duan S, Yuan G, Liu X, Ren R, Li J, Zhang W, Wu J, Xu X et al (2015) PTEN deficiency reprogrammes human neural stem cells towards a glioblastoma stem cell-like phenotype. Nat Commun 6(1):10068. https://doi.org/10.1038/ncomms10068

    Article  CAS  PubMed  Google Scholar 

  46. Zhang G-L, Wang C-F, Qian C, Ji Y-X, Wang Y-Z (2021) Role and mechanism of neural stem cells of the subventricular zone in glioblastoma. World J Stem Cells 13(7):877–893. https://doi.org/10.4252/wjsc.v13.i7.877

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gimple RC, Bhargava S, Dixit D, Rich JN (2019) Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev 33(11–12):591–609. https://doi.org/10.1101/gad.324301.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Piper K, DePledge L, Karsy M, Cobbs C (2021) Glioma Stem Cells as Immunotherapeutic Targets: Advancements and Challenges. Frontiers Oncol 11. https://doi.org/10.3389/fonc.2021.615704

  49. Calegari F, Haubensak W, Haffner C, Huttner WB (2005) Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development. J Neurosci 25(28):6533–6538. https://doi.org/10.1523/JNEUROSCI.0778-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331. https://doi.org/10.1016/j.stem.2009.05.026

    Article  CAS  PubMed  Google Scholar 

  51. Chirivella L, Kirstein M, Ferron SR, Domingo-Muelas A, Durupt FC, Acosta-Umanzor C, Cano-Jaimez M, Perez-Sanchez F et al (2017) Cyclin-dependent kinase 4 regulates adult neural stem cell proliferation and differentiation in response to insulin. Stem Cells 35(12):2403–2416. https://doi.org/10.1002/stem.2694

    Article  CAS  PubMed  Google Scholar 

  52. Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116(Pt 24):4947–4955. https://doi.org/10.1242/jcs.00825

    Article  CAS  PubMed  Google Scholar 

  53. Pevny LH, Nicolis SK (2010) Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42(3):421–424. https://doi.org/10.1016/j.biocel.2009.08.018

    Article  CAS  PubMed  Google Scholar 

  54. Lim S, Bhinge A, Bragado Alonso S, Aksoy I, Aprea J, Cheok CF, Calegari F, Stanton LW, Kaldis P (2017) Cyclin-dependent kinase-dependent phosphorylation of Sox2 at serine 39 regulates neurogenesis. Mol Cell Biol 37 (16). https://doi.org/10.1128/MCB.00201-17

  55. Ali F, Hindley C, McDowell G, Deibler R, Jones A, Kirschner M, Guillemot F, Philpott A (2011) Cell cycle-regulated multi-site phosphorylation of Neurogenin 2 coordinates cell cycling with differentiation during neurogenesis. Dev 138(19):4267–4277. https://doi.org/10.1242/dev.067900

    Article  CAS  Google Scholar 

  56. Zheng X, Boyer L, Jin M, Mertens J, Kim Y, Ma L, Ma L, Hamm M et al (2016) Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation. Life 5:e13374. https://doi.org/10.7554/eLife.13374

    Article  CAS  Google Scholar 

  57. Wang J, Huang Y, Cai J, Ke Q, Xiao J, Huang W, Li H, Qiu Y et al (2018) A nestin-cyclin-dependent kinase 5-dynamin-related protein 1 axis regulates neural stem/progenitor cell stemness via a metabolic shift. Stem Cells 36(4):589–601. https://doi.org/10.1002/stem.2769

    Article  CAS  PubMed  Google Scholar 

  58. Zheng YL, Li BS, Rudrabhatla P, Shukla V, Amin ND, Maric D, Kesavapany S, Kanungo J et al (2010) Phosphorylation of p27Kip1 at Thr187 by cyclin-dependent kinase 5 modulates neural stem cell differentiation. Mol Biol Cell 21(20):3601–3614. https://doi.org/10.1091/mbc.E10-01-0054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Altea-Manzano P, Cuadros AM, Broadfield LA, Fendt SM (2020) Nutrient metabolism and cancer in the in vivo context: a metabolic game of give and take. EMBO Rep 21(10):e50635. https://doi.org/10.15252/embr.202050635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, Li Y (2021) Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther 6(1):263. https://doi.org/10.1038/s41392-021-00658-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Dundar B, Markwell SM, Sharma NV, Olson CL, Mukherjee S, Brat DJ (2020) Methods for in vitro modeling of glioma invasion: choosing tools to meet the need. Glia 68(11):2173–2191. https://doi.org/10.1002/glia.23813

    Article  PubMed  Google Scholar 

  62. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14(3):275–291. https://doi.org/10.1016/j.stem.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  63. Brooks MD, Burness ML, Wicha MS (2015) Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 17(3):260–271. https://doi.org/10.1016/j.stem.2015.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hambardzumyan D, Bergers G (2015) Glioblastoma: defining tumor niches. Trends Cancer 1(4):252–265. https://doi.org/10.1016/j.trecan.2015.10.009

    Article  PubMed  PubMed Central  Google Scholar 

  65. Wang Q, Hu B, Hu X, Kim H, Squatrito M, Scarpace L, deCarvalho AC, Lyu S et al (2017) Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell 32(1):42-56.e46. https://doi.org/10.1016/j.ccell.2017.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yang X, Xiao Z, Du X, Huang L, Du G (2017) Silencing of the long non-coding RNA NEAT1 suppresses glioma stem-like properties through modulation of the miR-107/CDK6 pathway. Oncol Rep 37(1):555–562. https://doi.org/10.3892/or.2016.5266

    Article  PubMed  Google Scholar 

  67. Jung J, Gilbert MR, Park DM (2016) Isolation and propagation of glioma stem cells from acutely resected tumors. Methods Mol Biol 1516:361–369. https://doi.org/10.1007/7651_2016_342

    Article  CAS  PubMed  Google Scholar 

  68. Codrici E, Enciu AM, Popescu ID, Mihai S, Tanase C (2016) Glioma stem cells and their microenvironments: providers of challenging therapeutic targets. Stem Cells Int 2016:5728438. https://doi.org/10.1155/2016/5728438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liebelt BD, Shingu T, Zhou X, Ren J, Shin SA, Hu J (2016) Glioma stem cells: signaling, microenvironment, and therapy. Stem Cells Int 2016:7849890. https://doi.org/10.1155/2016/7849890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim SS, Pirollo KF, Chang EH (2015) Isolation and culturing of glioma cancer stem cells. Curr Protoc Cell Biol 67(23):10 21-23 10 10. https://doi.org/10.1002/0471143030.cb2310s67

    Article  Google Scholar 

  71. Beier D, Schriefer B, Brawanski K, Hau P, Weis J, Schulz JB, Beier CP (2012) Efficacy of clinically relevant temozolomide dosing schemes in glioblastoma cancer stem cell lines. J Neurooncol 109(1):45–52. https://doi.org/10.1007/s11060-012-0878-4

    Article  CAS  PubMed  Google Scholar 

  72. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG, Parada LF (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488(7412):522–526. https://doi.org/10.1038/nature11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lathia JD, Gallagher J, Myers JT, Li M, Vasanji A, McLendon RE, Hjelmeland AB, Huang AY et al (2011) Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells. PLoS One 6(9):e24807. https://doi.org/10.1371/journal.pone.0024807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Li X, Martinez-Ledesma E, Zhang C, Gao F, Zheng S, Ding J, Wu S, Nguyen N et al (2019) Tie2-FGFR1 interaction induces adaptive PI3K inhibitor resistance by upregulating Aurora A/PLK1/CDK1 signaling in glioblastoma. Cancer Res 79(19):5088–5101. https://doi.org/10.1158/0008-5472.CAN-19-0325

    Article  CAS  PubMed  Google Scholar 

  75. Li M, Xiao A, Floyd D, Olmez I, Lee J, Godlewski J, Bronisz A, Bhat KPL et al (2017) CDK4/6 inhibition is more active against the glioblastoma proneural subtype. Oncotarget 8(33):55319–55331. https://doi.org/10.18632/oncotarget.19429

    Article  PubMed  PubMed Central  Google Scholar 

  76. Xie Q, Wu Q, Horbinski CM, Flavahan WA, Yang K, Zhou W, Dombrowski SM, Huang Z et al (2015) Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18(4):501–510. https://doi.org/10.1038/nn.3960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Suva ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD, Riggi N, Chi AS et al (2014) Reconstructing and reprogramming the tumor-propagating potential of glioblastoma stem-like cells. Cell 157(3):580–594. https://doi.org/10.1016/j.cell.2014.02.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mukherjee S, Tucker-Burden C, Kaissi E, Newsam A, Duggireddy H, Chau M, Zhang C, Diwedi B et al (2018) CDK5 inhibition resolves PKA/cAMP-independent activation of CREB1 signaling in glioma stem cells. Cell Rep 23(6):1651–1664. https://doi.org/10.1016/j.celrep.2018.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ning JF, Stanciu M, Humphrey MR, Gorham J, Wakimoto H, Nishihara R, Lees J, Zou L et al (2019) Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nat Commun 10(1):2910. https://doi.org/10.1038/s41467-019-10993-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Xie Q, Wu Q, Kim L, Miller TE, Liau BB, Mack SC, Yang K, Factor DC et al (2016) RBPJ maintains brain tumor-initiating cells through CDK9-mediated transcriptional elongation. J Clin Invest 126(7):2757–2772. https://doi.org/10.1172/JCI86114

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang J, Wang H, Li Z, Wu Q, Lathia JD, McLendon RE, Hjelmeland AB, Rich JN (2008) c-Myc is required for maintenance of glioma cancer stem cells. PLoS One 3(11):e3769. https://doi.org/10.1371/journal.pone.0003769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fukasawa K, Kadota T, Horie T, Tokumura K, Terada R, Kitaguchi Y, Park G, Ochiai S et al (2021) CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene 40(15):2803–2815. https://doi.org/10.1038/s41388-021-01745-1

    Article  CAS  PubMed  Google Scholar 

  83. Dews M, Fox JL, Hultine S, Sundaram P, Wang W, Liu YY, Furth E, Enders GH et al (2010) The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Can Res 70(20):8233–8246. https://doi.org/10.1158/0008-5472.CAN-10-2412

    Article  CAS  Google Scholar 

  84. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR et al (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110(21):8644–8649. https://doi.org/10.1073/pnas.1221478110

    Article  PubMed  PubMed Central  Google Scholar 

  85. Juric V, Murphy B (2020) Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. Cancer Drug Resist 3(1):48–62. https://doi.org/10.20517/cdr.2019.105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lubanska D, Porter L (2017) Revisiting CDK inhibitors for treatment of glioblastoma multiforme. Drugs R D 17(2):255–263. https://doi.org/10.1007/s40268-017-0180-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Le Rhun E, von Achenbach C, Lohmann B, Silginer M, Schneider H, Meetze K, Szabo E, Weller M (2019) Profound, durable and MGMT-independent sensitivity of glioblastoma cells to cyclin-dependent kinase inhibition. Int J Cancer 145(1):242–253. https://doi.org/10.1002/ijc.32069

    Article  CAS  PubMed  Google Scholar 

  88. Su Y-T, Chen R, Wang H, Song H, Zhang Q, Chen L-Y, Lappin H, Vasconcelos G et al (2018) Novel targeting of transcription and metabolism in glioblastoma. Clin Cancer Res 24(5):1124–1137. https://doi.org/10.1158/1078-0432.CCR-17-2032

    Article  CAS  PubMed  Google Scholar 

  89. Wu J, Yuan Y, Long Priel DA, Fink D, Peer CJ, Sissung TM, Su Y-T, Pang Y et al (2021) Phase I study of zotiraciclib in combination with temozolomide for patients with recurrent high-grade astrocytomas. Clin Cancer Res 27(12):3298–3306. https://doi.org/10.1158/1078-0432.CCR-20-4730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Lee's Pharmaceutical L (2020) Phase I clinical study of oral TG02 capsule in the treatment of recurrent progressive high-grade glioma patients. https://ClinicalTrials.gov/show/NCT03904628.

  91. National Cancer I, National Institutes of Health Clinical C (2020) Zotiraciclib (TG02) Plus dose-dense or metronomic temozolomide followed by randomized phase II trial of zotiraciclib (TG02) plus temozolomide versus temozolomide alone in adults with recurrent anaplastic astrocytoma and glioblastoma. https://ClinicalTrials.gov/show/NCT02942264.

  92. European Organisation for R, Treatment of Cancer E, Tragara Pharmaceuticals I (2022) Study of TG02 in elderly newly diagnosed or adult relapsed patients with anaplastic astrocytoma or glioblastoma. https://ClinicalTrials.gov/show/NCT03224104.

  93. Ranjan A, Pang Y, Butler M, Merchant M, Kim O, Yu G, Su Y-T, Gilbert MR et al (2021) Targeting CDK9 for the treatment of glioblastoma. Cancers (Basel) 13(12):3039. https://doi.org/10.3390/cancers13123039

    Article  CAS  Google Scholar 

  94. Patnaik A, Rosen LS, Tolaney SM, Tolcher AW, Goldman JW, Gandhi L, Papadopoulos KP, Beeram M et al (2016) Efficacy and safety of abemaciclib, an inhibitor of CDK4 and CDK6, for patients with breast cancer, non-small cell lung cancer, and other solid tumors. Cancer Discov 6(7):740–753. https://doi.org/10.1158/2159-8290.Cd-16-0095

    Article  CAS  PubMed  Google Scholar 

  95. Noonan JJ, Jarzabek M, Lincoln FA, Cavanagh BL, Pariag AR, Juric V, Young LS, Ligon KL et al (2019) Implementing patient-derived xenografts to assess the effectiveness of cyclin-dependent kinase inhibitors in glioblastoma. Cancers (Basel) 11 (12). https://doi.org/10.3390/cancers11122005

  96. Juric V, Düssmann H, Lamfers MLM, Prehn JHM, Rehm M, Murphy BM (2021) Transcriptional CDK Inhibitors CYC065 and THZ1 induce apoptosis in glioma stem cells derived from recurrent GBM. Cells 10 (5). https://doi.org/10.3390/cells10051182

  97. Poratti M, Marzaro G (2019) Third-generation CDK inhibitors: a review on the synthesis and binding modes of Palbociclib, Ribociclib and Abemaciclib. Eur J Med Chem 172:143–153. https://doi.org/10.1016/j.ejmech.2019.03.064

    Article  CAS  PubMed  Google Scholar 

  98. Ding L, Cao J, Lin W, Chen H, Xiong X, Ao H, Yu M, Lin J et al (2020) The roles of cyclin-dependent kinases in cell-cycle progression and therapeutic strategies in human breast cancer. Int J Mol Sci 21 (6). https://doi.org/10.3390/ijms21061960

  99. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15(6):122. https://doi.org/10.1186/gb4184

    Article  PubMed  PubMed Central  Google Scholar 

  100. Lai L, Shin GY, Qiu H (2020) The role of cell cycle regulators in cell survival-dual functions of cyclin-dependent kinase 20 and p21(Cip1/Waf1). Int J Mol Sci 21 (22). https://doi.org/10.3390/ijms21228504

Download references

Funding

This work is supported by NIH grant R01CA214928.

Author information

Authors and Affiliations

Authors

Contributions

LKS and SM are equal contributors.

Corresponding author

Correspondence to Daniel J. Brat.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Research Involving Human Participants and/or Animals

Not applicable.

Other

All figures and tables were created with BioRender.com.

Competing Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shih, LK., Mukherjee, S. & Brat, D.J. Off the Clock: the Non-canonical Roles of Cyclin-Dependent Kinases in Neural and Glioma Stem Cell Self-Renewal. Mol Neurobiol 59, 6805–6816 (2022). https://doi.org/10.1007/s12035-022-03009-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-03009-9

Keywords

Navigation