Skip to main content
Log in

Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System

  • Reviews
  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Butler SJ, Bronner ME (2015) From classical to current: analyzing peripheral nervous system and spinal cord lineage and fate. Dev Biol 398(2):135–146

    Article  CAS  PubMed  Google Scholar 

  2. Newbern JM (2015) Molecular control of the neural crest and peripheral nervous system development. Curr Top Dev Biol 111:201–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jessen KR, Mirsky R (2016) The repair Schwann cell and its function in regenerating nerves. J Physiol 594(13):3521–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gotz M, Huttner WB (2005) The cell biology of neurogenesis. Nat Rev Mol Cell Biol 6(10):777–788

    Article  PubMed  CAS  Google Scholar 

  5. Cunningham JJ, Roussel MF (2001) Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 12(8):387–396

    CAS  PubMed  Google Scholar 

  6. Lui JH, Hansen DV, Kriegstein AR (2011) Development and evolution of the human neocortex. Cell 146(1):18–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Govindan S, Jabaudon D (2017) Coupling progenitor and neuronal diversity in the developing neocortex. FEBS Lett 591(24):3960–3977

    Article  CAS  PubMed  Google Scholar 

  8. Dehay C, Kennedy H (2007) Cell-cycle control and cortical development. Nat Rev Neurosci 8(6):438–450

    Article  CAS  PubMed  Google Scholar 

  9. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222

    Article  CAS  PubMed  Google Scholar 

  10. Kriegstein A, Alvarez-Buylla A (2009) The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32:149–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu TS, Washington PM, Kernie SG (2016) Injury-induced neurogenesis: mechanisms and relevance. Neuroscientist 22(1):61–71

    Article  PubMed  Google Scholar 

  12. Domingues HS et al (2016) Oligodendrocyte, astrocyte, and microglia crosstalk in myelin development, damage, and repair. Front Cell Dev Biol 4:71

    PubMed  PubMed Central  Google Scholar 

  13. Dimou L, Gotz M (2014) Glial cells as progenitors and stem cells: New roles in the healthy and diseased brain. Physiol Rev 94(3):709–737

    Article  CAS  PubMed  Google Scholar 

  14. Scheller A, Bai X, Kirchhoff F (2017) The role of the oligodendrocyte lineage in acute brain trauma. Neurochem Res 42(9):2479–2489

    Article  CAS  PubMed  Google Scholar 

  15. Stoica BA, Byrnes KR, Faden AI (2009) Cell cycle activation and CNS injury. Neurotox Res 16(3):221–237

    Article  PubMed  Google Scholar 

  16. Lange C, Calegari F (2010) Cdks and cyclins link G1 length and differentiation of embryonic, neural and hematopoietic stem cells. Cell Cycle 9(10):1893–1900

    Article  CAS  PubMed  Google Scholar 

  17. Sicinski P, Donaher JL, Parker SB, Li T, Fazeli A, Gardner H, Haslam SZ, Bronson RT et al (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82(4):621–630

    Article  CAS  PubMed  Google Scholar 

  18. Das G, Choi Y, Sicinski P, Levine EM (2009) Cyclin D1 fine-tunes the neurogenic output of embryonic retinal progenitor cells. Neural Dev 4:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Glickstein SB, Monaghan JA, Koeller HB, Jones TK, Ross ME (2009) Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J Neurosci 29(30):9614–9624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Glickstein SB, Alexander S, Ross ME (2007) Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. Cereb Cortex 17(3):632–642

    Article  PubMed  Google Scholar 

  21. Huard JM et al (1999) Cerebellar histogenesis is disturbed in mice lacking cyclin D2. Development 126(9):1927–1935

    CAS  PubMed  Google Scholar 

  22. Leto K, Bartolini A, di Gregorio A, Imperiale D, de Luca A, Parmigiani E, Filipkowski RK, Kaczmarek L et al (2011) Modulation of cell-cycle dynamics is required to regulate the number of cerebellar GABAergic interneurons and their rhythm of maturation. Development 138(16):3463–3472

    Article  CAS  PubMed  Google Scholar 

  23. Marcucci F, Murcia-Belmonte V, Wang Q, Coca Y, Ferreiro-Galve S, Kuwajima T, Khalid S, Ross ME et al (2016) The ciliary margin zone of the mammalian retina generates retinal ganglion cells. Cell Rep 17(12):3153–3164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tong W, Pollard JW (2001) Genetic evidence for the interactions of cyclin D1 and p27(Kip1) in mice. Mol Cell Biol 21(4):1319–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grison A, Gaiser C, Bieder A, Baranek C, Atanasoski S (2018) Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain. Dev Neurobiol 78(7):660–670

    Article  CAS  PubMed  Google Scholar 

  26. Mi D, Carr CB, Georgala PA, Huang YT, Manuel MN, Jeanes E, Niisato E, Sansom SN et al (2013) Pax6 exerts regional control of cortical progenitor proliferation via direct repression of Cdk6 and hypophosphorylation of pRb. Neuron 78(2):269–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim S, Kaldis P (2012) Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells 30(7):1509–1520

    Article  CAS  PubMed  Google Scholar 

  28. Lange C, Huttner WB, Calegari F (2009) Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell 5(3):320–331

    Article  CAS  PubMed  Google Scholar 

  29. Cunningham JJ, Levine EM, Zindy F, Goloubeva O, Roussel MF, Smeyne RJ (2002) The cyclin-dependent kinase inhibitors p19(Ink4d) and p27(Kip1) are coexpressed in select retinal cells and act cooperatively to control cell cycle exit. Mol Cell Neurosci 19(3):359–374

    Article  CAS  PubMed  Google Scholar 

  30. Bilodeau S, Roussel-Gervais A, Drouin J (2009) Distinct developmental roles of cell cycle inhibitors p57Kip2 and p27Kip1 distinguish pituitary progenitor cell cycle exit from cell cycle reentry of differentiated cells. Mol Cell Biol 29(7):1895–1908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mitsuhashi T, Aoki Y, Eksioglu YZ, Takahashi T, Bhide PG, Reeves SA, Caviness VS (2001) Overexpression of p27Kip1 lengthens the G1 phase in a mouse model that targets inducible gene expression to central nervous system progenitor cells. Proc Natl Acad Sci U S A 98(11):6435–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tury A, Mairet-Coello G, DiCicco-Bloom E (2011) The cyclin-dependent kinase inhibitor p57Kip2 regulates cell cycle exit, differentiation, and migration of embryonic cerebral cortical precursors. Cereb Cortex 21(8):1840–1856

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tarui T, Takahashi T, Nowakowski RS, Hayes NL, Bhide PG, Caviness VS (2005) Overexpression of p27 Kip 1, probability of cell cycle exit, and laminar destination of neocortical neurons. Cereb Cortex 15(9):1343–1355

    Article  CAS  PubMed  Google Scholar 

  34. Dyer MA, Cepko CL (2001) Regulating proliferation during retinal development. Nat Rev Neurosci 2(5):333–342

    Article  CAS  PubMed  Google Scholar 

  35. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ma J, Yu Z, Qu W, Tang Y, Zhan Y, Ding C, Wang W, Xie M (2010) Proliferation and differentiation of neural stem cells are selectively regulated by knockout of cyclin D1. J Mol Neurosci 42(1):35–43

    Article  CAS  PubMed  Google Scholar 

  37. Ma C, Papermaster D, Cepko CL (1998) A unique pattern of photoreceptor degeneration in cyclin D1 mutant mice. Proc Natl Acad Sci U S A 95(17):9938–9943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kowalczyk A, Filipkowski RK, Rylski M, Wilczynski GM, Konopacki FA, Jaworski J, Ciemerych MA, Sicinski P et al (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167(2):209–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ansorg A, Witte OW, Urbach A (2012) Age-dependent kinetics of dentate gyrus neurogenesis in the absence of cyclin D2. BMC Neurosci 13:46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Urban N, Guillemot F (2014) Neurogenesis in the embryonic and adult brain: same regulators, different roles. Front Cell Neurosci 8:396

    Article  PubMed  PubMed Central  Google Scholar 

  41. Beukelaers P, Vandenbosch R, Caron N, Nguyen L, Belachew S, Moonen G, Kiyokawa H, Barbacid M et al (2011) Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells 29(4):713–724

    Article  CAS  PubMed  Google Scholar 

  42. Jablonska B, Aguirre A, Vandenbosch R, Belachew S, Berthet C, Kaldis P, Gallo V (2007) Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J Cell Biol 179(6):1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Qiu J, Takagi Y, Harada J, Rodrigues N, Moskowitz MA, Scadden DT, Cheng T (2004) Regenerative response in ischemic brain restricted by p21cip1/waf1. J Exp Med 199(7):937–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19(6):756–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lee SW, Clemenson GD, Gage FH (2012) New neurons in an aged brain. Behav Brain Res 227(2):497–507

    Article  PubMed  Google Scholar 

  46. Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443(7110):448–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 32(7):970–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Casaccia-Bonnefil P, Hardy RJ, Teng KK, Levine JM, Koff A, Chao MV (1999) Loss of p27Kip1 function results in increased proliferative capacity of oligodendrocyte progenitors but unaltered timing of differentiation. Development 126(18):4027–4037

    CAS  PubMed  Google Scholar 

  49. Nobs L, Baranek C, Nestel S, Kulik A, Kapfhammer J, Nitsch C, Atanasoski S (2014) Stage-specific requirement for cyclin D1 in glial progenitor cells of the cerebral cortex. Glia 62(5):829–839

    Article  PubMed  Google Scholar 

  50. Caillava C, Vandenbosch R, Jablonska B, Deboux C, Spigoni G, Gallo V, Malgrange B, Baron-van Evercooren A (2011) Cdk2 loss accelerates precursor differentiation and remyelination in the adult central nervous system. J Cell Biol 193(2):397–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Casaccia-Bonnefil P, Tikoo R, Kiyokawa H, Friedrich V, Chao MV, Koff A (1997) Oligodendrocyte precursor differentiation is perturbed in the absence of the cyclin-dependent kinase inhibitor p27Kip1. Genes Dev 11(18):2335–2346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zezula J, Casaccia-Bonnefil P, Ezhevsky SA, Osterhout DJ, Levine JM, Dowdy SF, Chao MV, Koff A (2001) p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep 2(1):27–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Atanasoski S, Shumas S, Dickson C, Scherer SS, Suter U (2001) Differential cyclin D1 requirements of proliferating Schwann cells during development and after injury. Mol Cell Neurosci 18(6):581–592

    Article  CAS  PubMed  Google Scholar 

  54. Kim HA, Pomeroy SL, Whoriskey W, Pawlitzky I, Benowitz LI, Sicinski P, Stiles CD, Roberts TM (2000) A developmentally regulated switch directs regenerative growth of Schwann cells through cyclin D1. Neuron 26(2):405–416

    Article  CAS  PubMed  Google Scholar 

  55. Atanasoski S, Boentert M, de Ventura L, Pohl H, Baranek C, Beier K, Young P, Barbacid M et al (2008) Postnatal Schwann cell proliferation but not myelination is strictly and uniquely dependent on cyclin-dependent kinase 4 (cdk4). Mol Cell Neurosci 37(3):519–527

    Article  CAS  PubMed  Google Scholar 

  56. Atanasoski S, Boller D, de Ventura L, Koegel H, Boentert M, Young P, Werner S, Suter U (2006) Cell cycle inhibitors p21 and p16 are required for the regulation of Schwann cell proliferation. Glia 53(2):147–157

    Article  PubMed  Google Scholar 

  57. Braun SM, Jessberger S (2014) Adult neurogenesis: mechanisms and functional significance. Development 141(10):1983–1986

    Article  CAS  PubMed  Google Scholar 

  58. Greene LA, Liu DX, Troy CM, Biswas SC (2007) Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta 1772(4):392–401

    Article  CAS  PubMed  Google Scholar 

  59. van Leeuwen LA, Hoozemans JJ (2015) Physiological and pathophysiological functions of cell cycle proteins in post-mitotic neurons: implications for Alzheimer's disease. Acta Neuropathol 129(4):511–525

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9(12):1294–1306

    Article  CAS  PubMed  Google Scholar 

  61. Patricio P et al (2013) Re-cycling paradigms: cell cycle regulation in adult hippocampal neurogenesis and implications for depression. Mol Neurobiol 48(1):84–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Sharma R, Kumar D, Jha NK, Jha SK, Ambasta RK, Kumar P (2017) Re-expression of cell cycle markers in aged neurons and muscles: Whether cells should divide or die? Biochim Biophys Acta Mol basis Dis 1863(1):324–336

    Article  CAS  PubMed  Google Scholar 

  63. Alunni A, Bally-Cuif L (2016) A comparative view of regenerative neurogenesis in vertebrates. Development 143(5):741–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Rashidian J, Iyirhiaro GO, Park DS (2007) Cell cycle machinery and stroke. Biochim Biophys Acta 1772(4):484–493

    Article  CAS  PubMed  Google Scholar 

  65. Nobs L, Nestel S, Kulik A, Nitsch C, Atanasoski S (2013) Cyclin D1 is required for proliferation of Olig2-expressing progenitor cells in the injured cerebral cortex. Glia 61(9):1443–1455

    Article  PubMed  Google Scholar 

  66. Byrnes KR, Stoica BA, Fricke S, di Giovanni S, Faden AI (2007) Cell cycle activation contributes to post-mitotic cell death and secondary damage after spinal cord injury. Brain 130(Pt 11):2977–2992

    Article  PubMed  Google Scholar 

  67. Zhu Z, Zhang Q, Yu Z, Zhang L, Tian D, Zhu S, Bu B, Xie M et al (2007) Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 55(5):546–558

    Article  PubMed  Google Scholar 

  68. Rashidian J, Iyirhiaro G, Aleyasin H, Rios M, Vincent I, Callaghan S, Bland RJ, Slack RS et al (2005) Multiple cyclin-dependent kinases signals are critical mediators of ischemia/hypoxic neuronal death in vitro and in vivo. Proc Natl Acad Sci U S A 102(39):14080–14085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ino H, Chiba T (2001) Cyclin-dependent kinase 4 and cyclin D1 are required for excitotoxin-induced neuronal cell death in vivo. J Neurosci 21(16):6086–6094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Qiu J, Takagi Y, Harada J, Topalkara K, Wang Y, Sims JR, Zheng G, Huang P et al (2009) p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells 27(4):920–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Marques-Torrejon MA et al (2013) Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12(1):88–100

    Article  CAS  PubMed  Google Scholar 

  72. Porlan E, Morante-Redolat JM, Marqués-Torrejón MÁ, Andreu-Agulló C, Carneiro C, Gómez-Ibarlucea E, Soto A, Vidal A et al (2013) Transcriptional repression of Bmp2 by p21(Waf1/Cip1) links quiescence to neural stem cell maintenance. Nat Neurosci 16(11):1567–1575

    Article  CAS  PubMed  Google Scholar 

  73. Nguyen L, Besson A, Heng JI, Schuurmans C, Teboul L, Parras C, Philpott A, Roberts JM et al (2006) p27kip1 independently promotes neuronal differentiation and migration in the cerebral cortex. Genes Dev 20(11):1511–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Glickstein SB, Moore H, Slowinska B, Racchumi J, Suh M, Chuhma N, Ross ME (2007) Selective cortical interneuron and GABA deficits in cyclin D2-null mice. Development 134(22):4083–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pilaz LJ, Patti D, Marcy G, Ollier E, Pfister S, Douglas RJ, Betizeau M, Gautier E et al (2009) Forced G1-phase reduction alters mode of division, neuron number, and laminar phenotype in the cerebral cortex. Proc Natl Acad Sci U S A 106(51):21924–21929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Schmetsdorf S, Gartner U, Arendt T (2005) Expression of cell cycle-related proteins in developing and adult mouse hippocampus. Int J Dev Neurosci 23(1):101–112

    Article  CAS  PubMed  Google Scholar 

  77. Geng Y, Yu Q, Whoriskey W, Dick F, Tsai KY, Ford HL, Biswas DK, Pardee AB et al (2001) Expression of cyclins E1 and E2 during mouse development and in neoplasia. Proc Natl Acad Sci U S A 98(23):13138–13143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Koeller HB, Ross ME, Glickstein SB (2008) Cyclin D1 in excitatory neurons of the adult brain enhances kainate-induced neurotoxicity. Neurobiol Dis 31(2):230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Lukaszewicz AI, Anderson DJ (2011) Cyclin D1 promotes neurogenesis in the developing spinal cord in a cell cycle-independent manner. Proc Natl Acad Sci U S A 108(28):11632–11637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chen Z, Duan RS, Zhu Y, Folkesson R, Albanese C, Winblad B, Zhu J (2005) Increased cyclin E expression may obviate the role of cyclin D1 during brain development in cyclin D1 knockout mice. J Neurochem 92(5):1281–1284

    Article  CAS  PubMed  Google Scholar 

  81. Tsunekawa Y, Osumi N (2012) How to keep proliferative neural stem/progenitor cells: a critical role of asymmetric inheritance of cyclin D2. Cell Cycle 11(19):3550–3554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Dyer MA, Cepko CL (2000) Control of Muller glial cell proliferation and activation following retinal injury. Nat Neurosci 3(9):873–880

    Article  CAS  PubMed  Google Scholar 

  83. Odajima J, Wills ZP, Ndassa YM, Terunuma M, Kretschmannova K, Deeb TZ, Geng Y, Gawrzak S et al (2011) Cyclin E constrains Cdk5 activity to regulate synaptic plasticity and memory formation. Dev Cell 21(4):655–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Belachew S, Aguirre AA, Wang H, Vautier F, Yuan X, Anderson S, Kirby M, Gallo V (2002) Cyclin-dependent kinase-2 controls oligodendrocyte progenitor cell cycle progression and is downregulated in adult oligodendrocyte progenitors. J Neurosci 22(19):8553–8562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van Lookeren Campagne M, Gill R (1998) Cell cycle-related gene expression in the adult rat brain: selective induction of cyclin G1 and p21WAF1/CIP1 in neurons following focal cerebral ischemia. Neuroscience 84(4):1097–1112

    Article  PubMed  Google Scholar 

  86. Tikoo R, Zanazzi G, Shiffman D, Salzer J, Chao MV (2000) Cell cycle control of Schwann cell proliferation: role of cyclin-dependent kinase-2. J Neurosci 20(12):4627–4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Li Y, Chopp M, Powers C, Jiang N (1997) Immunoreactivity of cyclin D1/cdk4 in neurons and oligodendrocytes after focal cerebral ischemia in rat. J Cereb Blood Flow Metab 17(8):846–856

    Article  CAS  PubMed  Google Scholar 

  88. Kaya SS et al (1999) Expression of cell cycle proteins (cyclin D1 and cdk4) after controlled cortical impact in rat brain. J Neurotrauma 16(12):1187–1196

    Article  CAS  PubMed  Google Scholar 

  89. Di Giovanni S et al (2005) Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci U S A 102(23):8333–8338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Katchanov J, Harms C, Gertz K, Hauck L, Waeber C, Hirt L, Priller J, von Harsdorf R et al (2001) Mild cerebral ischemia induces loss of cyclin-dependent kinase inhibitors and activation of cell cycle machinery before delayed neuronal cell death. J Neurosci 21(14):5045–5053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zindy F et al (1997) Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Differ 8(11):1139–1150

    CAS  PubMed  Google Scholar 

  92. Pechnick RN, Zonis S, Wawrowsky K, Pourmorady J, Chesnokova V (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci U S A 105(4):1358–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Pechnick RN, Zonis S, Wawrowsky K, Cosgayon R, Farrokhi C, Lacayo L, Chesnokova V (2011) Antidepressants stimulate hippocampal neurogenesis by inhibiting p21 expression in the subgranular zone of the hipppocampus. PLoS One 6(11):e27290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Donovan SL, Dyer MA (2005) Regulation of proliferation during central nervous system development. Semin Cell Dev Biol 16(3):407–421

    Article  CAS  PubMed  Google Scholar 

  95. Agirman G, Broix L, Nguyen L (2017) Cerebral cortex development: an outside-in perspective. FEBS Lett 591(24):3978–3992

    Article  CAS  PubMed  Google Scholar 

  96. Schafer KA (1998) The cell cycle: a review. Vet Pathol 35(6):461–478

    Article  CAS  PubMed  Google Scholar 

  97. Fluri F, Schuhmann MK, Kleinschnitz C (2015) Animal models of ischemic stroke and their application in clinical research. Drug Des Devel Ther 9:3445–3454

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Steward O, Willenberg R (2017) Rodent spinal cord injury models for studies of axon regeneration. Exp Neurol 287(Pt 3):374–383

    Article  PubMed  Google Scholar 

  99. Mohd Sairazi NS et al (2015) Kainic acid-induced excitotoxicity experimental model: protective merits of natural products and plant extracts. Evid Based Complement Alternat Med 2015:972623

    Article  PubMed  PubMed Central  Google Scholar 

  100. Wang C, Kotter MR (2018) Experimental demyelination and remyelination of murine spinal cord by focal injection of lysolecithin. Methods Mol Biol 1791:233–241

    Article  CAS  PubMed  Google Scholar 

  101. Artegiani B, Lindemann D, Calegari F (2011) Overexpression of cdk4 and cyclinD1 triggers greater expansion of neural stem cells in the adult mouse brain. J Exp Med 208(5):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ovejero S, Bueno A, Sacristán MP (2020) Working on genomic stability: from the S-phase to mitosis. Genes 11(2):225

    Article  CAS  PubMed Central  Google Scholar 

  103. Jillian A et al (2008) Regulation of APC/C activators in mitosis and meiosis. Annu Rev Cell Dev Biol 24(1):475–499

    Article  CAS  Google Scholar 

  104. Sherr CJ, Kato J, Quelle DE, Matsuoka M, Roussel MF (1994) D-type cyclins and their cyclin-dependent kinases: G1 phase integrators of the mitogenic response. Cold Spring Harb Symp Quant Biol 59:11–19

    Article  CAS  PubMed  Google Scholar 

  105. Frade JM, Ovejero-Benito MC (2015) Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle 14(5):712–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kawauchi T (2014) Cdk5 regulates multiple cellular events in neural development, function and disease. Develop Growth Differ 56(5):335–348

    Article  CAS  Google Scholar 

  107. Su SC, Tsai LH (2011) Cyclin-dependent kinases in brain development and disease. Annu Rev Cell Dev Biol 27(1):465–491

    Article  CAS  PubMed  Google Scholar 

  108. Gupta KK, Singh SK (2019) Cdk5: a main culprit in neurodegeneration. Int J Neurosci 129(12):1192–1197

    Article  PubMed  Google Scholar 

  109. Foster DA, Yellen P, Xu L, Saqcena M (2010) Regulation of G1 cell cycle progression: distinguishing the restriction point from a nutrient-sensing cell growth checkpoint(s). Genes Cancer 1(11):1124–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Buchakjian M, Kornbluth S (2010) The engine driving the ship: metabolic steering of cell proliferation and death. Nat Rev Mol Cell Biol 11:715–727

    Article  CAS  PubMed  Google Scholar 

  111. López-Sánchez N, Fontán-Lozano Á, Pallé A, González-Álvarez V, Rábano A, Trejo JL, Frade JM (2017) Neuronal tetraploidization in the cerebral cortex correlates with reduced cognition in mice and precedes and recapitulates Alzheimer's-associated neuropathology. Neurobiol Aging 56:50–66

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Ned Mantei for comments on the manuscript.

Funding

A. G. was supported by the University of Basel Research Fund for excellent early career researchers. S. A. was supported by the Swiss National Science Foundation and the Swiss Federal Government (SystemsX.ch The Swiss Initiative in Systems Biology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzana Atanasoski.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grison, A., Atanasoski, S. Cyclins, Cyclin-Dependent Kinases, and Cyclin-Dependent Kinase Inhibitors in the Mouse Nervous System. Mol Neurobiol 57, 3206–3218 (2020). https://doi.org/10.1007/s12035-020-01958-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01958-7

Keywords

Navigation