Skip to main content

Advertisement

Log in

Impaired Pentose Phosphate Pathway in the Spinal Cord of the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Impairments in energy metabolism in amyotrophic lateral sclerosis (ALS) have long been known. However, the changes in the energy-producing pathways in ALS are not comprehensively understood. To investigate specific alterations in glucose metabolism in glycolytic, pentose phosphate, and TCA cycle pathways, we injected uniformly labeled [U-13C]glucose to wild-type and hSOD1G93A mice at symptom onset (80 days). Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), levels of metabolites were determined in extracts of the cortex and spinal cord. In addition, the activities of several enzymes involved in glucose metabolism were quantified. In the spinal cord, the levels of pentose phosphate pathway (PPP) intermediate ribose 5-phosphate (p = 0.037) were reduced by 37% in hSOD1G93A mice, while the % 13C enrichments in glucose 6-phosphate were increased threefold. The maximal activities of the enzyme glucose 6-phosphate dehydrogenase were decreased by 24% in the spinal cord (p = 0.005), suggesting perturbations in the PPP. The total amount of pyruvate in the cortex (p = 0.039) was reduced by 20% in hSOD1G93A mice. Also, the activities of the glycolytic enzyme pyruvate kinase were reduced in the cortex by 31% (p = 0.002), indicating alterations in glycolysis. No significant differences were seen in the total amounts as well as % 13C enrichments in most TCA cycle intermediates, suggesting largely normal TCA cycle function. On the other hand, oxoglutarate dehydrogenase activity was decreased in the cortex, which may indicate increased oxidative stress. Overall, this study revealed decreased activity of the PPP in the spinal cord and alterations in glycolysis in hSOD1G93A mouse CNS tissues at the early symptomatic stage of disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kiernan MC, Vucic S, Cheah BC, Turner MR, Eisen A, Hardiman O, Burrell JR, Zoing MC (2011) Amyotrophic lateral sclerosis. Lancet 377(9769):942–955. https://doi.org/10.1016/S0140-6736(10)61156-7

    Article  CAS  PubMed  Google Scholar 

  2. Chen S, Sayana P, Zhang X, Le W (2013) Genetics of amyotrophic lateral sclerosis: an update. Mol Neurodegener 8:28. https://doi.org/10.1186/1750-1326-8-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sreedharan J, Blair IP, Tripathi VB, Hu X, Vance C, Rogelj B, Ackerley S, Durnall JC et al (2008) TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319(5870):1668–1672. https://doi.org/10.1126/science.1154584

    Article  CAS  PubMed  Google Scholar 

  4. Rothstein JD, Martin LJ, Kuncl RW (1992) Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 326(22):1464–1468. https://doi.org/10.1056/NEJM199205283262204

    Article  CAS  PubMed  Google Scholar 

  5. Rothstein JD (1995) Excitotoxic mechanisms in the pathogenesis of amyotrophic lateral sclerosis. Adv Neurol 68:7–20 discussion 21-27

    CAS  PubMed  Google Scholar 

  6. Shaw PJ, Ince PG, Falkous G, Mantle D (1995) Oxidative damage to protein in sporadic motor neuron disease spinal cord. Ann Neurol 38(4):691–695. https://doi.org/10.1002/ana.410380424

    Article  CAS  PubMed  Google Scholar 

  7. Dupuis L, Oudart H, Rene F, Gonzalez de Aguilar JL, Loeffler JP (2004) Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc Natl Acad Sci U S A 101(30):11159–11164. https://doi.org/10.1073/pnas.0402026101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Dupuis L, Pradat PF, Ludolph AC, Loeffler JP (2011) Energy metabolism in amyotrophic lateral sclerosis. Lancet Neurol 10(1):75–82. https://doi.org/10.1016/S1474-4422(10)70224-6

    Article  CAS  PubMed  Google Scholar 

  9. Korner S, Hendricks M, Kollewe K, Zapf A, Dengler R, Silani V, Petri S (2013) Weight loss, dysphagia and supplement intake in patients with amyotrophic lateral sclerosis (ALS): impact on quality of life and therapeutic options. BMC Neurol 13:84. https://doi.org/10.1186/1471-2377-13-84

    Article  PubMed  PubMed Central  Google Scholar 

  10. Desport JC, Preux PM, Magy L, Boirie Y, Vallat JM, Beaufrere B, Couratier P (2001) Factors correlated with hypermetabolism in patients with amyotrophic lateral sclerosis. Am J Clin Nutr 74(3):328–334

    Article  CAS  Google Scholar 

  11. Browne SE, Yang L, DiMauro JP, Fuller SW, Licata SC, Beal MF (2006) Bioenergetic abnormalities in discrete cerebral motor pathways presage spinal cord pathology in the G93A SOD1 mouse model of ALS. Neurobiol Dis 22(3):599–610. https://doi.org/10.1016/j.nbd.2006.01.001

    Article  CAS  PubMed  Google Scholar 

  12. Miyazaki K, Masamoto K, Morimoto N, Kurata T, Mimoto T, Obata T, Kanno I, Abe K (2012) Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice. J Cereb Blood Flow Metab 32(3):456–467. https://doi.org/10.1038/jcbfm.2011.155

    Article  CAS  PubMed  Google Scholar 

  13. Dalakas MC, Hatazawa J, Brooks RA, Di Chiro G (1987) Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Ann Neurol 22(5):580–586. https://doi.org/10.1002/ana.410220504

    Article  CAS  PubMed  Google Scholar 

  14. Tefera TW, Borges K (2018) Neuronal glucose metabolism is impaired while astrocytic TCA cycling is unaffected at symptomatic stages in the hSOD1(G93A) mouse model of amyotrophic lateral sclerosis. J Cereb Blood Flow Metab:271678X18764775. https://doi.org/10.1177/0271678X18764775

  15. Barber SC, Mead RJ, Shaw PJ (2006) Oxidative stress in ALS: a mechanism of neurodegeneration and a therapeutic target. Biochim Biophys Acta 1762(11–12):1051–1067. https://doi.org/10.1016/j.bbadis.2006.03.008

    Article  CAS  PubMed  Google Scholar 

  16. Niedzielska E, Smaga I, Gawlik M, Moniczewski A, Stankowicz P, Pera J, Filip M (2016) Oxidative stress in neurodegenerative diseases. Mol Neurobiol 53(6):4094–4125. https://doi.org/10.1007/s12035-015-9337-5

    Article  CAS  PubMed  Google Scholar 

  17. Veyrat-Durebex C, Corcia P, Piver E, Devos D, Dangoumau A, Gouel F, Vourc'h P, Emond P et al (2015) Disruption of TCA cycle and glutamate metabolism identified by metabolomics in an in vitro model of amyotrophic lateral sclerosis. Mol Neurobiol 53:6910–6924. https://doi.org/10.1007/s12035-015-9567-6

    Article  CAS  PubMed  Google Scholar 

  18. D'Arrigo A, Colavito D, Pena-Altamira E, Fabris M, Dam M, Contestabile A, Leon A (2010) Transcriptional profiling in the lumbar spinal cord of a mouse model of amyotrophic lateral sclerosis: a role for wild-type superoxide dismutase 1 in sporadic disease? J Mol Neurosci 41(3):404–415. https://doi.org/10.1007/s12031-010-9332-2

    Article  CAS  PubMed  Google Scholar 

  19. Ferraiuolo L, Higginbottom A, Heath PR, Barber S, Greenald D, Kirby J, Shaw PJ (2011) Dysregulation of astrocyte-motoneuron cross-talk in mutant superoxide dismutase 1-related amyotrophic lateral sclerosis. Brain 134(Pt 9):2627–2641. https://doi.org/10.1093/brain/awr193

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tefera TW, Borges K (2016) Metabolic dysfunctions in amyotrophic lateral sclerosis pathogenesis and potential metabolic treatments. Front Neurosci 10:611. https://doi.org/10.3389/fnins.2016.00611

    Article  PubMed  Google Scholar 

  21. Tefera TW, Tan KN, McDonald TS, Borges K (2016) Alternative fuels in epilepsy and amyotrophic lateral sclerosis. Neurochem Res 42:1610–1620. https://doi.org/10.1007/s11064-016-2106-7

    Article  CAS  PubMed  Google Scholar 

  22. Le Belle JE, Harris NG, Williams SR, Bhakoo KK (2002) A comparison of cell and tissue extraction techniques using high-resolution 1H-NMR spectroscopy. NMR Biomed 15(1):37–44

    Article  Google Scholar 

  23. McDonald TS, Carrasco-Pozo C, Hodson MP, Borges K (2017) Alterations in cytosolic and mitochondrial [U-13C]glucose metabolism in a chronic epilepsy mouse model. eNeuro 4(1):ENEURO.0341–ENEU16.2017. https://doi.org/10.1523/ENEURO.0341-16.2017

    Article  Google Scholar 

  24. Medina-Torres CE, van Eps AW, Nielsen LK, Hodson MP (2015) A liquid chromatography-tandem mass spectrometry-based investigation of the lamellar interstitial metabolome in healthy horses and during experimental laminitis induction. Vet J 206(2):161–169. https://doi.org/10.1016/j.tvjl.2015.07.031

    Article  CAS  PubMed  Google Scholar 

  25. Tan KN, Simmons D, Carrasco-Pozo C, Borges K (2018) Triheptanoin protects against status epilepticus-induced hippocampal mitochondrial dysfunctions, oxidative stress and neuronal degeneration. J Neurochem 144(4):431–442. https://doi.org/10.1111/jnc.14275

    Article  CAS  PubMed  Google Scholar 

  26. Kirby J, Halligan E, Baptista MJ, Allen S, Heath PR, Holden H, Barber SC, Loynes CA et al (2005) Mutant SOD1 alters the motor neuronal transcriptome: implications for familial ALS. Brain 128(Pt 7):1686–1706. https://doi.org/10.1093/brain/awh503

    Article  PubMed  Google Scholar 

  27. Bowling AC, Schulz JB, Brown RH Jr, Beal MF (1993) Superoxide dismutase activity, oxidative damage, and mitochondrial energy metabolism in familial and sporadic amyotrophic lateral sclerosis. J Neurochem 61(6):2322–2325

    Article  CAS  Google Scholar 

  28. Mitsumoto H, Santella RM, Liu X, Bogdanov M, Zipprich J, Wu HC, Mahata J, Kilty M et al (2008) Oxidative stress biomarkers in sporadic ALS. Amyotroph Lateral Scler 9(3):177–183. https://doi.org/10.1080/17482960801933942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Simpson EP, Henry YK, Henkel JS, Smith RG, Appel SH (2004) Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden. Neurology 62(10):1758–1765

    Article  CAS  Google Scholar 

  30. Allen S, Heath PR, Kirby J, Wharton SB, Cookson MR, Menzies FM, Banks RE, Shaw PJ (2003) Analysis of the cytosolic proteome in a cell culture model of familial amyotrophic lateral sclerosis reveals alterations to the proteasome, antioxidant defenses, and nitric oxide synthetic pathways. J Biol Chem 278(8):6371–6383. https://doi.org/10.1074/jbc.M209915200

    Article  CAS  PubMed  Google Scholar 

  31. Chen T, Turner BJ, Beart PM, Sheehan-Hennessy L, Elekwachi C, Muyderman H (2017) Glutathione monoethyl ester prevents TDP-43 pathology in motor neuronal NSC-34 cells. Neurochem Int 112:278–287. https://doi.org/10.1016/j.neuint.2017.08.009

    Article  CAS  PubMed  Google Scholar 

  32. Chi L, Ke Y, Luo C, Gozal D, Liu R (2007) Depletion of reduced glutathione enhances motor neuron degeneration in vitro and in vivo. Neuroscience 144(3):991–1003. https://doi.org/10.1016/j.neuroscience.2006.09.064

    Article  CAS  PubMed  Google Scholar 

  33. Vargas MR, Johnson DA, Johnson JA (2011) Decreased glutathione accelerates neurological deficit and mitochondrial pathology in familial ALS-linked hSOD1(G93A) mice model. Neurobiol Dis 43(3):543–551. https://doi.org/10.1016/j.nbd.2011.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Santa-Cruz LD, Tapia R (2014) Role of energy metabolic deficits and oxidative stress in excitotoxic spinal motor neuron degeneration in vivo. ASN Neuro 6(2):AN20130046. https://doi.org/10.1042/AN20130046

    Article  CAS  Google Scholar 

  35. Wang XS, Simmons Z, Liu W, Boyer PJ, Connor JR (2006) Differential expression of genes in amyotrophic lateral sclerosis revealed by profiling the post mortem cortex. Amyotroph Lateral Scler 7(4):201–210. https://doi.org/10.1080/17482960600947689

    Article  CAS  PubMed  Google Scholar 

  36. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11(6):747–752. https://doi.org/10.1038/ncb1881

    Article  CAS  PubMed  Google Scholar 

  37. Dienel GA (2014) Chapter 3 - energy metabolism in the brain. In: From molecules to networks, 3rd edn. Academic, Boston, pp. 53–117. https://doi.org/10.1016/B978-0-12-397179-1.00003-8

    Chapter  Google Scholar 

  38. D'Alessandro G, Calcagno E, Tartari S, Rizzardini M, Invernizzi RW, Cantoni L (2011) Glutamate and glutathione interplay in a motor neuronal model of amyotrophic lateral sclerosis reveals altered energy metabolism. Neurobiol Dis 43(2):346–355. https://doi.org/10.1016/j.nbd.2011.04.003

    Article  CAS  PubMed  Google Scholar 

  39. Siciliano G, Pastorini E, Pasquali L, Manca ML, Iudice A, Murri L (2001) Impaired oxidative metabolism in exercising muscle from ALS patients. J Neurol Sci 191(1–2):61–65

    Article  CAS  Google Scholar 

  40. Siciliano G, D'Avino C, Del Corona A, Barsacchi R, Kusmic C, Rocchi A, Pastorini E, Murri L (2002) Impaired oxidative metabolism and lipid peroxidation in exercising muscle from ALS patients. Amyotroph Lateral Scler Other Motor Neuron Disord 3(2):57–62. https://doi.org/10.1080/146608202760196011

    Article  CAS  PubMed  Google Scholar 

  41. Dodge JC, Treleaven CM, Fidler JA, Tamsett TJ, Bao C, Searles M, Taksir TV, Misra K et al (2013) Metabolic signatures of amyotrophic lateral sclerosis reveal insights into disease pathogenesis. Proc Natl Acad Sci U S A 110(26):10812–10817. https://doi.org/10.1073/pnas.1308421110

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tretter L, Adam-Vizi V (2000) Inhibition of Krebs cycle enzymes by hydrogen peroxide: a key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci 20(24):8972–8979

    Article  CAS  Google Scholar 

  43. Mailloux RJ, Beriault R, Lemire J, Singh R, Chenier DR, Hamel RD, Appanna VD (2007) The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One 2(8):e690. https://doi.org/10.1371/journal.pone.0000690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tefera TW, Wong Y, Barkl-Luke ME, Ngo ST, Thomas NK, McDonald TS, Borges K (2016) Triheptanoin protects motor neurons and delays the onset of motor symptoms in a mouse model of amyotrophic lateral sclerosis. PLoS One 11(8):e0161816. https://doi.org/10.1371/journal.pone.0161816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ari C, Poff AM, Held HE, Landon CS, Goldhagen CR, Mavromates N, D'Agostino DP (2014) Metabolic therapy with Deanna protocol supplementation delays disease progression and extends survival in amyotrophic lateral sclerosis (ALS) mouse model. PLoS One 9(7):e103526. https://doi.org/10.1371/journal.pone.0103526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Matthews RT, Yang L, Browne S, Baik M, Beal MF (1998) Coenzyme Q10 administration increases brain mitochondrial concentrations and exerts neuroprotective effects. Proc Natl Acad Sci U S A 95 (15):8892–8897

  47. Cassina P, Cassina A, Pehar M, Castellanos R, Gandelman M, de Leon A, Robinson KM, Mason RP, Beckman JS, Barbeito L, Radi R (2008) Mitochondrial dysfunction in SOD1G93A-bearing astrocytes promotes motor neuron degeneration: prevention by mitochondrial-targeted antioxidants. J Neurosci 28(16):4115–4122. https://doi.org/10.1523/JNEUROSCI.5308-07.2008

  48. Miquel E, Cassina A, Martinez-Palma L, Souza JM, Bolatto C, Rodriguez-Bottero S, Logan A, Smith RA, Murphy MP, Barbeito L, Radi R, Cassina P (2014) Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic Biol Med 70:204–213. https://doi.org/10.1016/j.freeradbiomed.2014.02.019

  49. Zhao W, Varghese M, Vempati P, Dzhun A, Cheng A, Wang J, Lange D, Bilski A et al (2012) Caprylic triglyceride as a novel therapeutic approach to effectively improve the performance and attenuate the symptoms due to the motor neuron loss in ALS disease. PLoS One 7(11):e49191. https://doi.org/10.1371/journal.pone.0049191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhao Z, Lange DJ, Voustianiouk A, MacGrogan D, Ho L, Suh J, Humala N, Thiyagarajan M et al (2006) A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 7(29):29. https://doi.org/10.1186/1471-2202-7-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scott A (2017) Drug therapy: on the treatment trail for ALS. Nature 550(7676):S120–S121. https://doi.org/10.1038/550S120a

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank the Queensland Brain Institute and Dr. Shuyan Ngo for providing animals. TWT is a recipient of The University of Queensland International scholarship.

Funding

This work was supported by the Motor Neurone Disease Research Institute Australia to KB (grant number: GIA 1704).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karin Borges.

Ethics declarations

All animal experiments were approved by the University of Queensland Animal Ethics Committee (SBMS 128/14) and followed the guidelines of the Queensland Animal Care and Protection Act 2001.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tefera, T.W., Bartlett, K., Tran, S.S. et al. Impaired Pentose Phosphate Pathway in the Spinal Cord of the hSOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis. Mol Neurobiol 56, 5844–5855 (2019). https://doi.org/10.1007/s12035-019-1485-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-019-1485-6

Keywords

Navigation