Skip to main content

Advertisement

Log in

Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Spinal cord injury (SCI) is a neurological injury that can cause neuronal loss around the lesion site and leads to locomotive and sensory deficits. However, the underlying molecular mechanisms remain unclear. This study aimed to verify differential gene time-course expression in SCI and provide new insights for gene-level studies. We downloaded two rat expression profiles (GSE464 and GSE45006) from the Gene Expression Omnibus database, including 1 day, 3 days, 7 days, and 14 days post-SCI, along with thoracic spinal cord data for analysis. At each time point, gene integration was performed using “batch normalization.” The raw data were standardized, and differentially expressed genes at the different time points versus the control were analyzed by Gene Ontology enrichment analysis, the Kyoto Encyclopedia of Genes and Genomes pathway analysis, and gene set enrichment analysis. A protein-protein interaction network was then built and visualized. In addition, ten hub genes were identified at each time point. Among them, Gnb5, Gng8, Agt, Gnai1, and Psap lack correlation studies in SCI and deserve further investigation. Finally, we screened and analyzed genes for tissue repair, reconstruction, and regeneration and found that Anxa1, Snap25, and Spp1 were closely related to repair and regeneration after SCI. In conclusion, hub genes, signaling pathways, and regeneration genes involved in secondary SCI were identified in our study. These results may be useful for understanding SCI-related biological processes and the development of targeted intervention strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All data is real and guarantee the validity of results.

References

  1. Huang H, Young W, Skaper S, Chen L, Moviglia G, Saberi H, al-Zoubi Z, Sharma HS et al (2020) Clinical neurorestorative therapeutic guidelines for spinal cord injury (IANR/CANR version 2019). J Orthop Transl 20:14–24. https://doi.org/10.1016/j.jot.2019.10.006

    Article  Google Scholar 

  2. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2019) Traumatic spinal cord injury: an overview of pathophysiology. Models and Acute Injury Mechanisms Front Neurol 10. https://doi.org/10.3389/fneur.2019.00282

  3. Griffin JM, Bradke F (2020) Therapeutic repair for spinal cord injury: Combinatory approaches to address a multifaceted problem. EMBO Mol med 12:1–29. https://doi.org/10.15252/emmm.201911505

    Article  CAS  Google Scholar 

  4. Baptiste DC, Fehlings MG (2006) Pharmacological approaches to repair the injured spinal cord. J Neurotrauma 23:318–334. https://doi.org/10.1089/neu.2006.23.318

    Article  PubMed  Google Scholar 

  5. Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, Zachariou V, Guo L et al (2020) Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 23:337–350. https://doi.org/10.1038/s41593-020-0597-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhaohui C, Shuihua W (2020) Protective effects of SIRT6 against inflammation, oxidative stress, and cell apoptosis in spinal cord injury. Inflammation 43:1751–1758. https://doi.org/10.1007/s10753-020-01249-2

    Article  CAS  PubMed  Google Scholar 

  7. Yi WY, Shen D, Jun ZL et al (2019) Sting is a critical regulator of spinal cord injury by regulating microglial inflammation via interacting with TBK1 in mice. Biochem Biophys Res Commun 517:741–748. https://doi.org/10.1016/j.bbrc.2019.07.125

    Article  CAS  Google Scholar 

  8. Zhang XJ, Cheng X, Yan ZZ, Fang J, Wang X, Wang W, Liu ZY, Shen LJ et al (2018) An ALOX12-12-HETE-GPR31 signaling axis is a key mediator of hepatic ischemia-reperfusion injury. Nat Med 24:73–83. https://doi.org/10.1038/nm.4451

    Article  CAS  PubMed  Google Scholar 

  9. Villaseñor-Park J, Ortega-Loayza AG (2013) Microarray technique, analysis, and applications in dermatology. J Invest Dermatol 133:1–4. https://doi.org/10.1038/jid.2013.64

    Article  CAS  Google Scholar 

  10. Jeon J, Noh J, Lee H et al (2020) RIP3 axis perturbation accelerates osteoarthritis pathogenesis:1–9. https://doi.org/10.1136/annrheumdis-2020-217904

  11. Cheng Y, Wang K, Geng L, Sun J, Xu W, Liu D, Gong S, Zhu Y (2019) Identification of candidate diagnostic and prognostic biomarkers for pancreatic carcinoma. EBioMedicine 40:382–393. https://doi.org/10.1016/j.ebiom.2019.01.003

    Article  PubMed  PubMed Central  Google Scholar 

  12. Karasinska JM, Topham JT, Kalloger SE, Jang GH, Denroche RE, Culibrk L, Williamson LM, Wong HL et al (2020) Altered gene expression along the glycolysis–cholesterol synthesis axis is associated with outcome in pancreatic cancer. Clin Cancer Res 26:135–146. https://doi.org/10.1158/1078-0432.CCR-19-1543

    Article  CAS  PubMed  Google Scholar 

  13. Zhou YY, Chen LP, Zhang Y, Hu SK, Dong ZJ, Wu M, Chen QX, Zhuang ZZ et al (2019) Integrated transcriptomic analysis reveals hub genes involved in diagnosis and prognosis of pancreatic cancer. Mol Med 25:1–13. https://doi.org/10.1186/s10020-019-0113-2

    Article  CAS  Google Scholar 

  14. Li B, Cui Y, Nambiar DK, Sunwoo JB, Li R (2019) The immune subtypes and landscape of squamous cell carcinoma. Clin Cancer Res 25:3528–3537. https://doi.org/10.1158/1078-0432.CCR-18-4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li Z, Yu F, Yu X, Wang S (2020) Potential molecular mechanism and biomarker investigation for spinal cord injury based on bioinformatics analysis 1:

  16. Yang Z, Lv Q, Wang Z, Dong X, Yang R, Zhao W (2017) Identification of crucial genes associated with rat traumatic spinal cord injury. Mol Med Rep 15:1997–2006. https://doi.org/10.3892/mmr.2017.6267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang T, Wu B, Zhang X, Zhang M, Zhang S, Huang W, Liu T, Yu W et al (2019) Identification of gene coexpression modules, hub genes, and pathways related to spinal cord injury using integrated bioinformatics methods. J Cell Biochem 120:6988–6997. https://doi.org/10.1002/jcb.27908

    Article  CAS  Google Scholar 

  18. Liu Y, Han N, Li Q, Li Z (2016) Bioinformatics analysis of microRNA time-course expression in brown rat (rattus norvegicus) spinal cord injury self-repair. Spine (Phila Pa 1976) 41:97–103. https://doi.org/10.1097/BRS.0000000000001323

    Article  Google Scholar 

  19. Li Z, Yu F, Yu X, Wang S (2020) Potential molecular mechanism and biomarker investigation for spinal cord injury based on bioinformatics analysis. J Mol Neurosci 70:1–1353. https://doi.org/10.1007/s12031-020-01549-0

    Article  CAS  Google Scholar 

  20. Di Giovanni S, Knoblach SM, Brandoli C et al (2003) Gene profiling in spinal cord injury shows role of cell cycle neuronal death. Ann Neurol 53:454–468. https://doi.org/10.1002/ana.10472

    Article  CAS  PubMed  Google Scholar 

  21. Chamankhah M, Eftekharpour E, Karimi-Abdolrezaee S, Boutros PC, San-Marina S, Fehlings MG (2013) Genome-wide gene expression profiling of stress response in a spinal cord clip compression injury model. BMC Genomics 14:583. https://doi.org/10.1186/1471-2164-14-583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD (2012) The SVA package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics 28:882–883. https://doi.org/10.1093/bioinformatics/bts034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo Y, Huang P, Ning W, Zhang H, Yu C (2020) Identification of core genes and pathways in medulloblastoma by integrated bioinformatics analysis. J Mol Neurosci 70:1702–1712. https://doi.org/10.1007/s12031-020-01556-1

    Article  CAS  PubMed  Google Scholar 

  24. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47. https://doi.org/10.1093/nar/gkv007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Harris MA, Clark JI, Ireland A, et al (2006) go The gene ontology (GO) project in 2006. Nucleic Acids Res 34:D322–D326. https://doi.org/10.1093/nar/gkj021

  26. Yu G, Wang LG, Han Y, He QY (2012) ClusterProfiler: an R package for comparing biological themes among gene clusters. Omi A J Integr Biol 16:284–287. https://doi.org/10.1089/omi.2011.0118

    Article  CAS  Google Scholar 

  27. Yi Y, Fang Y, Wu K, Liu Y, Zhang W (2020) Comprehensive gene and pathway analysis of cervical cancer progression. Oncol Lett 19:3316–3332. https://doi.org/10.3892/ol.2020.11439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kanehisa M, Sato Y, Furumichi M, Morishima K, Tanabe M (2019) New approach for understanding genome variations in KEGG. Nucleic Acids Res 47:D590–D595. https://doi.org/10.1093/nar/gky962

    Article  CAS  PubMed  Google Scholar 

  29. Mathur R, Rotroff D, Ma J, Shojaie A, Motsinger-Reif A (2018) gsea Gene set analysis methods: a systematic comparison. BioData Min 11:1–19. https://doi.org/10.1186/s13040-018-0166-8

  30. Peng S, Yang S, Bo X, Li F (2017) Paragsea: A scalable approach for large-scale gene expression profiling. Nucleic Acids Res 45:e155. https://doi.org/10.1093/nar/gkx679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 102:15545–15550. https://doi.org/10.1073/pnas.0506580102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu N, Cui Y, Dong J, Huang L (2020) Exploring the molecular mechanisms of pterygium by constructing lncRNA-miRNA-mRNA regulatory network. Invest Ophthalmol Vis Sci 61:12. https://doi.org/10.1167/iovs.61.8.12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47:D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  34. Asgharzadeh MR, Pourseif MM, Barar J et al (2019) Functional expression and impact of testis-specific gene antigen 10 in breast cancer: a combined in vitro and in silico analysis. BioImpacts 9:145–159. https://doi.org/10.15171/bi.2019.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhang J, Liu X, Zhou W, Cheng G, Wu J, Guo S, Jia S, Liu Y et al (2020) A bioinformatics investigation into molecular mechanism of Yinzhihuang granules for treating hepatitis B by network pharmacology and molecular docking verification. Sci Rep 10:1–13. https://doi.org/10.1038/s41598-020-68224-7

    Article  CAS  Google Scholar 

  37. Cong R, Wang Y, Wang Y, Zhang Q, Zhou X, Ji C, Yao L, Song N et al (2020) Comprehensive analysis of lncRNA expression pattern and lncRNA–miRNA–mRNA network in a rat model with cavernous nerve injury erectile dysfunction. J Sex Med 17:1–15. https://doi.org/10.1016/j.jsxm.2020.05.008

    Article  CAS  Google Scholar 

  38. Chin CH, Chen SH, Wu HH, Ho CW, Ko MT, Lin CY (2014) cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8:1–7. https://doi.org/10.1186/1752-0509-8-S4-S11

    Article  Google Scholar 

  39. Zhang Y, Yang X, Zhu XL, Hao JQ, Bai H, Xiao YC, Wang ZZ, Hao CY et al (2020) Bioinformatics analysis of potential core genes for glioblastoma. Biosci Rep 40. https://doi.org/10.1042/BSR20201625

  40. Li CY, Cai JH, Tsai JJP, Wang CCN (2020) Identification of hub genes associated with development of head and neck squamous cell carcinoma by integrated bioinformatics analysis. Front Oncol 10:1–12. https://doi.org/10.3389/fonc.2020.00681

    Article  Google Scholar 

  41. Li T, Gu M, Deng A, Qian C (2020) Increased expression of YTHDF1 and HNRNPA2B1 as potent biomarkers for melanoma: a systematic analysis. Cancer Cell Int 20:1–14. https://doi.org/10.1186/s12935-020-01309-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fu H, Han G, Li H, Liang X, Hu D, Zhang L, Tang P (2019) Identification of key genes and pathways involved in the heterogeneity of intrinsic growth ability between neurons after spinal cord injury in adult zebrafish. Neurochem Res 44:2057–2067. https://doi.org/10.1007/s11064-019-02841-1

    Article  CAS  PubMed  Google Scholar 

  43. Walter W, Sánchez-Cabo F, Ricote M (2015) GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics 31:2912–2914. https://doi.org/10.1093/bioinformatics/btv300

    Article  CAS  PubMed  Google Scholar 

  44. Kim GT, Siregar AS, Kim EJ, Lee ES, Nyiramana MM, Woo MS, Hah YS, Han J et al (2020) Upregulation of tresk channels contributes to motor and sensory recovery after spinal cord injury. Int J Mol Sci 21:1–15. https://doi.org/10.3390/ijms21238997

    Article  CAS  Google Scholar 

  45. Han X, Chen Y, Liu Y, Wang Z, Tang G, Tian W (2018) HIF-1α promotes bone marrow stromal cell migration to the injury site and enhances functional recovery after spinal cord injury in rats. J Gene Med 20:e3062. https://doi.org/10.1002/jgm.3062

    Article  CAS  PubMed  Google Scholar 

  46. Luo Z, Wu F, Xue E et al (2019) Hypoxia preconditioning promotes bone marrow mesenchymal stem cells survival by inducing HIF-1α in injured neuronal cells derived exosomes culture system. Cell Death Dis 10. https://doi.org/10.1038/s41419-019-1410-y

  47. Batty NJ, Fenrich KK, Fouad K (2017) The role of cAMP and its downstream targets in neurite growth in the adult nervous system. Neurosci Lett 652:56–63. https://doi.org/10.1016/j.neulet.2016.12.033

    Article  CAS  PubMed  Google Scholar 

  48. Ávila-Mendoza J, Subramani A, Denver RJ (2020) Krüppel-like factors 9 and 13 block axon growth by transcriptional repression of key components of the cAMP signaling pathway. Front Mol Neurosci 13:1–17. https://doi.org/10.3389/fnmol.2020.602638

    Article  CAS  Google Scholar 

  49. Li H, Huang Y, Ma C, Yu X, Zhang Z, Shen L (2015) MiR-203 involves in neuropathic pain development and represses rap1a expression in nerve growth factor differentiated neuronal PC12 cells. Clin J Pain 31:36–43. https://doi.org/10.1097/AJP.0000000000000070

    Article  CAS  PubMed  Google Scholar 

  50. Gao L, Pu X, Huang Y, Huang J (2019) MicroRNA-340-5p relieved chronic constriction injury-induced neuropathic pain by targeting Rap1A in rat model. Genes and Genomics 0:0. https://doi.org/10.1007/s13258-019-00802-0, 41, 713, 721

  51. Shi LL, Zhang N, Xie XM, Chen YJ, Wang R, Shen L, Zhou JS, Hu JG et al (2017) Transcriptome profile of rat genes in injured spinal cord at different stages by RNA-sequencing. BMC Genomics 18:1–14. https://doi.org/10.1186/s12864-017-3532-x

    Article  CAS  Google Scholar 

  52. Xia Y, Xia H, Chen D, Liao Z, Yan Y (2017) Mechanisms of autophagy and apoptosis mediated by JAK2 signaling pathway after spinal cord injury of rats. Exp Ther Med 14:1589–1593. https://doi.org/10.3892/etm.2017.4674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kang MK, Kang SK (2008) Interleukin-6 induces proliferation in adult spinal cord-derived neural progenitors via the JAK2/STAT3 pathway with EGF-induced MAPK phosphorylation. Cell Prolif 41:377–392. https://doi.org/10.1111/j.1365-2184.2008.00537.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li Z, Chen T, Cao Y, Jiang X, Lin H, Zhang J, Chen Z (2019) Pros and cons: autophagy in acute spinal cord injury. Neurosci Bull 35:941–945. https://doi.org/10.1007/s12264-019-00368-7

    Article  PubMed  PubMed Central  Google Scholar 

  55. Li H, Wang Y, Hu X, Ma B, Zhang H (2019) Thymosin beta 4 attenuates oxidative stress-induced injury of spinal cord-derived neural stem/progenitor cells through the TLR4/MyD88 pathway. Gene 707:136–142. https://doi.org/10.1016/j.gene.2019.04.083

    Article  CAS  PubMed  Google Scholar 

  56. Xu S, Wang J, Jiang J, Song J, Zhu W, Zhang F, Shao M, Xu H et al (2020) TLR4 promotes microglial pyroptosis via lncRNA-F630028O10Rik by activating PI3K/AKT pathway after spinal cord injury. Cell Death Dis 11:693. https://doi.org/10.1038/s41419-020-02824-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R, Liang Q (2020) MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep 40:1–15. https://doi.org/10.1042/BSR20193315

    Article  Google Scholar 

  58. Ribeiro P, Castro MV, Perez M, Cartarozzi LP, Spejo AB, Chiarotto GB, Augusto TM, Oliveira ALR (2020) Toll-like receptor 4 (TLR4) influences the glial reaction in the spinal cord and the neural response to injury following peripheral nerve crush. Brain Res Bull 155:67–80. https://doi.org/10.1016/j.brainresbull.2019.11.008

    Article  CAS  PubMed  Google Scholar 

  59. Gaojian T, Dingfei Q, Linwei L, Xiaowei W, Zheng Z, Wei L, Tong Z, Benxiang N et al (2020) Parthenolide promotes the repair of spinal cord injury by modulating M1/M2 polarization via the NF-κB and STAT 1/3 signaling pathway. Cell Death Discov 6:97. https://doi.org/10.1038/s41420-020-00333-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ji Z, Jiang X, Li Y, Song J, Chai C, Lu X (2020) Neural stem cells induce M2 polarization of macrophages through the upregulation of interleukin-4. Exp Ther Med 20:1–9. https://doi.org/10.3892/etm.2020.9277

    Article  CAS  Google Scholar 

  61. Zhang T, Li K, Zhang ZL, Gao K, Lv CL (2021) LncRNA Airsci increases the inflammatory response after spinal cord injury in rats through the nuclear factor kappa B signaling pathway. Neural Regen Res 16:772–777. https://doi.org/10.4103/1673-5374.295335

    Article  PubMed  Google Scholar 

  62. Wang B, Shen PF, Qu YX et al (2019) MiR-940 promotes spinal cord injury recovery by inhibiting TLR4/NF-κB pathway-mediated inflammation. Eur Rev Med Pharmacol Sci 23:3190–3197. https://doi.org/10.26355/eurrev_201904_17677

    Article  CAS  PubMed  Google Scholar 

  63. Su Y, Zong S, Wei C, Song F, Feng H, Qin A, Lian Z, Fu F et al (2019) Salidroside promotes rat spinal cord injury recovery by inhibiting inflammatory cytokine expression and NF-κB and MAPK signaling pathways. J Cell Physiol 234:14259–14269. https://doi.org/10.1002/jcp.28124

    Article  CAS  PubMed  Google Scholar 

  64. Qian Z, Chang J, Jiang F, Ge D, Yang L, Li Y, Chen H, Cao X (2020) Excess administration of miR-340-5p ameliorates spinal cord injury-induced neuroinflammation and apoptosis by modulating the P38-MAPK signaling pathway. Brain Behav Immun 87:531–542. https://doi.org/10.1016/j.bbi.2020.01.025

    Article  CAS  PubMed  Google Scholar 

  65. Ye J, Xue R, Ji ZY et al (2020) Effect of NT-3 on repair of spinal cord injury through the MAPK signaling pathway. Eur Rev Med Pharmacol Sci 24:2165–2172. https://doi.org/10.26355/eurrev_202003_20481

    Article  CAS  PubMed  Google Scholar 

  66. Ni Y, Gu J, Wu J, Xu L, Rui Y (2020) MGMT-mediated neuron apoptosis in injured rat spinal cord. Tissue Cell 62:101311. https://doi.org/10.1016/j.tice.2019.101311

    Article  CAS  PubMed  Google Scholar 

  67. Yu X, Zhang S, Zhao D, Zhang X, Xia C, Wang T, Zhang M, Liu T et al (2019) SIRT1 inhibits apoptosis in in vivo and in vitro models of spinal cord injury via microRNA-494. Int J Mol Med 43:1758–1768. https://doi.org/10.3892/ijmm.2019.4106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Li Y, Guo Y, Fan Y, Tian H, Li K, Mei X (2019) Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem Res 44:2007–2019. https://doi.org/10.1007/s11064-019-02838-w

    Article  CAS  PubMed  Google Scholar 

  69. Tang J, Guo WC, Hu JF, Yu L (2019) Let-7 participates in the regulation of inflammatory response in spinal cord injury through PI3K/Akt signaling pathway. Eur Rev Med Pharmacol Sci 23:6767–6773. https://doi.org/10.26355/eurrev_201908_18714

    Article  CAS  PubMed  Google Scholar 

  70. Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, Peng X, Ji S et al (2020) Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflammation 17:1–17. https://doi.org/10.1186/s12974-020-01981-4

    Article  CAS  Google Scholar 

  71. Kong Y, Wang F, Wang J, Liu C, Zhou Y, Xu Z, Zhang C, Sun B et al (2020) Pathological mechanisms linking diabetes mellitus and Alzheimer’s disease: the receptor for advanced glycation end products (RAGE). Front Aging Neurosci 12:1–10. https://doi.org/10.3389/fnagi.2020.00217

    Article  CAS  Google Scholar 

  72. Abbaszadeh F, Fakhri S, Khan H (2020) Targeting apoptosis and autophagy following spinal cord injury: therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 160:105069. https://doi.org/10.1016/j.phrs.2020.105069

    Article  CAS  PubMed  Google Scholar 

  73. Yagura K, Ohtaki H, Tsumuraya T, Sato A, Miyamoto K, Kawada N, Suzuki K, Nakamura M et al (2020) The enhancement of CCL2 and CCL5 by human bone marrow-derived mesenchymal stem/stromal cells might contribute to inflammatory suppression and axonal extension after spinal cord injury. PLoS One 15:1–23. https://doi.org/10.1371/journal.pone.0230080

    Article  CAS  Google Scholar 

  74. Longhi-Balbinot DT, Rossaneis AC, Pinho-Ribeiro FA, Bertozzi MM, Cunha FQ, Alves-Filho JC, Cunha TM, Peron JPS et al (2016) The nitroxyl donor, Angeli’s salt, reduces chronic constriction injury-induced neuropathic pain. Chem Biol Interact 256:1–8. https://doi.org/10.1016/j.cbi.2016.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hyochol Ahn, et al 2017 (2017) HHS Public Access Author manuscript Trends Immunol. Author manuscript; available in PMC 2018 May 01. Published in final edited form as: Trends Immunol. 2017 May ; 38(5): 310–322. doi:https://doi.org/10.1016/j.it.2017.01.006. IL-17 signaling: the yin and the yang Nilesh H. Physiol Behav 176:139–148. https://doi.org/10.1016/j.it.2017.01.006.IL-17

  76. Liu NK, Zhang YP, Han S, Pei J, Xu LY, Lu PH, Shields CB, Xu XM (2007) Annexin A1 reduces inflammatory reaction and tissue damage through inhibition of phospholipase A2 activation in adult rats following spinal cord injury. J Neuropathol Exp Neurol 66:932–943. https://doi.org/10.1097/nen.0b013e3181567d59

    Article  CAS  PubMed  Google Scholar 

  77. Brennan FH, Jogia T, Gillespie ER, Blomster LV, Li XX, Nowlan B, Williams GM, Jacobson E et al (2019) Complement receptor C3aR1 controls neutrophil mobilization following spinal cord injury through physiological antagonism of CXCR2. JCI Insight 4:1–18. https://doi.org/10.1172/jci.insight.98254

    Article  Google Scholar 

  78. Li L, Xiong Z yong, Qian ZM, et al (2014) Complement C5a is detrimental to histological and functional locomotor recovery after spinal cord injury in mice. Neurobiol Dis 66:74–82. https://doi.org/10.1016/j.nbd.2014.02.008

  79. Hiraizumi Y, Fujimaki E, Transfeldt EE, Kawahara N, Fiegel VD, Knighton D, Sung JH (1996) The effect of the platelet derived wound healing formula and the nerve growth factor on the experimentally injured spinal cord. Spinal Cord 34:394–402. https://doi.org/10.1038/sc.1996.71

    Article  CAS  PubMed  Google Scholar 

  80. Biggins PJC, Brennan FH, Taylor SM, Woodruff TM, Ruitenberg MJ (2017) The alternative receptor for complement component 5a, C5aR2, conveys neuroprotection in traumatic spinal cord injury. J Neurotrauma 34:2075–2085. https://doi.org/10.1089/neu.2016.4701

    Article  PubMed  Google Scholar 

  81. Elujoba-Bridenstine A, Shao L, Zink K, Sanchez L, Cox B, Pajcini K, Tamplin OJ (2019) The neurotransmitter receptor Gabbr1 regulates proliferation and function of hematopoietic stem and progenitor cells. Blood 134:3707–3707. https://doi.org/10.1182/blood-2019-130627

    Article  Google Scholar 

  82. Pineau I, Sun L, Bastien D, Lacroix S (2010) Astrocytes initiate inflammation in the injured mouse spinal cord by promoting the entry of neutrophils and inflammatory monocytes in an IL-1 receptor/MyD88-dependent fashion. Brain Behav Immun 24:540–553. https://doi.org/10.1016/j.bbi.2009.11.007

    Article  CAS  PubMed  Google Scholar 

  83. Francos-Quijorna I, Santos-Nogueira E, Gronert K, Sullivan AB, Kopp MA, Brommer B, David S, Schwab JM et al (2017) Maresin 1 promotes inflammatory resolution, neuroprotection, and functional neurological recovery after spinal cord injury. J Neurosci 37:11731–11743. https://doi.org/10.1523/JNEUROSCI.1395-17.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Boomkamp SD, McGrath MA, Houslay MD, Barnett SC (2014) Epac and the high affinity rolipram binding conformer of PDE4 modulate neurite outgrowth and myelination using an in vitro spinal cord injury model. Br J Pharmacol 171:2385–2398. https://doi.org/10.1111/bph.12588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Watanabe S, Uchida K, Nakajima H, Matsuo H, Sugita D, Yoshida A, Honjoh K, Johnson WEB et al (2015) Early transplantation of mesenchymal stem cells after spinal cord injury relieves pain hypersensitivity through suppression of pain-related signaling cascades and reduced inflammatory cell recruitment. Stem Cells 33:1902–1914. https://doi.org/10.1002/stem.2006

    Article  CAS  PubMed  Google Scholar 

  86. Chen G, Zhou Z, Sha W, Wang L, Yan F, Yang X, Qin X, Wu M et al (2020) A novel CX3CR1 inhibitor AZD8797 facilitates early recovery of rat acute spinal cord injury by inhibiting inflammation and apoptosis. Int J Mol Med 45:1373–1384. https://doi.org/10.3892/ijmm.2020.4509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Poniatowski ŁA, Wojdasiewicz P, Krawczyk M, Szukiewicz D, Gasik R, Kubaszewski Ł, Kurkowska-Jastrzębska I (2017) Analysis of the role of CX3CL1 (fractalkine) and its receptor CX3CR1 in traumatic brain and spinal cord injury: Insight into recent advances in actions of neurochemokine agents. Mol Neurobiol 54:2167–2188. https://doi.org/10.1007/s12035-016-9787-4

    Article  CAS  PubMed  Google Scholar 

  88. Sun JF, Yang HL, Huang YH, Chen Q, Cao XB, Li DP, Shu HM, Jiang RY (2017) CaSR and calpain contribute to the ischemia reperfusion injury of spinal cord. Neurosci Lett 646:49–55. https://doi.org/10.1016/j.neulet.2017.03.009

    Article  CAS  PubMed  Google Scholar 

  89. Sapio MR, Iadarola MJ, Loydpierson AJ, Kim JJ, Thierry-Mieg D, Thierry-Mieg J, Maric D, Mannes AJ (2020) Dynorphin and enkephalin opioid peptides and transcripts in spinal cord and dorsal root ganglion during peripheral inflammatory hyperalgesia and allodynia. J Pain 21:988–1004. https://doi.org/10.1016/j.jpain.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Rojewska E, Wawrzczak-Bargiela A, Szucs E, Benyhe S, Starnowska J, Mika J, Przewlocki R, Przewlocka B (2018) Alterations in the activity of spinal and thalamic opioid systems in a mice neuropathic pain model. Neuroscience 390:293–302. https://doi.org/10.1016/j.neuroscience.2018.08.013

    Article  CAS  PubMed  Google Scholar 

  91. Shamseldin HE, Masuho I, Alenizi A, Alyamani S, Patil DN, Ibrahim N, Martemyanov KA, Alkuraya FS (2016) GNB5 mutation causes a novel neuropsychiatric disorder featuring attention deficit hyperactivity disorder, severely impaired language development and normal cognition. Genome Biol 17:1–9. https://doi.org/10.1186/s13059-016-1061-6

    Article  CAS  Google Scholar 

  92. Ju LH, Choi TI, Kim YM et al (2020) Regulation of habenular G-protein gamma 8 on learning and memory via modulation of the central acetylcholine system. Mol Psychiatry. https://doi.org/10.1038/s41380-020-00893-2

  93. Li Z, Wystrach L, Bernstein A et al (2020) The tissue-renin-angiotensin system of the human intervertebral disc. Eur Cells Mater 40:115–132. https://doi.org/10.22203/eCM.v040a07

    Article  CAS  Google Scholar 

  94. Li ZW, Sun B, Gong T, Guo S, Zhang J, Wang J, Sugawara A, Jiang M et al (2019) GNAI1 and GNAI3 reduce colitis-associated tumorigenesis in mice by blocking IL6 signaling and down-regulating expression of GNAI2. Gastroenterology 156:2297–2312. https://doi.org/10.1053/j.gastro.2019.02.040

    Article  CAS  PubMed  Google Scholar 

  95. Mendsaikhan A, Tooyama I, Bellier JP, Serrano GE, Sue LI, Lue LF, Beach TG, Walker DG (2019) Characterization of lysosomal proteins Progranulin and Prosaposin and their interactions in Alzheimer’s disease and aged brains: increased levels correlate with neuropathology. Acta Neuropathol Commun 7:1–26. https://doi.org/10.1186/s40478-019-0862-8

    Article  CAS  Google Scholar 

  96. Nakamura M, Okada S, Toyama Y, Okano H (2005) Role of IL-6 in spinal cord injury in a mouse model. Clin Rev Allergy Immunol 28:197–203. https://doi.org/10.1385/CRIAI:28:3:197

    Article  CAS  PubMed  Google Scholar 

  97. Alizadeh A, Dyck SM, Karimi-Abdolrezaee S (2015) Myelin damage and repair in pathologic CNS: challenges and prospects. Front Mol Neurosci 8:1–27. https://doi.org/10.3389/fnmol.2015.00035

    Article  CAS  Google Scholar 

  98. Bendix PM, Simonsen AC, Florentsen CD, Häger SC, Mularski A, Zanjani AAH, Moreno-Pescador G, Klenow MB et al (2020) Interdisciplinary synergy to reveal mechanisms of annexin-mediated plasma membrane shaping and repair. Cells 9:1–12. https://doi.org/10.3390/cells9041029

    Article  CAS  Google Scholar 

  99. McArthur S, Juban G, Gobbetti T, Desgeorges T, Theret M, Gondin J, Toller-Kawahisa JE, Reutelingsperger CP et al (2020) Annexin A1 drives macrophage skewing to accelerate muscle regeneration through AMPK activation. J Clin Invest 130:1156–1167. https://doi.org/10.1172/JCI124635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Chen J, Cui Z, Yang S, Wu C, Li W, Bao G, Xu G, Sun Y et al (2017) The upregulation of annexin A2 after spinal cord injury in rats may have implication for astrocyte proliferation. Neuropeptides 61:67–76. https://doi.org/10.1016/j.npep.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  101. Zhong ZQ, Xiang Y, Hu X et al (2017) Synaptosomal-associated protein 25 may be an intervention target for improving sensory and locomotor functions after spinal cord contusion. Neural Regen Res 12:969–976. https://doi.org/10.4103/1673-5374.208592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Liu X, Sun Y, Li H, Li Y, Li M, Yuan Y, Cui S, Yao D (2017) Effect of Spp1 on nerve degeneration and regeneration after rat sciatic nerve injury. BMC Neurosci 18:1–10. https://doi.org/10.1186/s12868-017-0348-1

    Article  CAS  Google Scholar 

  103. Liu Y, Wang X, Li W et al (2017) A sensitized IGF1 treatment restores corticospinal axon-dependent functions. Neuron 95:817-833.e4. https://doi.org/10.1016/j.neuron.2017.07.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Fu Y, Hashimoto M, Ino H, Murakami M, Yamazaki M, Moriya H (2004) Spinal root avulsion-induced upregulation of osteopontin expression in the adult rat spinal cord. Acta Neuropathol 107:8–16. https://doi.org/10.1007/s00401-003-0775-1

    Article  CAS  PubMed  Google Scholar 

  105. Hashimoto M, Sun D, Rittling SR, Denhardt DT, Young W (2007) Osteopontin-deficient mice exhibit less inflammation, greater tissue damage, and impaired locomotor recovery from spinal cord injury compared with wild-type controls. J Neurosci 27:3603–3611. https://doi.org/10.1523/JNEUROSCI.4805-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kyyriäinen J, Tapiala J, Lipponen A, Ekolle Ndode-Ekane X, Pitkänen A (2020) Plau/Plaur double-deficiency did not worsen lesion severity or vascular integrity after traumatic brain injury. Neurosci Lett 729:134935. https://doi.org/10.1016/j.neulet.2020.134935

    Article  CAS  PubMed  Google Scholar 

  107. Freeman (2018) Endothelial cell-specific deletion of P2Y2 receptor promotes plaque stability in atherosclerosis-susceptible ApoE-null mice. Physiol Behav 176:139–148. https://doi.org/10.1117/12.2549369.Hyperspectral

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Xiao Fang of the Department of Burns (The First Affiliated Hospital of Anhui Medical University) for his help in programming and graphing in computer R language.

Funding

This study was supported by the National Natural Science Foundation of China, Nos. 81871785 and 81672161.

Author information

Authors and Affiliations

Authors

Contributions

Sheng Fang conceived the original idea and designed the outlines of the study. Lin Zhong and An-quan Wang Helped collect, organize, and check the data. Hui Zhang and Zong-Sheng Yin aided in revising the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Zong-Sheng Yin.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Zhong, L., Wang, Aq. et al. Identification of Regeneration and Hub Genes and Pathways at Different Time Points after Spinal Cord Injury. Mol Neurobiol 58, 2643–2662 (2021). https://doi.org/10.1007/s12035-021-02289-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02289-x

Keywords

Navigation