Skip to main content

Advertisement

Log in

New therapeutic approach by G2013 in experimental model of multiple sclerosis

  • Original Article
  • Published:
Acta Neurologica Belgica Aims and scope Submit manuscript

Abstract

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that leads to an inflammatory demyelination and axonal damage. MS disease often displays a relapsing–remitting course of neurological manifestations that is mimicked by experimental autoimmune encephalomyelitis (EAE) in animal models. The aim of the present research was to test the therapeutic effect of small molecule G2013, a novel designed non-steroidal anti-inflammatory agent in EAE. All experiments were conducted on C57BL/6 male mice aged 10 weeks. To induce the EAE, we performed subcutaneously injection of myelin oligodendrocyte glycoprotein-35-55 (MOG35-55) in Complete Freund’s Adjuvant (CFA) emulsion, and for treatment of EAE we used intraperitoneal (IP) injection of G2013. On day 21 post-immunization, for total antioxidant, nitric oxide (NO) and TNF-α assessment, blood samples were taken from the heart and mice were killed, and the brains and cerebellums were then removed for histological analysis. Our findings demonstrated that G2013 had beneficial effects on EAE by lower incidence, attenuation in the severity, and a delay in the onset of disease. Histological analysis showed that inflammation criteria including the number of inflammatory cells and plaques as well as demyelination in G2013 dosed mice were lower than control group. Moreover, the serum level of NO in G2013-treated mice was significantly less than control animals. These data indicate that G2013 therapy can attenuate the disease progression in experimental model of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fitzner D, Simons M (2010) Chronic progressive multiple sclerosis—pathogenesis of neurodegeneration and therapeutic strategies. Curr Neuropharmacol 8(3):305–315 PubMed PMID: 21358979. Pubmed Central PMCID: 3001222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Constantinescu CS, Farooqi N, O’Brien K, Gran B (2011) Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 164(4):1079–1106 PubMed PMID: 21371012. Pubmed Central PMCID: 3229753

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Wang Y, Kai H, Chang F, Shibata K, Tahara-Hanaoka S, Honda S et al (2007) A critical role of LFA-1 in the development of Th17 cells and induction of experimental autoimmune encephalomyelytis. Biochemical and biophysical research communications 353(4):857–862 PubMed PMID: 17207459

    Article  CAS  PubMed  Google Scholar 

  4. Murphy AC, Lalor SJ, Lynch MA, Mills KH (2010) Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 24(4):641–651 PubMed PMID: 20138983

    Article  CAS  PubMed  Google Scholar 

  5. Zaheer A, Knight S, Zaheer A, Ahrens M, Sahu SK, Yang B (2008) Glia maturation factor overexpression in neuroblastoma cells activates glycogen synthase kinase-3beta and caspase-3. Brain research. 1190:206–14. (PubMed PMID: 18054898. Pubmed Central PMCID: 2343001)

  6. Miller E, Wachowicz B, Majsterek I (2013) Advances in antioxidative therapy of multiple sclerosis. Curr Med Chem 20(37):4720–4730 PubMed PMID: 23834174

    Article  CAS  PubMed  Google Scholar 

  7. Smith KJ, Lassmann H (2002) The role of nitric oxide in multiple sclerosis. Lancet Neurol 1(4):232–241 PubMed PMID: 12849456

    Article  CAS  PubMed  Google Scholar 

  8. Lu XY, Zeng YY, Ye YX, Zhou YY, Mu JJ, Zhao XH (2009) Anti-inflammatory and immunosuppressive effect of phloretin. Yao xue xue bao = Acta pharmaceutica Sinica. 44(5):480–485 PubMed PMID: 19618722

    CAS  PubMed  Google Scholar 

  9. Moriya M, Nakatsuji Y, Miyamoto K, Okuno T, Kinoshita M, Kumanogoh A et al (2008) Edaravone, a free radical scavenger, ameliorates experimental autoimmune encephalomyelitis. Neurosci Lett 440(3):323–326 PubMed PMID: 18579300

    Article  CAS  PubMed  Google Scholar 

  10. Polman CH, Uitdehaag BM (2003) New and emerging treatment options for multiple sclerosis. Lancet Neurol 2(9):563–566 PubMed PMID: 12941579

    Article  CAS  PubMed  Google Scholar 

  11. Azizi G, Haidari MR, Khorramizadeh M, Naddafi F, Sadria R, Javanbakht MH et al (2014) Effects of imatinib mesylate in mouse models of multiple sclerosis and in vitro determinants. Iran J Allergy, Asthma, Immunol 13(3):198–206 PubMed PMID: 24659124

    Google Scholar 

  12. Kuerten S, Gruppe TL, Laurentius LM, Kirch C, Tary-Lehmann M, Lehmann PV et al (2011) Differential patterns of spinal cord pathology induced by MP4, MOG peptide 35-55, and PLP peptide 178–191 in C57BL/6 mice. APMIS : acta pathologica, microbiologica, et immunologica Scandinavica 119(6):336–346 PubMed PMID: 21569091

    Article  CAS  PubMed  Google Scholar 

  13. Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9(6):393–407 PubMed PMID: 19444307. Pubmed Central PMCID: 2813731

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Builin MV (1976) Role of hospitals at the Tatar Republic in organizing specialized medical aid to the rural population. Zdravookhranenie Rossiiskoi Federatsii/Ministerstvo zdravookhraneniia RSFSR. 11:22–6. Rol’ respublikanskoi bol’nitsy v organizatsii spetsializirovannoi meditskinskoi pomoshchi selskomu naseleniiu (PubMed PMID: 137632)

  15. Hidaka Y, Inaba Y, Matsuda K, Itoh M, Kaneyama T, Nakazawa Y et al (2014) Cytokine production profiles in chronic relapsing–remitting experimental autoimmune encephalomyelitis: IFN-gamma and TNF-alpha are important participants in the first attack but not in the relapse. J Neurol Sci 340(1–2):117–122 PubMed PMID: 24655735

    Article  CAS  PubMed  Google Scholar 

  16. Miller A, al-Sabbagh A, Santos LM, Das MP, Weiner HL (1993) Epitopes of myelin basic protein that trigger TGF-beta release after oral tolerization are distinct from encephalitogenic epitopes and mediate epitope-driven bystander suppression. J Immunol 151(12):7307–7315 PubMed PMID: 7505026

    CAS  PubMed  Google Scholar 

  17. Lopez-Diego RS, Weiner HL (2008) Novel therapeutic strategies for multiple sclerosis–a multifaceted adversary. Nat Rev Drug Discov 7(11):909–925 PubMed PMID: 18974749

    Article  CAS  PubMed  Google Scholar 

  18. Mirshafiey A, Matsuo H, Nakane S, Rehm BH, Koh CS, Miyoshi S (2005) Novel immunosuppressive therapy by M2000 in experimental multiple sclerosis. Immunopharmacol Immunotoxicol 27(2):255–265 PubMed PMID: 16114509

    Article  PubMed  Google Scholar 

  19. Redford EJ, Kapoor R, Smith KJ (1997) Nitric oxide donors reversibly block axonal conduction: demyelinated axons are especially susceptible. Brain : J Neurol 120(Pt 12):2149–2157 PubMed PMID: 9448570

    Article  Google Scholar 

  20. Nikic I, Merkler D, Sorbara C, Brinkoetter M, Kreutzfeldt M, Bareyre FM et al (2011) A reversible form of axon damage in experimental autoimmune encephalomyelitis and multiple sclerosis. Nat Med 17(4):495–499 PubMed PMID: 21441916

    Article  CAS  PubMed  Google Scholar 

  21. Ashki N, Hayes KC, Shi R (2006) Nitric oxide reversibly impairs axonal conduction in Guinea pig spinal cord. J Neurotrauma 23(12):1779–1793 PubMed PMID: 17184188

    Article  PubMed  Google Scholar 

  22. Garthwaite G, Goodwin DA, Batchelor AM, Leeming K, Garthwaite J (2002) Nitric oxide toxicity in CNS white matter: an in vitro study using rat optic nerve. Neuroscience 109(1):145–155 PubMed PMID: 11784706

    Article  CAS  PubMed  Google Scholar 

  23. Acar G, Idiman F, Idiman E, Kirkali G, Cakmakci H, Ozakbas S (2003) Nitric oxide as an activity marker in multiple sclerosis. J Neurol 250(5):588–592 PubMed PMID: 12736739

    Article  CAS  PubMed  Google Scholar 

  24. Jana M, Pahan K (2013) Down-regulation of myelin gene expression in human oligodendrocytes by nitric oxide: implications for demyelination in multiple sclerosis. J Clin Cell Immunol. doi:10.4172/2155-9899.1000157 PubMed PMID: 24273691. Pubmed Central PMCID: 3837467

  25. Fonseca SG, Romao PR, Figueiredo F, Morais RH, Lima HC, Ferreira SH et al (2003) TNF-alpha mediates the induction of nitric oxide synthase in macrophages but not in neutrophils in experimental cutaneous leishmaniasis. Eur J Immunol 33(8):2297–2306 PubMed PMID: 12884305

    Article  CAS  PubMed  Google Scholar 

  26. Tyszko P, Tomaszewski L (1996) [Use of urine tests in a rural health center]. Polski tygodnik lekarski. 41(2):62–4. Zastosowanie testowych badan moczu w wiejskim osrodku zdrowia. (PubMed PMID: 3703725)

  27. Shin T, Tanuma N, Kim S, Jin J, Moon C, Kim K et al (1998) An inhibitor of inducible nitric oxide synthase ameliorates experimental autoimmune myocarditis in Lewis rats. J Neuroimmunol 92(1–2):133–138 PubMed PMID: 9916888

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Mirshafiey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afraei, S., Azizi, G., Zargar, S.J. et al. New therapeutic approach by G2013 in experimental model of multiple sclerosis. Acta Neurol Belg 115, 259–266 (2015). https://doi.org/10.1007/s13760-014-0392-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13760-014-0392-x

Keywords

Navigation