Skip to main content

Advertisement

Log in

Legumain Knockout Protects Against Aβ1–42-Induced AD-like Cognitive Deficits and Synaptic Plasticity Dysfunction Via Inhibiting Neuroinflammation Without Cleaving APP

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuroinflammation is the important pathological feature of Alzheimer’s disease (AD). Legumain, a lysosomal cysteine protease, plays an important role in neuroinflammation during ischemic stroke and depressive disorder. Legumain is involved in AD process through cleaving APP; however, it is unclear if legumain can possibly modulate neuroinflammation without cleaving APP in AD. Thus, we established a mouse model of AD by single intracerebroventricular injections of Aβ1–42 in legumain knockout (KO) mice. The behavioral tests showed that legumain-KO effectively ameliorated cognitive impairment induced by Aβ1–42. Moreover, legumain deprivation significantly improves the synaptic plasticity damages in Aβ1–42-treated mice. Moreover, legumain-KO considerably inhibited the activation of microglia and reduced the expression of inflammatory cytokines in the hippocampus of Aβ1–42-treated mice. Interestingly, we found that legumain-KO inhibited TLR4/MyD88/NF-κB pathway, which was activated by Aβ1–42 in the hippocampus. In conclusion, our results suggested that legumain-KO reduced the level of neuroinflammation that was associated with inhibiting TLR4/MyD88/NF-κB pathways, thereby improving the hippocampal synaptic plasticity and reducing the cognitive impairments in Aβ1–42-treated mice.

Graphical abstract

Legumain knockout blocked microglia activation by inhibiting TLR4/MyD88/NF-κB signaling pathways, and further reduced inflammatory cytokine expression. As a result, legumain knockout alleviated synaptic damage and cognitive impairment induced by Aβ1–-42.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B et al (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15(5):455–532. https://doi.org/10.1016/s1474-4422(16)00062-4

    Article  PubMed  Google Scholar 

  2. Mudher A, Lovestone S (2002) Alzheimer’s disease – do tauists and baptists finally shake hands?

  3. Wang H, Jiang T, Li W, Gao N, Zhang T (2018) Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 282:100–108. https://doi.org/10.1016/j.toxlet.2017.10.021

    Article  CAS  PubMed  Google Scholar 

  4. Fu WY, Wang X, Ip NY (2019) Targeting neuroinflammation as a therapeutic strategy for Alzheimer’s disease: mechanisms, drug candidates, and new opportunities. ACS Chem Neurosci 10(2):872–879. https://doi.org/10.1021/acschemneuro.8b00402

    Article  CAS  PubMed  Google Scholar 

  5. Brosseron F, Traschutz A, Widmann CN, Kummer MP, Tacik P, Santarelli F, Jessen F, Heneka MT (2018) Characterization and clinical use of inflammatory cerebrospinal fluid protein markers in Alzheimer’s disease. Alzheimers Res Ther 10(1):25. https://doi.org/10.1186/s13195-018-0353-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Strohmeyer R, Rogers J (2001) Molecular and cellular mediators of Alzheimer’s disease inflammation. J Alzheimers Dis 3(1):131–157. https://doi.org/10.3233/JAD-2001-3118

    Article  CAS  PubMed  Google Scholar 

  7. Szekely CA, Town T, Zandi PP (2007) NSAIDs for the chemoprevention of Alzheimer’s disease. Subcell Biochem 42:229–248. https://doi.org/10.1007/1-4020-5688-5_11

    Article  PubMed  Google Scholar 

  8. Torika N, Asraf K, Apte RN, Fleisher-Berkovich S (2018) Candesartan ameliorates brain inflammation associated with Alzheimer’s disease. CNS Neurosci Ther 24(3):231–242. https://doi.org/10.1111/cns.12802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu C, Sun C, Huang H, Janda K, Edgington T (2003) Overexpression of legumain in tumors is significant for invasion/metastasis and a candidate enzymatic target for prodrug therapy. Cancer Res 63(11):2957–2964. https://doi.org/10.1097/00002820-200306000-00012

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Kang SS, Liu X, Ahn EH, Zhang Z, He L, Iuvone PM, Duong DM et al (2017) Asparagine endopeptidase cleaves alpha-synuclein and mediates pathologic activities in Parkinson’s disease. Nat Struct Mol Biol 24(8):632–642. https://doi.org/10.1038/nsmb.3433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lian J, Li K, Gao J, Tan X, Yang Z (2019) Legumain acts on neuroinflammatory to affect CUS-induced cognitive impairment. Behav Brain Res 376:112219. https://doi.org/10.1016/j.bbr.2019.112219

    Article  CAS  PubMed  Google Scholar 

  12. Ishizaki T, Erickson A, Kuric E, Shamloo M, Hara-Nishimura I, Inacio AR, Wieloch T, Ruscher K (2010) The asparaginyl endopeptidase legumain after experimental stroke. J Cereb Blood Flow Metab 30(10):1756–1766. https://doi.org/10.1038/jcbfm.2010.39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu Z, Jang SW, Liu X, Cheng D, Peng J, Yepes M, Li XJ, Matthews S et al (2008) Neuroprotective actions of PIKE-L by inhibition of SET proteolytic degradation by asparagine endopeptidase. Mol Cell 29(6):665–678. https://doi.org/10.1016/j.molcel.2008.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Z, Xie M, Ye K (2016) Asparagine endopeptidase is an innovative therapeutic target for neurodegenerative diseases. Expert Opin Ther Targets 20(10):1237–1245. https://doi.org/10.1080/14728222.2016.1182990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Z, Song M, Liu X, Su Kang S, Duong DM, Seyfried NT, Cao X, Cheng L et al (2015) Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat Commun 6:8762. https://doi.org/10.1038/ncomms9762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang Z, Obianyo O, Dall E, Du Y, Fu H, Liu X, Kang SS, Song M et al (2017) Inhibition of delta-secretase improves cognitive functions in mouse models of Alzheimer’s disease. Nat Commun 8:14740. https://doi.org/10.1038/ncomms14740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N et al (2007) Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 20(6):947–956. https://doi.org/10.1159/000110455

    Article  CAS  PubMed  Google Scholar 

  18. Ewald SE (2010) Activation of nucleic acid-sensing toll-like receptors requires cleavage by endolysosomal proteases: a mechanism to avoid autoimmunity. Dissertations & Theses Gradworks

  19. Ali T, Kim MO (2015) Melatonin ameliorates amyloid beta-induced memory deficits, tau hyperphosphorylation and neurodegeneration via PI3/Akt/GSk3β pathway in the mouse hippocampus. J Pineal Res 59(1):47–59

    Article  CAS  Google Scholar 

  20. Goncalves FQ, Lopes JP, Silva HB, Lemos C, Silva AC, Goncalves N, Tome AR, Ferreira SG et al (2019) Synaptic and memory dysfunction in a beta-amyloid model of early Alzheimer’s disease depends on increased formation of ATP-derived extracellular adenosine. Neurobiol Dis 132:104570. https://doi.org/10.1016/j.nbd.2019.104570

    Article  CAS  PubMed  Google Scholar 

  21. Ahmad A, Ali T, Park HY, Badshah H, Rehman SU, Kim MO (2017) Neuroprotective effect of fisetin against amyloid-beta-induced cognitive/synaptic dysfunction, neuroinflammation, and neurodegeneration in adult mice. Mol Neurobiol 54(3):2269–2285. https://doi.org/10.1007/s12035-016-9795-4

    Article  CAS  PubMed  Google Scholar 

  22. Gao J, Li K, Du L, Yin H, Tan X, Yang Z (2018) Deletion of asparagine endopeptidase reduces anxiety- and depressive-like behaviors and improves abilities of spatial cognition in mice. Brain Res Bull 142:147–155. https://doi.org/10.1016/j.brainresbull.2018.07.010

    Article  CAS  PubMed  Google Scholar 

  23. Ali T, Kim MJ, Rehman SU, Ahmad A, Kim MO (2017) Anthocyanin-loaded PEG-gold nanoparticles enhanced the neuroprotection of anthocyanins in an Abeta1-42 mouse model of Alzheimer’s disease. Mol Neurobiol 54(8):6490–6506. https://doi.org/10.1007/s12035-016-0136-4

    Article  CAS  PubMed  Google Scholar 

  24. Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12(2):0–260. https://doi.org/10.1016/0023-9690(81)90020-5

    Article  Google Scholar 

  25. Malenka RC, Nicoll RA (1999) Long-term potentiation--a decade of progress? Science 285(5435):1870–1874. https://doi.org/10.1126/science.285.5435.1870

    Article  CAS  PubMed  Google Scholar 

  26. Kumari E, Li K, Yang Z, Zhang T (2020) Tacrine accelerates spatial long-term memory via improving impaired neural oscillations and modulating GAD isomers including neuro-receptors in the hippocampus of APP/PS1 AD mice. Brain Res Bull 161:166–176. https://doi.org/10.1016/j.brainresbull.2020.05.007

    Article  CAS  PubMed  Google Scholar 

  27. Wang S, Li K, Zhao S, Zhang X, Yang Z, Zhang J, Zhang T (2020) Early-stage dysfunction of hippocampal theta and gamma oscillations and its modulation of neural network in a transgenic 5xFAD mouse model. Neurobiol Aging 94:121–129. https://doi.org/10.1016/j.neurobiolaging.2020.05.002

    Article  CAS  PubMed  Google Scholar 

  28. Squire LR, Stark CE, Clark RE (2004) The medial temporal lobe. Annu Rev Neurosci 27:279–306. https://doi.org/10.1146/annurev.neuro.27.070203.144130

    Article  CAS  PubMed  Google Scholar 

  29. Teyler TJ, Discenna P (1987) Long-term potentiation. Annu Rev Neurosci 10(1):131–161. https://doi.org/10.1146/annurev.ne.10.030187.001023

    Article  CAS  PubMed  Google Scholar 

  30. Qi Y, Hu NW, Rowan MJ (2013) Switching off LTP: mGlu and NMDA receptor-dependent novelty exploration-induced depotentiation in the rat hippocampus. Cereb Cortex 23(4):932–939. https://doi.org/10.1093/cercor/bhs086

    Article  PubMed  Google Scholar 

  31. Ingelsson M, Fukumoto H, Newell KL, Growdon JH, Hedley-Whyte ET, Frosch MP, Albert MS, Hyman BT et al (2004) Early Abeta accumulation and progressive synaptic loss, gliosis, and tangle formation in AD brain. Neurology 62(6):925–931. https://doi.org/10.1212/01.wnl.0000115115.98960.37

    Article  CAS  PubMed  Google Scholar 

  32. Boza-Serrano A, Ruiz R, Sanchez-Varo R, Garcia-Revilla J, Yang Y, Jimenez-Ferrer I, Paulus A, Wennstrom M et al (2019) Galectin-3, a novel endogenous TREM2 ligand, detrimentally regulates inflammatory response in Alzheimer’s disease. Acta Neuropathol 138(2):251–273. https://doi.org/10.1007/s00401-019-02013-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hickman SE, Allison EK, El Khoury J (2008) Microglial dysfunction and defective beta-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 28(33):8354–8360. https://doi.org/10.1523/JNEUROSCI.0616-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu S, Liu Y, Hao W, Wolf L, Kiliaan AJ, Penke B, Rube CE, Walter J et al (2012) TLR2 is a primary receptor for Alzheimer’s amyloid beta peptide to trigger neuroinflammatory activation. J Immunol 188(3):1098–1107. https://doi.org/10.4049/jimmunol.1101121

    Article  CAS  PubMed  Google Scholar 

  35. McGeer PL, McGeer EG (2002) Local neuroinflammation and the progression of Alzheimer’s disease. J Neuro-Oncol 8(6):529–538. https://doi.org/10.1080/13550280290100969

    Article  CAS  Google Scholar 

  36. Block ML, Hong JS (2005) Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 76(2):77–98. https://doi.org/10.1016/j.pneurobio.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Liu L, Chan C (2014) IPAF inflammasome is involved in interleukin-1beta production from astrocytes, induced by palmitate; implications for Alzheimer’s disease. Neurobiol Aging 35(2):309–321. https://doi.org/10.1016/j.neurobiolaging.2013.08.016

    Article  CAS  PubMed  Google Scholar 

  38. Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol 187(12):6539–6549. https://doi.org/10.4049/jimmunol.1100620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Helfgott DC, Tatter SB, Santhanam U, Clarick RH, Bhardwaj N, May LT, Sehgal PB (1989) Multiple forms of IFN-beta 2/IL-6 in serum and body fluids during acute bacterial infection. J Immunol 142(3):948–953

    CAS  PubMed  Google Scholar 

  40. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Riederer P (1995) Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 202:17–20. https://doi.org/10.1016/0304-3940(95)12192-7

    Article  CAS  PubMed  Google Scholar 

  41. Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, Brito-Moreira J et al (2013) TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition induced by Alzheimer’s beta-amyloid oligomers in mice and monkeys. Cell Metab 18(6):831–843. https://doi.org/10.1016/j.cmet.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  42. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 5:45. https://doi.org/10.1186/1742-2094-5-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Nguyen MD, Julien JP, Rivest S (2002) Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 3(3):216–227. https://doi.org/10.1038/nrn752

    Article  CAS  PubMed  Google Scholar 

  44. Morris GP, Clark IA, Zinn R, Vissel B (2013) Microglia: a new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 105:40–53. https://doi.org/10.1016/j.nlm.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  45. Malika B, Rivka R, Djordje G, van Noort JM (2002) Broad expression of toll-like receptors in the human central nervous system. J Neuropathol Exp Neurol 11:11–1021. https://doi.org/10.1093/jnen/61.11.1013

    Article  Google Scholar 

  46. Olson JK, Miller SD (2004) Microglia initiate central nervous system innate and adaptive immune responses through multiple TLRs. J Immunol 173(6):3916–3924. https://doi.org/10.4049/jimmunol.1t73.6.3916

    Article  CAS  PubMed  Google Scholar 

  47. Minoretti P, Gazzaruso C, Vito CD, Emanuele E, Bianchi M, Coen E, Reino M, Geroldi D (2006) Effect of the functional toll-like receptor 4 Asp299Gly polymorphism on susceptibility to late-onset Alzheimer’s disease. Neurosci Lett 391(3):147–149. https://doi.org/10.1016/j.neulet.2005.08.047

    Article  CAS  PubMed  Google Scholar 

  48. Letiembre M, Hao W, Liu Y, Walter S, Mihaljevic I, Rivest S, Hartmann T, Fassbender K (2007) Innate immune receptor expression in normal brain aging. Neuroscience 146(1):248–254. https://doi.org/10.1016/j.neuroscience.2007.01.004

    Article  CAS  PubMed  Google Scholar 

  49. Wang X, Stridh L, Li W, Dean J, Elmgren A, Gan L, Eriksson K, Hagberg H et al (2009) Lipopolysaccharide sensitizes neonatal hypoxic-ischemic brain injury in a MyD88-dependent manner. J Immunol 183(11):7471–7477. https://doi.org/10.4049/jimmunol.0900762

    Article  CAS  PubMed  Google Scholar 

  50. Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, Nabavi SM, Nabavi SF (2017) Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev 36:11–19. https://doi.org/10.1016/j.arr.2017.02.004

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge this work to our lab team Ph. D fellow Dr. Ekta kumara, who is a native English speaker, for her valuable comments and help.

Funding

This work was supported by grants from the National Natural Science Foundation of China (32070988).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiment: Runwen Chen, Tao Zhang; performed the experiments: Runwen Chen, Qiyue Zhang, Yuxing Yan, Yuying Zhang; analyzed the data: Runwen Chen; wrote the manuscript: Runwen Chen, Yuying Zhang, Tao Zhang; and wrote revised version of manuscript: Runwen Chen, Tao Zhang.

Corresponding author

Correspondence to Tao Zhang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All individual participants have consented to the submission of the manuscript to the journal.

Ethical Approval

All procedures performed in the study involving animals were in accordance with the ethical standards of the institution or practice. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 121 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Zhang, Q., Yan, Y. et al. Legumain Knockout Protects Against Aβ1–42-Induced AD-like Cognitive Deficits and Synaptic Plasticity Dysfunction Via Inhibiting Neuroinflammation Without Cleaving APP. Mol Neurobiol 58, 1607–1620 (2021). https://doi.org/10.1007/s12035-020-02219-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-02219-3

Keywords

Navigation