Skip to main content

Advertisement

Log in

circDlgap4 Alleviates Cerebral Ischaemic Injury by Binding to AUF1 to Suppress Oxidative Stress and Neuroinflammation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Ischaemic stroke is one of the most common causes of mortality and morbidity.circDlgap4 has been implicated in ischemia/reperfusion injury through an unknown mechanism. Here, we studied the function of circDlgap4/AUF1 in ischaemic stroke and its underlying molecular mechanism. N2a cells and primary mouse cortical neurons were subjected to OGD to mimic neuronal injury during ischemia. BV-2 cells were treated with LPS to mimic neuroinflammation. The MTT assay was used to assess cell viability, while flow cytometry was used to measure cell apoptosis. qRT–PCR, western blotting, immunohistochemistry, and immunostaining were employed to determine the levels of circDlgap4, AUF1, NRF2/HO-1, proinflammatory cytokines, NF-κB pathway–related proteins, and IBA-1. RIP and RNA pulldown assays were employed to validate the interactions of circDlgap4/AUF1, AUF1/NRF2, and AUF1/cytokine mRNAs. mRNA degradation was used to determine the effects on mRNA stability. The tMCAO model was used as an in vivo model of ischaemic stroke. TCC staining and neurological scoring were performed to evaluate ischaemic injury. circDlgap4 was decreased following OGD and during tMCAO. circDlgap4 overexpression inhibited OGD-induced cell death and oxidative stress and LPS-induced increases in proinflammatory cytokines by increasing NRF2/HO-1. Knockdown of AUF1 blocked the effects of circDlgap4 overexpression. Mechanistically, RIP, RNA pulldown, and mRNA degradation assay results showed circDlgap4/AUF1/NRF2 mRNA formed a complex to stabilize NRF2 mRNA. Furthermore, AUF1 directly interacted with TNF-α, IL-1β, and COX-2 mRNAs, and circDlgap4/AUF1 binding promoted the degradation of these mRNAs. Finally, circDlgap4 ameliorated ischaemic injury in vivo. circDlgap4 alleviates ischaemic stroke injury by suppressing oxidative stress and neuroinflammation by binding to AUF1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

Abbreviations

circRNAs:

Circular RNAs

AUF1:

AU-rich element RNA-binding protein 1

DMEM:

Dulbecco’s modified Eagle medium

OGD:

Oxygen and glucose deprivation

LPS:

Lipopolysaccharide

PI:

Propidium iodide

ELISA:

Enzyme-linked immunosorbent assay

RIP:

RNA Immunoprecipitation

tMCAO :

Transient middle cerebral artery occlusion

TTC:

Triphenyltetrazolium chloride

ROS:

Reactive oxygen species

References

  1. Lee RHC, Lee MHH, Wu CYC, Couto ESA, Possoit HE, Hsieh TH, Minagar A, Lin HW (2018) Cerebral ischemia and neuroregeneration. Neural Regen Res 13(3):373–385. https://doi.org/10.4103/1673-5374.228711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Soler EP, Ruiz VC (2010) Epidemiology and risk factors of cerebral ischemia and ischemic heart diseases: similarities and differences. Curr Cardiol Rev 6(3):138–149. https://doi.org/10.2174/157340310791658785

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH (2011) Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 14(8):1505–1517. https://doi.org/10.1089/ars.2010.3576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kawabori M, Yenari MA (2015) Inflammatory responses in brain ischemia. Curr Med Chem 22(10):1258–1277. https://doi.org/10.2174/0929867322666150209154036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barrett SP, Salzman J (2016) Circular RNAs: analysis, expression and potential functions. Development 143(11):1838–1847. https://doi.org/10.1242/dev.128074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Haddad G, Lorenzen JM (2019) Biogenesis and function of circular RNAs in Health and in disease. Front Pharmacol 10:428. https://doi.org/10.3389/fphar.2019.00428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang J, Chen M, Cao RY, Li Q, Zhu F (2018) The role of circular RNAs in cerebral ischemic diseases: ischemic stroke and cerebral ischemia/reperfusion injury. Adv Exp Med Biol 1087:309–325. https://doi.org/10.1007/978-981-13-1426-1_25

    Article  CAS  PubMed  Google Scholar 

  8. Wu F, Han B, Wu S, Yang L, Leng S, Li M, Liao J, Wang G, Ye Q, Zhang Y, Chen H, Chen X, Zhong M, Xu Y, Liu Q, Zhang JH, Yao H (2019) Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J Neurosci 39(37):7369–7393. https://doi.org/10.1523/JNEUROSCI.0299-19.2019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bai Y, Zhang Y, Han B, Yang L, Chen X, Huang R, Wu F, Chao J, Liu P, Hu G, Zhang JH, Yao H (2018) Circular RNA DLGAP4 ameliorates ischemic stroke outcomes by targeting miR-143 to regulate endothelial-mesenchymal transition associated with blood-brain barrier integrity. J Neurosci 38(1):32–50. https://doi.org/10.1523/JNEUROSCI.1348-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. White EJ, Matsangos AE, Wilson GM (2017) AUF1 regulation of coding and noncoding RNA. Wiley Interdiscip Rev RNA 8 (2). https://doi.org/10.1002/wrna.1393

  11. Gratacos FM, Brewer G (2010) The role of AUF1 in regulated mRNA decay. Wiley Interdiscip Rev RNA 1(3):457–473. https://doi.org/10.1002/wrna.26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou YF, Li YN, Jin HJ, Wu JH, He QW, Wang XX, Lei H, Hu B (2018) Sema4D/PlexinB1 inhibition ameliorates blood-brain barrier damage and improves outcome after stroke in rats. FASEB J 32(4):2181–2196. https://doi.org/10.1096/fj.201700786RR

    Article  CAS  PubMed  Google Scholar 

  13. Lu JY, Sadri N, Schneider RJ (2006) Endotoxic shock in AUF1 knockout mice mediated by failure to degrade proinflammatory cytokine mRNAs. Genes Dev 20(22):3174–3184. https://doi.org/10.1101/gad.1467606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Poganik JR, Long MJC, Disare MT, Liu X, Chang SH, Hla T, Aye Y (2019) Post-transcriptional regulation of Nrf2-mRNA by the mRNA-binding proteins HuR and AUF1. FASEB J 33(12):14636–14652. https://doi.org/10.1096/fj.201901930R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tan HL, Chiu SL, Zhu Q, Huganir RL (2020) GRIP1 regulates synaptic plasticity and learning and memory. Proc Natl Acad Sci U S A 117(40):25085–25091. https://doi.org/10.1073/pnas.2014827117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tan HL, Queenan BN, Huganir RL (2015) GRIP1 is required for homeostatic regulation of AMPAR trafficking. Proc Natl Acad Sci U S A 112(32):10026–10031. https://doi.org/10.1073/pnas.1512786112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huang M, Cheng G, Tan H, Qin R, Zou Y, Wang Y, Zhang Y (2017) Capsaicin protects cortical neurons against ischemia/reperfusion injury via down-regulating NMDA receptors. Exp Neurol 295:66–76. https://doi.org/10.1016/j.expneurol.2017.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, Zhang Z (2000) Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab 20(9):1311–1319. https://doi.org/10.1097/00004647-200009000-00006

    Article  CAS  PubMed  Google Scholar 

  19. Li W, Yang S (2016) Targeting oxidative stress for the treatment of ischemic stroke: upstream and downstream therapeutic strategies. Brain Circ 2(4):153–163. https://doi.org/10.4103/2394-8108.195279

    Article  PubMed  PubMed Central  Google Scholar 

  20. Favate AS, Younger DS (2016) Epidemiology of Ischemic Stroke. Neurol Clin 34(4):967–980. https://doi.org/10.1016/j.ncl.2016.06.013

    Article  PubMed  Google Scholar 

  21. Khoshnam SE, Winlow W, Farzaneh M, Farbood Y, Moghaddam HF (2017) Pathogenic mechanisms following ischemic stroke. Neurol Sci 38(7):1167–1186. https://doi.org/10.1007/s10072-017-2938-1

    Article  PubMed  Google Scholar 

  22. Radak D, Resanovic I, Isenovic ER (2014) Link between oxidative stress and acute brain ischemia. Angiology 65(8):667–676. https://doi.org/10.1177/0003319713506516

    Article  CAS  PubMed  Google Scholar 

  23. Kofler J, Hurn PD, Traystman RJ (2005) SOD1 overexpression and female sex exhibit region-specific neuroprotection after global cerebral ischemia due to cardiac arrest. J Cereb Blood Flow Metab 25(9):1130–1137. https://doi.org/10.1038/sj.jcbfm.9600119

    Article  CAS  PubMed  Google Scholar 

  24. Jayaraj RL, Azimullah S, Beiram R, Jalal FY, Rosenberg GA (2019) Neuroinflammation: friend and foe for ischemic stroke. J Neuroinflammation 16(1):142. https://doi.org/10.1186/s12974-019-1516-2

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wang S, Chen J, Yu W, Deng F (2019) Circular RNA DLGAP4 ameliorates cardiomyocyte apoptosis through regulating BCL2 via targeting miR-143 in myocardial ischemia-reperfusion injury. Int J Cardiol 279:147. https://doi.org/10.1016/j.ijcard.2018.09.023

    Article  PubMed  Google Scholar 

  26. Wang Y, Zhao R, Liu W, Wang Z, Rong J, Long X, Liu Z, Ge J, Shi B (2019) Exosomal circHIPK3 released from hypoxia-pretreated cardiomyocytes regulates oxidative damage in cardiac microvascular endothelial cells via the miR-29a/IGF-1 pathway. Oxid Med Cell Longev 2019:7954657. https://doi.org/10.1155/2019/7954657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fischer JW, Leung AK (2017) CircRNAs: a regulator of cellular stress. Crit Rev Biochem Mol Biol 52(2):220–233. https://doi.org/10.1080/10409238.2016.1276882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhou Z, Sun B, Huang S, Zhao L (2019) Roles of circular RNAs in immune regulation and autoimmune diseases. Cell Death Dis 10(7):503. https://doi.org/10.1038/s41419-019-1744-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xu Y, Wu W, Han Q, Wang Y, Li C, Zhang P, Xu H (2019) New insights into the interplay between non-coding RNAs and RNA-binding protein HnRNPK in regulating cellular functions. Cells 8 (1). https://doi.org/10.3390/cells8010062

  30. Kim C, Kang D, Lee EK, Lee JS (2017) Long Noncoding RNAs and RNA-binding proteins in oxidative stress, cellular senescence, and age-related diseases. Oxid Med Cell Longev 2017:2062384. https://doi.org/10.1155/2017/2062384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhang L, Yang Z, Trottier J, Barbier O, Wang L (2017) Long noncoding RNA MEG3 induces cholestatic liver injury by interaction with PTBP1 to facilitate shp mRNA decay. Hepatology 65(2):604–615. https://doi.org/10.1002/hep.28882

    Article  CAS  PubMed  Google Scholar 

  32. Moore AE, Chenette DM, Larkin LC, Schneider RJ (2014) Physiological networks and disease functions of RNA-binding protein AUF1. Wiley Interdiscip Rev RNA 5(4):549–564. https://doi.org/10.1002/wrna.1230

    Article  CAS  PubMed  Google Scholar 

  33. Garcia-Maurino SM, Rivero-Rodriguez F, Velazquez-Cruz A, Hernandez-Vellisca M, Diaz-Quintana A, De la Rosa MA, Diaz-Moreno I (2017) RNA binding protein regulation and cross-talk in the control of AU-rich mRNA fate. Front Mol Biosci 4:71. https://doi.org/10.3389/fmolb.2017.00071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to the members of our laboratory for their contributions.

Funding

This work was supported by the National Natural Science Foundation of China (81671296).

Author information

Authors and Affiliations

Authors

Contributions

HL: methodology, data curation, visualization, investigation, validation, writing—original draft preparation; WZ: methodology, software, investigation; ZS: supervision, conceptualization, writing—reviewing and editing.

Corresponding author

Correspondence to Zhi Song.

Ethics declarations

Ethics

All animal experiments and protocol have been approved by the Animal Care and Use Committee of the Third Xiangya Hospital of Central South University.

Consent for Publication

The informed consent obtained from study participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Zheng, W. & Song, Z. circDlgap4 Alleviates Cerebral Ischaemic Injury by Binding to AUF1 to Suppress Oxidative Stress and Neuroinflammation. Mol Neurobiol 59, 3218–3232 (2022). https://doi.org/10.1007/s12035-022-02796-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02796-5

Keywords

Navigation