Skip to main content

Advertisement

Log in

Therapeutic Potential of Combined Therapy of Vitamin A and Vitamin C in the Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Demyelination, inflammation, oxidative injury, and glial activation are the main pathological hallmarks of multiple sclerosis (MS). Vitamins, as essential micronutrients, seem to be crucial in the pathogenesis of MS, and particularly vitamins A and C were found to have a protective role in MS development or progression. In this study, the therapeutic potential of combined therapy of vitamins A and C on progression of experimental autoimmune encephalomyelitis (EAE) and myelin repair mechanisms was examined. EAE, an animal model of MS, was induced in female Lewis rats. The rats were treated with daily intraperitoneal injections of vitamins A and C and their combination. We found that co-supplementation of vitamins A and C mitigated neurological severity and EAE disease progression. Histological study confirmed a significant reduction in demyelination size, inflammation and immune cell infiltration as well as microglia and astrocyte activation following co-administration of vitamins A and C. Co-administration of vitamins A and C also decreased the levels of pro-inflammatory cytokines (TNF-α, IL1β) and iNOS and increased gene expressions of IL-10, Nrf-2, HO-1, and MBP. Combination therapy of vitamins A and C also increased the total antioxidant capacity and decreased levels of oxidative stress markers. Finally, we proved that co-administration of vitamins A and C has anti-apoptotic and neuroprotective impacts in EAE via decreasing caspase-3 and increasing BDNF and NeuN expressing cells. The present study suggests that combined therapy of vitamins A and C may be an effective strategy for development of alternative medicine in boosting myelin repair in demyelinating diseases.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Rezapour A, Almasian Kia A, Goodarzi S, Hasoumi M, NouraeiMotlagh S, Vahedi S (2017) The impact of disease characteristics on multiple sclerosis patients’ quality of life. Epidemiol Health 39:e2017008

    Article  PubMed  PubMed Central  Google Scholar 

  2. Compston A, Coles A (2008) Multiple sclerosis. Lancet 372:1502–1517

    Article  CAS  PubMed  Google Scholar 

  3. Burrows DJ, McGown A, Jain SA, De Felice M, Ramesh TM, Sharrack B, Majid A (2019) Animal models of multiple sclerosis: from rodents to zebrafish. Mult Scler 25:306–324

    Article  PubMed  Google Scholar 

  4. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164:1079–1106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lassmann H, Bradl M (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol 133:223–244

    Article  CAS  PubMed  Google Scholar 

  6. Karpus WJ (2020) Cytokines and chemokines in the pathogenesis of experimental autoimmune encephalomyelitis. J Immunol 204:316–326

    Article  CAS  PubMed  Google Scholar 

  7. Yuste JE, Tarragon E, Campuzano CM, Ros-Bernal F (2015) Implications of glial nitric oxide in neurodegenerative diseases. Front Cell Neurosci 9:322

    Article  PubMed  PubMed Central  Google Scholar 

  8. Goldschmidt C, McGinley MP (2021) Advances in the treatment of multiple sclerosis. Neurol Clin 39:21–33

    Article  PubMed  Google Scholar 

  9. Foti Cuzzola V, Palella E, Celi D, Barresi M, Giacoppo S, Bramanti P, Marino S (2012) Pharmacogenomic update on multiple sclerosis: a focus on actual and new therapeutic strategies. Pharmacogenomics J 12:453–461

    Article  CAS  PubMed  Google Scholar 

  10. Namjooyan F, Ghanavati R, Majdinasab N, Jokari S, Janbozorgi M (2014) Uses of complementary and alternative medicine in multiple sclerosis. J Tradit Complement Med 4:145–152

    Article  PubMed  PubMed Central  Google Scholar 

  11. Khosravi-Largani M, Pourvali-Talatappeh P, Rousta AM, Karimi-Kivi M, Noroozi E, Mahjoob A, Asaadi Y, Shahmohammadi A, Sadeghi S, Shakeri S et al (2018) A review on potential roles of vitamins in incidence, progression, and improvement of multiple sclerosis. eNeurologicalSci 10:37–44

    Article  PubMed  PubMed Central  Google Scholar 

  12. Besler HT, Comoglu S, Okcu Z (2002) Serum levels of antioxidant vitamins and lipid peroxidation in multiple sclerosis. Nutr Neurosci 5:215–220

    Article  CAS  PubMed  Google Scholar 

  13. Loken-Amsrud KI, Myhr KM, Bakke SJ, Beiske AG, Bjerve KS, Bjornara BT, Hovdal H, Lilleas F, Midgard R, Pedersen T et al (2013) Retinol levels are associated with magnetic resonance imaging outcomes in multiple sclerosis. Mult Scler 19:451–457

    Article  CAS  PubMed  Google Scholar 

  14. Kocot J, Luchowska-Kocot D, Kielczykowska M, Musik I, Kurzepa J: Does Vitamin C influence neurodegenerative diseases and psychiatric disorders? Nutrients 2017, 9.

  15. Du J, Cullen JJ, Buettner GR (2012) Ascorbic acid: chemistry, biology and the treatment of cancer. Biochim Biophys Acta 1826:443–457

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo YE, Suo N, Cui X, Yuan Q, Xie X (2018) Vitamin C promotes oligodendrocytes generation and remyelination. Glia 66:1302–1316

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hall JA, Grainger JR, Spencer SP, Belkaid Y (2011) The role of retinoic acid in tolerance and immunity. Immunity 35:13–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Huang JK, Jarjour AA, Nait Oumesmar B, Kerninon C, Williams A, Krezel W, Kagechika H, Bauer J, Zhao C, Baron-Van Evercooren A et al (2011) Retinoid X receptor gamma signaling accelerates CNS remyelination. Nat Neurosci 14:45–53

    Article  CAS  PubMed  Google Scholar 

  19. Klemann C, Raveney BJ, Klemann AK, Ozawa T, von Horsten S, Shudo K, Oki S, Yamamura T (2009) Synthetic retinoid AM80 inhibits Th17 cells and ameliorates experimental autoimmune encephalomyelitis. Am J Pathol 174:2234–2245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eriksen AB, Berge T, Gustavsen MW, Leikfoss IS, Bos SD, Spurkland A, Harbo HF, Blomhoff HK (2015) Retinoic acid enhances the levels of IL-10 in TLR-stimulated B cells from patients with relapsing-remitting multiple sclerosis. J Neuroimmunol 278:11–18

    Article  CAS  PubMed  Google Scholar 

  21. Babri S, Mehrvash F, Mohaddes G, Hatami H, Mirzaie F (2015) Effect of intrahippocampal administration of vitamin C and progesterone on learning in a model of multiple sclerosis in rats. Adv Pharm Bull 5:83–87

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jafarirad S, Siassi F, Harirchian MH, Sahraian MA, Eshraghian MR, Shokri F, Amani R, Bitarafan S, Mozafari S, Saboor-Yaraghi A (2012) The effect of vitamin A supplementation on stimulated T-cell proliferation with myelin oligodendrocyte glycoprotein in patients with multiple sclerosis. J Neurosci Rural Pract 3:294–298

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kang SG, Wang C, Matsumoto S, Kim CH (2009) High and low vitamin A therapies induce distinct FoxP3+ T-cell subsets and effectively control intestinal inflammation. Gastroenterology 137(1391–1402):e1391-1396

    Article  Google Scholar 

  24. Mohajeri M, Sadeghizadeh M, Najafi F, Javan M (2015) Polymerized nano-curcumin attenuates neurological symptoms in EAE model of multiple sclerosis through down regulation of inflammatory and oxidative processes and enhancing neuroprotection and myelin repair. Neuropharmacology 99:156–167

    Article  CAS  PubMed  Google Scholar 

  25. Beeton C, Garcia A, Chandy KG: Induction and clinical scoring of chronic-relapsing experimental autoimmune encephalomyelitis. JoVE (Journal of Visualized Experiments) 2007:e224.

  26. Ebrahim-Tabar F, Nazari A, Pouramir M, Ashrafpour M, Pourabdolhossein F (2020) Arbutin improves functional recovery and attenuates glial activation in lysolecethin-induced demyelination model in rat optic chiasm. Mol Neurobiol 57:3228–3242

    Article  CAS  PubMed  Google Scholar 

  27. Benzie I, Devaki M: The ferric reducing/antioxidant power (FRAP) assay for non-enzymatic antioxidant capacity: concepts, procedures, limitations and applications. Measurement of antioxidant activity & capacity: recent trends and applications Wiley, New York 2018:77–106.

  28. Ghani MA, Barril C, Bedgood DR Jr, Prenzler PD (2017) Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem 230:195–207

    Article  CAS  PubMed  Google Scholar 

  29. Mousavi Majd A, Ebrahim Tabar F, Afghani A, Ashrafpour S, Dehghan S, Gol M, Ashrafpour M, Pourabdolhossein F (2018) Inhibition of GABA A receptor improved spatial memory impairment in the local model of demyelination in rat hippocampus. Behav Brain Res 336:111–121

    Article  CAS  PubMed  Google Scholar 

  30. Seno A, Maruhashi T, Kaifu T, Yabe R, Fujikado N, Ma G, Ikarashi T, Kakuta S, Iwakura Y (2015) Exacerbation of experimental autoimmune encephalomyelitis in mice deficient for DCIR, an inhibitory C-type lectin receptor. Exp Anim 64:109–119

    Article  CAS  PubMed  Google Scholar 

  31. Linker R, Gold R, Luhder F: Function of neurotrophic factors beyond the nervous system: inflammation and autoimmune demyelination. Critical Reviews™ in Immunology 2009, 29.

  32. Altin JG, Sloan EK (1997) The role of CD45 and CD45-associated molecules in T cell activation. Immunol Cell Biol 75:430–445

    Article  CAS  PubMed  Google Scholar 

  33. Borggrewe M, Grit C, Vainchtein ID, Brouwer N, Wesseling EM, Laman JD, Eggen BJL, Kooistra SM, Boddeke E (2021) Regionally diverse astrocyte subtypes and their heterogeneous response to EAE. Glia 69:1140–1154

    Article  CAS  PubMed  Google Scholar 

  34. Choudhury MG, Saha N (2016) Induction of inducible nitric oxide synthase by lipopolysaccharide and the influences of cell volume changes, stress hormones and oxidative stress on nitric oxide efflux from the perfused liver of air-breathing catfish. Heteropneustes fossilis. PLoS One 11:e0150469

    Article  PubMed  Google Scholar 

  35. Kim J, Cha YN, Surh YJ (2010) A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorders. Mutat Res 690:12–23

    Article  CAS  PubMed  Google Scholar 

  36. Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903

    Article  CAS  PubMed  Google Scholar 

  37. D’amelio M, Cavallucci V, Cecconi F (2010) Neuronal caspase-3 signaling: not only cell death. Cell Death Differ 17:1104–1114

    Article  CAS  PubMed  Google Scholar 

  38. Ajith TA, Abhishek G, Roshny D, Sudheesh NP (2009) Co-supplementation of single and multi doses of vitamins C and E ameliorates cisplatin-induced acute renal failure in mice. Exp Toxicol Pathol 61:565–571

    Article  CAS  PubMed  Google Scholar 

  39. Bagheri Y, Barati A, Nouraei S, Jalili Namini N, Bakhshi M, Fathi E, Montazersaheb S (2021) Comparative study of gavage and intraperitoneal administration of gamma-oryzanol in alleviation/attenuation in a rat animal model of renal ischemia/reperfusion-induced injury. Iran J Basic Med Sci 24:175–183

    PubMed  PubMed Central  Google Scholar 

  40. Spitsin SV, Scott GS, Mikheeva T, Zborek A, Kean RB, Brimer CM, Koprowski H, Hooper DC (2002) Comparison of uric acid and ascorbic acid in protection against EAE. Free Radic Biol Med 33:1363–1371

    Article  CAS  PubMed  Google Scholar 

  41. McFarland HF, Martin R (2007) Multiple sclerosis: a complicated picture of autoimmunity. Nat Immunol 8:913–919

    Article  CAS  PubMed  Google Scholar 

  42. Estrada JA, Contreras I: Nutritional modulation of immune and central nervous system homeostasis: the role of diet in development of neuroinflammation and neurological disease. Nutrients 2019, 11.

  43. Carr AC, Maggini S: Vitamin C and immune function. Nutrients 2017, 9.

  44. Dawson HD, Collins G, Pyle R, Key M, Weeraratna A, Deep-Dixit V, Nadal CN, Taub DD (2006) Direct and indirect effects of retinoic acid on human Th2 cytokine and chemokine expression by human T lymphocytes. BMC Immunol 7:27

    Article  PubMed  PubMed Central  Google Scholar 

  45. Xiao S, Jin H, Korn T, Liu SM, Oukka M, Lim B, Kuchroo VK (2008) Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 181:2277–2284

    Article  CAS  PubMed  Google Scholar 

  46. Saraiva M, O’Garra A (2010) The regulation of IL-10 production by immune cells. Nat Rev Immunol 10:170–181

    Article  CAS  PubMed  Google Scholar 

  47. Couper KN, Blount DG, Riley EM (2008) IL-10: the master regulator of immunity to infection. J Immunol 180:5771–5777

    Article  CAS  PubMed  Google Scholar 

  48. Kallaur AP, Oliveira SR, Delicatode Almeida ER, Kaminami Morimoto H, Lopes J, de Carvalho Jennings Pereira WL, Marques Andrade R, Muliterno-Pelegrino L, Donizete Borelli S, Kaimen-Maciel DR (2013) Cytokine profile in relapsing-remitting multiple sclerosis patients and the association between progression and activity of the disease. Molecular Medicine Reports 7:1010–1020

    Article  CAS  PubMed  Google Scholar 

  49. Molina N, Morandi AC, Bolin AP, Otton R (2014) Comparative effect of fucoxanthin and vitamin C on oxidative and functional parameters of human lymphocytes. Int Immunopharmacol 22:41–50

    Article  CAS  PubMed  Google Scholar 

  50. Singh S, Metz I, Amor S, van der Valk P, Stadelmann C, Brück W (2013) Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathol 125:595–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Traiffort E, Kassoussi A, Zahaf A, Laouarem Y (2020) Astrocytes and microglia as major players of myelin production in normal and pathological conditions. Front Cell Neurosci 14:79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen X, Ma X, Jiang Y, Pi R, Liu Y, Ma L (2011) The prospects of minocycline in multiple sclerosis. J Neuroimmunol 235:1–8

    Article  CAS  PubMed  Google Scholar 

  53. Starossom SC, Mascanfroni ID, Imitola J, Cao L, Raddassi K, Hernandez SF, Bassil R, Croci DO, Cerliani JP, Delacour D et al (2012) Galectin-1 deactivates classically activated microglia and protects from inflammation-induced neurodegeneration. Immunity 37:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Villamor E, Fawzi WW (2005) Effects of vitamin a supplementation on immune responses and correlation with clinical outcomes. Clin Microbiol Rev 18:446–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sanchez-Moreno C, Paniagua M, Madrid A, Martin A (2003) Protective effect of vitamin C against the ethanol mediated toxic effects on human brain glial cells. J Nutr Biochem 14:606–613

    Article  CAS  PubMed  Google Scholar 

  56. Ahmad A, Shah SA, Badshah H, Kim MJ, Ali T, Yoon GH, Kim TH, Abid NB, Rehman SU, Khan S, Kim MO (2016) Neuroprotection by Vitamin C against ethanol-induced neuroinflammation associated neurodegeneration in the developing rat brain. CNS Neurol Disord Drug Targets 15:360–370

    Article  CAS  PubMed  Google Scholar 

  57. Roshanbakhsh H, Salmani ME, Dehghan S, Nazari A, Javan M, Pourabdolhossein F (2020) Piperine ameliorated memory impairment and myelin damage in lysolecethin induced hippocampal demyelination. Life Sciences 253:117671

    Article  CAS  PubMed  Google Scholar 

  58. Sivandzade F, Prasad S, Bhalerao A, Cucullo L (2019) NRF2 and NF-қB interplay in cerebrovascular and neurodegenerative disorders: molecular mechanisms and possible therapeutic approaches. Redox Biology 21:101059

    Article  CAS  PubMed  Google Scholar 

  59. Liu Y, Zhu B, Luo L, Li P, Paty DW, Cynader MS (2001) Heme oxygenase-1 plays an important protective role in experimental autoimmune encephalomyelitis. NeuroReport 12:1841–1845

    Article  CAS  PubMed  Google Scholar 

  60. Chora ÂA, Fontoura P, Cunha A, Pais TF, Cardoso S, Ho PP, Lee LY, Sobel RA, Steinman L, Soares MP (2007) Heme oxygenase–1 and carbon monoxide suppress autoimmune neuroinflammation. J Clin Investig 117:438–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mostafavi-Pour Z, Ramezani F, Keshavarzi F, Samadi N (2017) The role of quercetin and vitamin C in Nrf2-dependent oxidative stress production in breast cancer cells. Oncol Lett 13:1965–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xu LL, Zhao B, Sun SL, Yu SF, Wang YM, Ji R, Yang ZT, Ma L, Yao Y, Chen Y et al (2020) High-dose vitamin C alleviates pancreatic injury via the NRF2/NQO1/HO-1 pathway in a rat model of severe acute pancreatitis. Ann Transl Med 8:852

    Article  PubMed  PubMed Central  Google Scholar 

  63. Meyer R, Weissert R, Diem R, Storch MK, de Graaf KL, Kramer B, Bähr M (2001) Acute neuronal apoptosis in a rat model of multiple sclerosis. J Neurosci 21:6214–6220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yousef A, Robinson JL, Irwin DJ, Byrne MD, Kwong LK, Lee EB, Xu Y, Xie SX, Rennert L, Suh E (2017) Neuron loss and degeneration in the progression of TDP-43 in frontotemporal lobar degeneration. Acta Neuropathol Commun 5:1–15

    Article  Google Scholar 

  65. Vissers MC, Lee WG, Hampton MB (2001) Regulation of apoptosis by vitamin C. Specific protection of the apoptotic machinery against exposure to chlorinated oxidants. J Biol Chem 276:46835–46840

    Article  CAS  PubMed  Google Scholar 

  66. Chen F, Jiang Z, Jiang S, Li L, Lin X, Gou Z, Fan Q (2016) Dietary vitamin A supplementation improved reproductive performance by regulating ovarian expression of hormone receptors, caspase-3 and Fas in broiler breeders. Poult Sci 95:30–40

    Article  CAS  PubMed  Google Scholar 

  67. Fletcher JL, Murray SS, Xiao J (2018) Brain-derived neurotrophic factor in central nervous system myelination: a new mechanism to promote myelin plasticity and repair. Int J Mol Sci 19:4131

    Article  PubMed Central  Google Scholar 

  68. Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270:70–76

    Article  CAS  PubMed  Google Scholar 

  69. Van’t Veer A, Du Y, Fischer TZ, Boetig DR, Wood MR, Dreyfus CF (2009) Brain-derived neurotrophic factor effects on oligodendrocyte progenitors of the basal forebrain are mediated through trkB and the MAP kinase pathway. J Neurosci Res 87:69–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully appreciate the kind support of Dr. Mohammad Javan from physiology department of Tarbiat Modares University Tehran-Iran during the study. Also we appreciate Babol University of Medical Sciences for the support and facilities used during the project.

Funding

This work was supported by a grant (No. 35425–139-02–96), from Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Mozhdeh Navidhamidi: conceptualization; investigation; data curation; funding acquisition; project administration; and writing—review & editing of the manuscript. Atena Nazari: methodology; investigation review & editing of the manuscript. Samaneh Deghan: investigation; formal analysis; review & editing of the manuscript. Anahita Ebrahimpour: investigation; review & editing of the manuscript. Reza Nasrnezhad: investigation; formal analysis Fereshteh Pourabdolhossein: Conceptualization; Investigation; Methodology; Data curation; funding acquisition; formal analysis; Software; Supervision; Validation; Writing—original draft; Writing—review & editing.

Corresponding author

Correspondence to Fereshteh Pourabdolhossein.

Ethics declarations

Ethics approval and consent to participate

All experimental procedures of this study were performed according to the international guidelines for care and use of laboratory animals and approved (Ethic code number: IR.TUMS.VCR.REC.1396.3350) by the ethical committee of Tehran University of Medical Sciences. This article does not contain any studies involving human participants performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Co-supplementation of vitamins A and C alleviated neurological symptoms of EAE disease

• Co-administration of vitamins A and C reduced gliosis, immune cell infiltration and demyelination in EAE

• Combination therapy of vitamins A and C increased the antioxidant capacity and decreased the oxidative stress

• Co-supplementation of vitamins A and C decreased TNF-α and IL-1β levels and increased IL-10

• Co-administration of vitamins A and C has anti-apoptotic and neuroprotective impacts in EAE model

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 28 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navidhamidi, M., Nazari, A., Dehghan, S. et al. Therapeutic Potential of Combined Therapy of Vitamin A and Vitamin C in the Experimental Autoimmune Encephalomyelitis (EAE) in Lewis Rats. Mol Neurobiol 59, 2328–2347 (2022). https://doi.org/10.1007/s12035-022-02755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-022-02755-0

Keywords

Navigation