Skip to main content

Advertisement

Log in

Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The present research was conducted to elucidate a possible molecular mechanism related to neuromodulatory effects of tannic acid (TA) supplementation against traumatic brain injury (TBI) in a rodent model. Oxidative damage and neuroinflammation play a critical role in TBI and lead to behavioral alterations and neuronal dysfunction and death. These changes suggest a potential avenue in neurotherapeutic intervention. The aim of the present study was to investigate the neuroprotective effects of TA and potential mechanism of these effects in a controlled cortical impact injury model of TBI in Wistar rats that were treated with TA (50 mg/kg body weight. i.p.) before 30 min and 6 and 18 h after TBI. TBI-induced rats were examined after 24 h for behavioral dysfunction, Nissl stain, lipid peroxidation rate, glutathione level, activities of antioxidant enzymes (catalase, glutathione S-transferase, glutathione peroxidase, and superoxide dismutase), the expression level of 4-hydroxynonenal, pro-inflammatory cytokines such as tumor necrosis factor alpha and interleukin-1 beta, as well as brain edema and immunoreactivity of glial fibrillary acidic protein. Results indicated that TA supplementation significantly modulated above mentioned alterations. Moreover, TA treatment effectively upregulated the protein expression of peroxisome proliferator–activated receptor gamma co-activator 1 alpha (PGC-1α) and nuclear factor-E2-related factor-2 (Nrf2) as well as mitochondrial transcription factor A and heme oxygenase-1 (HO-1) following TBI. Overall, our results suggest that TA effectively ameliorates the behavioral alterations, oxidative damage, mitochondrial impairment, and inflammation against TBI that may be attributed to activation of PGC-1α/Nrf-2/HO-1 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

4-HNE:

4-Hydroxynonenal

CAT:

Catalase

CDNB:

1-Chloro-2,4-dinitrobenzene

DTNB:

5,5′-Dithiobis-2-nitrobenzoic acid

GFAP:

Glial fibrillary acidic protein

GPX:

Glutathione peroxidase

GSH:

Reduced glutathione

GST:

Glutathione S-transferase

HO-1:

Heme oxygenase-1

IL-1β:

Interleukin-1 beta

NADPH:

Nicotinamide adenine dinucleotide phosphate reduced

Nrf2:

Nuclear factor-E-2-regulated factor-2

PARP:

Ploy (ADP-ribose) polymerase

PGC-1α:

Peroxisome proliferator–activated receptor gamma co-activator

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TA:

Tannic acid

TBI:

Traumatic brain injury

Tfam:

Mitochondrial transcription factor A

TNF-α:

Tumor necrosis factor alpha

References

  1. Robertson CL, Saraswati M (2015) Progesterone protects mitochondrial function in a rat model of pediatric traumatic brain injury. J Bioenerg Biomembr 47:43–51. https://doi.org/10.1007/s10863-014-9585-5

    Article  CAS  PubMed  Google Scholar 

  2. Ismael S, Nasoohi S, Ishrat T (2018) MCC950, the selective inhibitor of nucleotide oligomerization domain-like receptor protein-3 inflammasome, protects mice against traumatic brain injury. J Neurotrauma 35:1294–1303. https://doi.org/10.1089/neu.2017.5344

    Article  PubMed  PubMed Central  Google Scholar 

  3. Di Pietro V, Lazzarino G, Amorini AM et al (2014) Neuroglobin expression and oxidant/antioxidant balance after graded traumatic brain injury in the rat. Free Radic Biol Med 69:258–264. https://doi.org/10.1016/j.freeradbiomed.2014.01.032

    Article  CAS  PubMed  Google Scholar 

  4. Cebak JE, Singh IN, Hill RL, Wang JA, Hall ED (2017) Phenelzine protects brain mitochondrial function in vitro and in vivo following traumatic brain injury by scavenging the reactive carbonyls 4-hydroxynonenal and acrolein leading to cortical histological neuroprotection. J Neurotrauma 34:1302–1317. https://doi.org/10.1089/neu.2016.4624

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dash PK, Johnson D, Clark J, Orsi SA, Zhang M, Zhao J, Grill RJ, Moore AN et al (2011) Involvement of the glycogen synthase Kinase-3 signaling pathway in TBI pathology and neurocognitive outcome. PLoS One 6:e24648. https://doi.org/10.1371/journal.pone.0024648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harmon JL, Gibbs WS, Whitaker RM, Schnellmann RG, Adkins DAL (2017) Striatal mitochondrial disruption following severe traumatic brain injury. J Neurotrauma 34:487–494. https://doi.org/10.1089/neu.2015.4395

    Article  PubMed  PubMed Central  Google Scholar 

  7. Niu X, Zheng S, Liu H, Li S (2018) Protective effects of taurine against inflammation, apoptosis, and oxidative stress in brain injury. Mol Med Rep. https://doi.org/10.3892/mmr.2018.9465

  8. Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:71. https://doi.org/10.1186/s12937-016-0186-5

    Article  CAS  Google Scholar 

  9. Uttara B, Singh A, Zamboni P, Mahajan R (2009) Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol 7:65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Naseem M, Parvez S (2014) Role of melatonin in traumatic brain injury and spinal cord injury. Sci World J 2014:1–13. https://doi.org/10.1155/2014/586270

    Article  Google Scholar 

  11. Zhang X, Hu H, Luo J, Deng H, Yu P, Zhang Z, Zhang G, Shan L et al (2017) A novel danshensu-tetramethylpyrazine conjugate DT-010 provides cardioprotection through the PGC-1α/Nrf2/HO-1 pathway. Biol Pharm Bull 40:1490–1498. https://doi.org/10.1248/bpb.b17-00313

    Article  CAS  PubMed  Google Scholar 

  12. Sweeney G, Song J (2016) The association between PGC-1α and Alzheimer’s disease. Anat Cell Biol 49:1–6. https://doi.org/10.5115/acb.2016.49.1.1

    Article  PubMed  PubMed Central  Google Scholar 

  13. Corona JC, Duchen MR (2015) PPARγ and PGC-1α as therapeutic targets in Parkinson’s. Neurochem Res 40:308–316. https://doi.org/10.1007/s11064-014-1377-0

    Article  CAS  PubMed  Google Scholar 

  14. Yu L, Gong B, Duan W, Fan C, Zhang J, Li Z, Xue X, Xu Y et al (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-1α-SIRT3 signaling. Sci Rep 7:41337. https://doi.org/10.1038/srep41337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li F, Wang X, Deng Z, Zhang X, Gao P, Liu H (2018) Dexmedetomidine reduces oxidative stress and provides neuroprotection in a model of traumatic brain injury via the PGC-1α signaling pathway. Neuropeptides 72:58–64. https://doi.org/10.1016/j.npep.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  16. You Y, Hou Y, Zhai X, Li Z, Li L, Zhao Y, Zhao J (2016) Protective effects of PGC-1α via the mitochondrial pathway in rat brains after intracerebral hemorrhage. Brain Res 1646:34–43. https://doi.org/10.1016/j.brainres.2016.04.076

    Article  CAS  PubMed  Google Scholar 

  17. Moi P, Chan K, Asunis I, Cao A, Kan YW (1994) Isolation of NF-E2-related factor 2 (Nrf2), a NF-E2-like basic leucine zipper transcriptional activator that binds to the tandem NF-E2/AP1 repeat of the beta-globin locus control region. Proc Natl Acad Sci 91:9926–9930. https://doi.org/10.1073/pnas.91.21.9926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li L, Chen J, Sun S, Zhao J, Dong X, Wang J (2017) Effects of estradiol on autophagy and Nrf-2/ARE signals after cerebral ischemia. Cell Physiol Biochem 41:2027–2036. https://doi.org/10.1159/000475433

    Article  CAS  PubMed  Google Scholar 

  19. Zhou Y, Duan S, Zhou Y, Yu S, Wu J, Wu X, Zhao J, Zhao Y (2015) Sulfiredoxin-1 attenuates oxidative stress via Nrf2/ARE pathway and 2-Cys Prdxs after oxygen-glucose deprivation in astrocytes. J Mol Neurosci 55:941–950. https://doi.org/10.1007/s12031-014-0449-6

    Article  CAS  PubMed  Google Scholar 

  20. Cullinan SB, Gordan JD, Jin J, Harper JW, Diehl JA (2004) The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: oxidative stress sensing by a Cul3-Keap1 ligase. Mol Cell Biol 24:8477–8486. https://doi.org/10.1128/MCB.24.19.8477-8486.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang G, Zhang F, Zhang T, Gu J, Li C, Sun Y, Yu P, Zhang Z et al (2016) Tetramethylpyrazine nitrone improves neurobehavioral functions and confers neuroprotection on rats with traumatic brain injury. Neurochem Res 41:2948–2957. https://doi.org/10.1007/s11064-016-2013-y

    Article  CAS  PubMed  Google Scholar 

  22. Ge X-H, Shao L, Zhu G-J (2018) Oxymatrine attenuates brain hypoxic-ischemic injury from apoptosis and oxidative stress: role of p-Akt/GSK3β/HO-1/Nrf-2 signaling pathway. Metab Brain Dis 33:1869–1875. https://doi.org/10.1007/s11011-018-0293-4

    Article  CAS  PubMed  Google Scholar 

  23. Savolainen H (1992) Tannin content of tea and coffee. J Appl Toxicol 12:191–192. https://doi.org/10.1002/jat.2550120307

    Article  CAS  PubMed  Google Scholar 

  24. Soyocak A, Kurt H, Cosan DT, Saydam F, Calis IU, Kolac UK, Koroglu ZO, Degirmenci I et al (2019) Tannic acid exhibits anti-inflammatory effects on formalin-induced paw edema model of inflammation in rats. Hum Exp Toxicol 38:1296–1301. https://doi.org/10.1177/0960327119864154

    Article  CAS  PubMed  Google Scholar 

  25. Winiarska-Mieczan A (2013) Protective effect of tannic acid on the brain of adult rats exposed to cadmium and lead. Environ Toxicol Pharmacol 36:9–18. https://doi.org/10.1016/j.etap.2013.02.018

    Article  CAS  PubMed  Google Scholar 

  26. Xiang S, Yang P, Guo H et al (2017) Green tea makes polyphenol nanoparticles with radical-scavenging activities. Macromol Rapid Commun 38:1700446. https://doi.org/10.1002/marc.201700446

    Article  CAS  Google Scholar 

  27. Chen X-X, Shi Y, Chai W-M, Feng HL, Zhuang JX, Chen QX (2014) Condensed tannins from Ficus virens as tyrosinase inhibitors: structure, inhibitory activity and molecular mechanism. PLoS One 9:e91809. https://doi.org/10.1371/journal.pone.0091809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Le Z, Chen Y, Han H et al (2018) Hydrogen-bonded tannic acid-based anticancer nanoparticle for enhancement of oral chemotherapy. ACS Appl Mater Interfaces 10:42186–42197. https://doi.org/10.1021/acsami.8b18979

    Article  CAS  PubMed  Google Scholar 

  29. Song D, Zhao J, Deng W, Liao Y, Hong X, Hou J (2018) Tannic acid inhibits NLRP3 inflammasome-mediated IL-1β production via blocking NF-κB signaling in macrophages. Biochem Biophys Res Commun 503:3078–3085. https://doi.org/10.1016/j.bbrc.2018.08.096

    Article  CAS  PubMed  Google Scholar 

  30. Ashafaq M, Tabassum H, Parvez S (2017) Modulation of behavioral deficits and neurodegeneration by tannic acid in experimental stroke challenged Wistar rats. Mol Neurobiol 54:5941–5951. https://doi.org/10.1007/s12035-016-0096-8

    Article  CAS  PubMed  Google Scholar 

  31. Wu H, Shao A, Zhao M, Chen S, Yu J, Zhou J, Liang F, Shi L et al (2016) Melatonin attenuates neuronal apoptosis through up-regulation of K + -Cl − cotransporter KCC2 expression following traumatic brain injury in rats. J Pineal Res 61:241–250. https://doi.org/10.1111/jpi.12344

    Article  CAS  PubMed  Google Scholar 

  32. Rasheed MZ, Andrabi SS, Salman M, Tabassum H, Shaquiquzzaman M, Parveen S, Parvez S (2018) Melatonin improves behavioral and biochemical outcomes in a rotenone-induced rat model of Parkinson’s disease. J Environ Pathol Toxicol Oncol 37:139–150. https://doi.org/10.1615/JEnvironPatholToxicolOncol.2018025666

    Article  PubMed  Google Scholar 

  33. Wu C, Hu Q, Chen J, Yan F, Li J, Wang L, Mo H, Gu C et al (2013) Inhibiting HIF-1α by 2ME2 ameliorates early brain injury after experimental subarachnoid hemorrhage in rats. Biochem Biophys Res Commun 437:469–474. https://doi.org/10.1016/j.bbrc.2013.06.107

    Article  CAS  PubMed  Google Scholar 

  34. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  PubMed  Google Scholar 

  35. Tabassum H, Ashafaq M, Parvez S, Raisuddin S (2017) Role of melatonin in mitigating nonylphenol-induced toxicity in frontal cortex and hippocampus of rat brain. Neurochem Int 104:11–26. https://doi.org/10.1016/j.neuint.2016.12.010

    Article  CAS  PubMed  Google Scholar 

  36. Stevens MJ, Obrosova I, Cao X, van Huysen C, Greene DA (2000) Effects of DL-alpha-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 49:1006–1015. https://doi.org/10.2337/diabetes.49.6.1006

    Article  CAS  PubMed  Google Scholar 

  37. Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J (2016) Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 61:177–186. https://doi.org/10.1111/jpi.12337

    Article  CAS  PubMed  Google Scholar 

  38. Dai W, Wang H, Fang J, Zhu Y, Zhou J, Wang X, Zhou Y, Zhou M (2018) Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Res Bull 140:65–71. https://doi.org/10.1016/j.brainresbull.2018.03.020

    Article  CAS  PubMed  Google Scholar 

  39. Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, Rabchevsky AG, Sullivan PG (2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 257:106–113. https://doi.org/10.1016/j.expneurol.2014.04.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Su Y, Fan W, Ma Z et al (2014) Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience 266:56–65. https://doi.org/10.1016/j.neuroscience.2014.02.006

    Article  CAS  PubMed  Google Scholar 

  41. Maynard ME, Underwood EL, Redell JB, Zhao J, Kobori N, Hood KN, Moore AN, Dash PK (2019) Carnosic acid improves outcome after repetitive mild traumatic brain injury. J Neurotrauma 36:2147–2152. https://doi.org/10.1089/neu.2018.6155

    Article  PubMed  PubMed Central  Google Scholar 

  42. Erbil G, Sacik U, Yilmaz F, Kisaoglu H, Erbayraktar Z, Pekcetin C, Ozogul C (2019) The effect of ferulic acid on experimental traumatic brain damage in rats. Bratislava Med J 120:372–379. https://doi.org/10.4149/BLL_2019_061

    Article  CAS  Google Scholar 

  43. Dong N, Diao Y, Ding M, Cao B, Jiang D (2017) The effects of 7-nitroindazole on serum neuron-specific enolase and astroglia-derived protein (S100β) levels after traumatic brain injury. Exp Ther Med 13:3183–3188. https://doi.org/10.3892/etm.2017.4411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wei G, Chen B, Lin Q, Li Y, Luo L, He H, Fu H (2017) Tetrahydrocurcumin provides neuroprotection in experimental traumatic brain injury and the Nrf2 signaling pathway as a potential mechanism. Neuroimmunomodulation 24:348–355. https://doi.org/10.1159/000487998

    Article  CAS  PubMed  Google Scholar 

  45. Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta - Mol Basis Dis 1822:675–684. https://doi.org/10.1016/j.bbadis.2011.10.017

    Article  CAS  Google Scholar 

  46. Krishna G, Ying Z, Gomez-Pinilla F (2019) Blueberry supplementation mitigates altered brain plasticity and behavior after traumatic brain injury in rats. Mol Nutr Food Res 63:1801055. https://doi.org/10.1002/mnfr.201801055

    Article  CAS  Google Scholar 

  47. Lee J-C, Won M-H (2014) Neuroprotection of antioxidant enzymes against transient global cerebral ischemia in gerbils. Anat Cell Biol 47:149. https://doi.org/10.5115/acb.2014.47.3.149

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xu X, Lv H, Xia Z, Fan R, Zhang C, Wang Y, Wang D (2017) Rhein exhibits antioxidative effects similar to Rhubarb in a rat model of traumatic brain injury. BMC Complement Altern Med 17:140. https://doi.org/10.1186/s12906-017-1655-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Atalay T, Gulsen I, Colcimen N, Alp HH, Sosuncu E, Alaca I, Ak H, Ragbetli MC (2016) Resveratrol treatment prevents hippocampal neurodegeneration in a rodent model of traumatic brain injury. Turk Neurosurg. https://doi.org/10.5137/1019-5149.JTN.17249-16.2

  50. Anis E, Zafeer MF, Firdaus F, et al (2019) Ferulic acid reinstates mitochondrial dynamics through PGC1α expression modulation in 6-hydroxydopamine lesioned rats. Phyther Res ptr.6523. https://doi.org/10.1002/ptr.6523

    Article  PubMed  Google Scholar 

  51. Agrawal R, Noble E, Tyagi E, Zhuang Y, Ying Z, Gomez-Pinilla F (2015) Flavonoid derivative 7,8-DHF attenuates TBI pathology via TrkB activation. Biochim Biophys Acta - Mol Basis Dis 1852:862–872. https://doi.org/10.1016/j.bbadis.2015.01.018

    Article  CAS  Google Scholar 

  52. Li X, Wang H, Gao Y, Li L, Tang C, Wen G, Zhou Y, Zhou M et al (2016) Protective effects of quercetin on mitochondrial biogenesis in experimental traumatic brain injury via the Nrf2 signaling pathway. PLoS One 11:e0164237. https://doi.org/10.1371/journal.pone.0164237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Liu J, Jiang Y, Zhang G, Lin Z, du S (2019) Protective effect of edaravone on blood-brain barrier by affecting NRF-2/HO-1 signaling pathway. Exp Ther Med. https://doi.org/10.3892/etm.2019.7859

  54. Scholpa NE, Williams H, Wang W, Corum D, Narang A, Tomlinson S, Sullivan PG, Rabchevsky AG et al (2019) Pharmacological stimulation of mitochondrial biogenesis using the Food and Drug Administration-approved β 2 -adrenoreceptor agonist formoterol for the treatment of spinal cord injury. J Neurotrauma 36:962–972. https://doi.org/10.1089/neu.2018.5669

    Article  PubMed  PubMed Central  Google Scholar 

  55. Casili G, Campolo M, Paterniti I, Lanza M, Filippone A, Cuzzocrea S, Esposito E (2018) Dimethyl fumarate attenuates neuroinflammation and neurobehavioral deficits induced by experimental traumatic brain injury. J Neurotrauma 35:1437–1451. https://doi.org/10.1089/neu.2017.5260

    Article  PubMed  Google Scholar 

  56. Picca A, Pesce V, Fracasso F, Joseph AM, Leeuwenburgh C, Lezza AM (2014) A comparison among the tissue-specific effects of aging and calorie restriction on TFAM amount and TFAM-binding activity to mtDNA in rat. Biochim Biophys Acta - Gen Subj 1840:2184–2191. https://doi.org/10.1016/j.bbagen.2014.03.004

    Article  CAS  Google Scholar 

  57. Zhou Y, Wang H, Zhou X, Fang J, Zhu L, Ding K (2018) N-acetylcysteine amide provides neuroprotection via Nrf2-ARE pathway in a mouse model of traumatic brain injury. Drug Des Devel Ther Volume 12:4117–4127. https://doi.org/10.2147/DDDT.S179227

    Article  CAS  Google Scholar 

  58. Li F, Wang X, Zhang Z, Gao P, Zhang X (2019) Breviscapine provides a neuroprotective effect after traumatic brain injury by modulating the Nrf2 signaling pathway. J Cell Biochem 120:14899–14907. https://doi.org/10.1002/jcb.28751

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Mr. Mohd Salman is a recipient of Senior Research Fellowship from the Indian Council of Medical Research (File No. 3/1/2/4/Trauma/2019-NCD-1), Government of India. Dr. Heena Tabassum received financial grant from the Department of Biotechnology, Ministry of Science and Technology, Government of India (DBT BioCARe Program, sanction no. BT/Bio-CARe/01/10219/2013-14). The grant nos. [SR/FST/LS-I/2017/05(C)] and [SR/PURSE Phase2/39 (C)], received under DST-FIST and DST-PURSE prorgams from the Department of Science and Technology under Ministry of Science & Technology, Government of India are also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heena Tabassum or Suhel Parvez.

Ethics declarations

All surgical and experimental procedures were approved by the Institutional Animal Ethics Committee of Jamia Hamdard, New Delhi, India.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salman, M., Tabassum, H. & Parvez, S. Tannic Acid Provides Neuroprotective Effects Against Traumatic Brain Injury Through the PGC-1α/Nrf2/HO-1 Pathway. Mol Neurobiol 57, 2870–2885 (2020). https://doi.org/10.1007/s12035-020-01924-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-020-01924-3

Keywords

Navigation