Skip to main content

Advertisement

Log in

Anti-vasospastic Effects of Epidermal Growth Factor Receptor Inhibitors After Subarachnoid Hemorrhage in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Subarachnoid hemorrhage (SAH) is a devastating disease. Cerebral vasospasm is still an important cause of post-SAH poor outcomes, but its mechanisms remain unveiled. Activation of epidermal growth factor receptor (EGFR) is suggested to cause vasoconstriction in vitro, but no report has demonstrated the involvement of EGFR in vasospasm development after SAH in vivo. Cross-talk of EGFR and vascular endothelial growth factor (VEGF) receptor, which may affect post-SAH vasospasm, was also reported in cancer cells, but has not been demonstrated in post-SAH vasospasm. The aim of this study was to investigate whether EGFR as well as EGFR-VEGF receptor cross-talk engage in the development of cerebral vasospasm in a mouse SAH model. C57BL6 mice underwent endovascular perforation SAH or sham modeling. At 30 min post-modeling, mice were randomly administrated vehicle or 2 doses of selective EGFR inhibitors intracerebroventricularly. A higher dose of the inhibitor significantly prevented post-SAH neurological impairments at 72 h and vasospasm at 24 h associated with suppression of post-SAH activation of EGFR and extracellular signal-regulated kinase (ERK) 1/2 in the cerebral artery wall, especially in the smooth muscle cell layers. Anti-EGFR neutralizing antibody also showed similar effects. However, neither expression levels of VEGF nor activation levels of a major receptor of VEGF, VEGF receptor-2, were affected by SAH and two kinds of EGFR inactivation. Thus, this study first showed that EGFR-ERK1/2 pathways may be involved in post-SAH vasospasm development, and that EGFR-VEGF receptor cross-talk may not play a significant role in the development of vasospasm in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Suzuki H, Shiba M, Nakatsuka Y, Nakano F, Nishikawa H (2017) Higher cerebrospinal fluid pH may contribute to the development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Transl Stroke Res 8:165–173

    CAS  PubMed  Google Scholar 

  2. Fujimoto M, Shiba M, Kawakita F, Liu L, Shimojo N, Imanaka-Yoshida K, Yoshida T, Suzuki H (2018) Effects of tenascin-C knockout on cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 55:1951–1958

    CAS  PubMed  Google Scholar 

  3. Borel CO, McKee A, Parra A, Haglund MM, Solan A, Prabhakar V, Sheng H, Warner DS et al (2003) Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke 34:427–433

    CAS  PubMed  Google Scholar 

  4. McGirt MJ, Lynch JR, Blessing R, Warner DS, Friedman AH, Laskowitz DT (2002) Serum von Willebrand factor, matrix metalloproteinase-9, and vascular endothelial growth factor levels predict the onset of cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery 51:1128–1135

    PubMed  Google Scholar 

  5. Yan J, Chen C, Lei J, Yang L, Wang K, Liu J, Zhou C (2006) 2-methoxyestradiol reduces cerebral vasospasm after 48 hours of experimental subarachnoid hemorrhage in rats. Exp Neurol 202:348–356

    CAS  PubMed  Google Scholar 

  6. Midwood KS, Hussenet T, Langlois B, Orend G (2011) Advances in tenascin-C biology. Cell Mol Life Sci 68:3175–3199

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Suzuki H, Kinoshita N, Imanaka-Yoshida K, Yoshida T, Taki W (2008) Cerebrospinal fluid tenascin-C increased preceding the development of chronic shunt-dependent hydrocephalus after subarachnoid hemorrhage. Stroke 39:1610–1612

    CAS  PubMed  Google Scholar 

  8. Fujimoto M, Shiba M, Kawakita F, Liu L, Nakasaki A, Shimojo N, Imanaka-Yoshida K, Yoshida T et al (2016) Epidermal growth factor-like repeats of tenascin-C-induced constriction of cerebral arteries via activation of epidermal growth factor receptors in rats. Brain Res 1642:436–444

    CAS  PubMed  Google Scholar 

  9. Kawanabe Y, Masaki T, Hashimoto N (2004) Involvement of epidermal growth factor receptor-protein tyrosine kinase transactivation in endothelin-1-induced vascular contraction. J Neurosurg 100:1066–1071

    CAS  PubMed  Google Scholar 

  10. Liu L, Fujimoto M, Kawakita F, Nakano F, Imanaka-Yoshida K, Yoshida T, Suzuki H (2016) Anti-vascular endothelial growth factor treatment suppressed early brain injury after subarachnoid hemorrhage in mice. Mol Neurobiol 53:4529–4538

    CAS  PubMed  Google Scholar 

  11. Ray L, Mathieu M, Jespers P, Hadad I, Mahmoudabady M, Pensis A, Motte S, Peters IR et al (2008) Early increase in pulmonary vascular reactivity with overexpression of endothelin-1 and vascular endothelial growth factor in canine experimental heart failure. Exp Physiol 93:434–442

    CAS  PubMed  Google Scholar 

  12. Adeoye OO, Butler SM, Hubbell MC, Semotiuk A, Williams JM, Pearce WJ (2013) Contribution of increased VEGF receptors to hypoxic changes in fetal ovine carotid artery contractile proteins. Am J Physiol Cell Physiol 304:C656–C665

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Larsen AK, Ouaret D, El Ouadrani K, Petitprez A (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90

    CAS  PubMed  Google Scholar 

  14. Shim JW, Madsen JR (2018) VEGF signaling in neurological disorders. Int J Mol Sci 19:275

    PubMed Central  Google Scholar 

  15. Shim JW, Sandlund J, Hameed MQ, Blazer-Yost B, Zhou FC, Klagsbrun M, Madsen JR (2016) Excess HB-EGF, which promotes VEGF signaling, leads to hydrocephalus. Sci Rep 6:26794

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li XM, Su F, Ji MH, Zhang GF, Qiu LL, Jia M, Gao J, Xie Z et al (2014) Disruption of hippocampal neuregulin 1-ErbB4 signaling contributes to the hippocampus-dependent cognitive impairment induced by isoflurane in aged mice. Anesthesiology 121:79–88

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Formisano L, D’Amato V, Servetto A, Brillante S, Raimondo L, Di Mauro C, Marciano R, Orsini RC et al (2015) Src inhibitors act through different mechanisms in non-small cell lung cancer models depending on EGFR and RAS mutational status. Oncotarget 6:26090–26103

    PubMed  PubMed Central  Google Scholar 

  18. Kawakita F, Fujimoto M, Liu L, Nakano F, Nakatsuka Y, Suzuki H (2017) Effects of Toll-like receptor 4 antagonists against cerebral vasospasm after experimental subarachnoid hemorrhage in mice. Mol Neurobiol 54:6624–6633

    CAS  PubMed  Google Scholar 

  19. Sabri M, Ai J, Knight B, Tariq A, Jeon H, Shang X, Marsden PA, Loch Macdonald R (2011) Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 31:190–199

    CAS  PubMed  Google Scholar 

  20. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to image J: 25 years of image analysis. Nat Methods 9:671–675

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karkkainen MJ, Petrova TV (2000) Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19:5598–5605

    CAS  PubMed  Google Scholar 

  22. Wang WM, Zhao ZL, Ma SR, Yu GT, Liu B, Zhang L, Zhang WF, Kulkarni AB et al (2015) Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma. PLoS One 10:e0119723

    PubMed  PubMed Central  Google Scholar 

  23. Ledón N, Casacó A, Casanova E, Beausoleil I (2011) Comparative analysis of binding affinities to epidermal growth factor receptor of monoclonal antibodies nimotuzumab and cetuximab using different experimental animal models. Placenta 32:531–534

    PubMed  Google Scholar 

  24. Zervas NT, Liszczak TM, Mayberg MR, Black PM (1982) Cerebrospinal fluid may nourish cerebral vessels through pathways in the adventitia that may be analogous to systemic vasa vasorum. J Neurosurg 56:475–481

    CAS  PubMed  Google Scholar 

  25. Langheinrich AC, Michniewicz A, Bohle RM, Ritman EL (2007) Vasa vasorum neovascularization and lesion distribution among different vascular beds in ApoE-/-/LDL-/- double knockout mice. Atherosclerosis 191:73–81

    CAS  PubMed  Google Scholar 

  26. Bedussi B, van Lier MG, Bartstra JW, de Vos J, Siebes M, VanBavel E, Bakker EN (2015) Clearance from the mouse brain by convection of interstitial fluid towards the ventricular system. Fluids Barriers CNS 12:23

    PubMed  PubMed Central  Google Scholar 

  27. Bedussi B, van der Wel NN, de Vos J, van Veen H, Siebes M, VanBavel E, Bakker EN (2017) Paravascular channels, cisterns, and the subarachnoid space in the rat brain: a single compartment with preferential pathways. J Cereb Blood Flow Metab 37:1374–1385

    PubMed  Google Scholar 

  28. Abbott NJ (2004) Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 45:545–552

    CAS  PubMed  Google Scholar 

  29. Makki N, Thiel KW, Miller FJ Jr (2013) The epidermal growth factor receptor and its ligands in cardiovascular disease. Int J Mol Sci 14:20597–20613

    PubMed  PubMed Central  Google Scholar 

  30. Kalmes A, Daum G, Clowes AW (2001) EGFR transactivation in the regulation of SMC function. Ann N Y Acad Sci 947:42–55

    CAS  PubMed  Google Scholar 

  31. Kim J, Lee CK, Park HJ, Kim HJ, So HH, Lee KS, Lee HM, Roh HY et al (2006) Epidermal growth factor induces vasoconstriction through the phosphatidylinositol 3-kinase-mediated mitogen-activated protein kinase pathway in hypertensive rats. J Pharmacol Sci 101:135–143

    CAS  PubMed  Google Scholar 

  32. Chansel D, Ciroldi M, Vandermeersch S, Jackson LF, Gomez AM, Henrion D, Lee DC, Coffman TM et al (2006) Heparin binding EGF is necessary for vasospastic response to endothelin. FASEB J 20:1936–1938

    CAS  PubMed  Google Scholar 

  33. Koide M, Penar PL, Tranmer BI, Wellman GC (2007) Heparin-binding EGF-like growth factor mediates oxyhemoglobin-induced suppression of voltage-dependent potassium channels in rabbit cerebral artery myocytes. Am J Physiol Heart Circ Physiol 293:H1750–H1759

    CAS  PubMed  Google Scholar 

  34. Koide M, Wellman GC (2015) SAH-induced MMP activation and K V current suppression is mediated via both ROS-dependent and ROS-independent mechanisms. Acta Neurochir Suppl 120:89–94

    PubMed  PubMed Central  Google Scholar 

  35. Koide M, Wellman GC (2013) SAH-induced suppression of voltage-gated K(+) (K(V)) channel currents in parenchymal arteriolar myocytes involves activation of the HB-EGF/EGFR pathway. Acta Neurochir Suppl 115:179–184

    PubMed  PubMed Central  Google Scholar 

  36. Friedrich B, Müller F, Feiler S, Schöller K, Plesnila N (2012) Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study. J Cereb Blood Flow Metab 32:447–455

    CAS  PubMed  Google Scholar 

  37. Liu H, Dienel A, Schöller K, Schwarzmaier SM, Nehrkorn K, Plesnila N, Terpolilli NA (2018) Microvasospasms after experimental subarachnoid hemorrhage do not depend on endothelin A receptors. Stroke 49:693–699

    PubMed  Google Scholar 

  38. Suzuki H, Hasegawa Y, Kanamaru K, Zhang JH (2010) Mechanisms of osteopontin-induced stabilization of blood-brain barrier disruption after subarachnoid hemorrhage in rats. Stroke 41:1783–1790

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Macdonald RL, Higashida RT, Keller E, Mayer SA, Molyneux A, Raabe A, Vajkoczy P, Wanke I et al (2011) Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid hemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 10:618–625

    CAS  PubMed  Google Scholar 

  40. Pore N, Jiang Z, Gupta A, Cerniglia G, Kao GD, Maity A (2006) EGFR tyrosine kinase inhibitors decrease VEGF expression by both hypoxia-inducible factor (HIF)-1-independent and HIF-1-dependent mechanisms. Cancer Res 66:3197–3204

    CAS  PubMed  Google Scholar 

  41. Miller CA, Lombard FW, Wu CT, Hubbard CJ, Silbajoris L, Borel CO, Niklason LE (2006) Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy. Neurocrit Care 5:215–221

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiduru Yamamoto-Nakamura (Department of Neurosurgery, Mie University Graduate School of Medicine) for her assistance with administrative support.

Funding

This study was funded by a grant-in-aid for Scientific Research from Japan Society for the Promotion of Science to Drs. Suzuki [17K10825] and Shiba [17K16640].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Suzuki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

All procedures were approved by the Animal Ethics Review Committee of Mie University and were carried out according to the institution’s Guidelines for Animal Experiments.

Electronic Supplementary Material

ESM 1

(PDF 9712 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, F., Kawakita, F., Liu, L. et al. Anti-vasospastic Effects of Epidermal Growth Factor Receptor Inhibitors After Subarachnoid Hemorrhage in Mice. Mol Neurobiol 56, 4730–4740 (2019). https://doi.org/10.1007/s12035-018-1400-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1400-6

Keywords

Navigation