Skip to main content

Advertisement

Log in

Role of GTPases in the Regulation of Mitochondrial Dynamics in Alzheimer’s Disease and CNS-Related Disorders

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Data obtained from several studies have shown that mitochondria are involved and play a central role in the progression of several distinct pathological conditions. Morphological alterations and disruptions on the functionality of mitochondria may be related to metabolic and energy deficiency in neurons in a neurodegenerative disorder. Several recent studies demonstrate the linkage between neurodegeneration and mitochondrial dynamics in the spectrum of a promising era called precision mitochondrial medicine. In this review paper, an analysis of the correlation between mitochondria, Alzheimer’s disease, and other central nervous system (CNS)-related disorders like the Parkinson’s disease and the autism spectrum disorder is under discussion. The role of GTPases like the mfn1, mfn2, opa1, and dlp1 in mitochondrial fission and fusion is also under investigation, influencing mitochondrial population and leading to oxidative stress and neuronal damage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Henze K, Martin W (2003) Evolutionary biology: Essence of mitochondria. Nature 426(6963):127–128. https://doi.org/10.1038/426127a

    Article  CAS  PubMed  Google Scholar 

  2. Alexiou A, Rekkas J (2015) Superconductivity in human body; myth or necessity. Adv Exp Med Biol 822:53–58. https://doi.org/10.1007/978-3-319-08927-0_8

    Article  CAS  PubMed  Google Scholar 

  3. Alexiou A, Rekkas J (2015) The quantum human central neural system. Adv Exp Med Biol 821:101–109. https://doi.org/10.1007/978-3-319-08939-3_14

    Article  PubMed  Google Scholar 

  4. Campello S, Lacalle RA, Bettella M, Manes S, Scorrano L, Viola A (2006) Orchestration of lymphocyte chemotaxis by mitochondrial dynamics. J Exp Med 203(13):2879–2886. https://doi.org/10.1084/jem.20061877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: More than just a powerhouse. Curr Biol : CB 16(14):R551–R560. https://doi.org/10.1016/j.cub.2006.06.054

    Article  CAS  PubMed  Google Scholar 

  6. Vandecasteele G, Szabadkai G, Rizzuto R (2001) Mitochondrial calcium homeostasis: Mechanisms and molecules. IUBMB Life 52(3–5):213–219. https://doi.org/10.1080/15216540152846028

    Article  CAS  PubMed  Google Scholar 

  7. Cabezas R, El-Bacha RS, Gonzalez J, Barreto GE (2012) Mitochondrial functions in astrocytes: Neuroprotective implications from oxidative damage by rotenone. Neurosci Res 74(2):80–90. https://doi.org/10.1016/j.neures.2012.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Barreto GE, Gonzalez J, Torres Y, Morales L (2011) Astrocytic-neuronal crosstalk: Implications for neuroprotection from brain injury. Neurosci Res 71(2):107–113. https://doi.org/10.1016/j.neures.2011.06.004

    Article  PubMed  Google Scholar 

  9. Alexiou A, Mantzavinos VD, Greig NH, Kamal MA (2017) A Bayesian model for the prediction and early diagnosis of Alzheimer's disease. Front Aging Neurosci 9:77. https://doi.org/10.3389/fnagi.2017.00077

    Article  PubMed  PubMed Central  Google Scholar 

  10. Alexiou A, Nizami B, Khan FI, Soursou G, Vairaktarakis C, Chatzichronis S, Tsiamis V, Manztavinos V et al (2018) Mitochondrial dynamics and proteins related to neurodegenerative diseases. Curr Protein Pept Sci 19(9):850–857. https://doi.org/10.2174/1389203718666170810150151

    Article  CAS  PubMed  Google Scholar 

  11. Baez-Jurado E, Vega GG, Aliev G, Tarasov VV, Esquinas P, Echeverria V, Barreto GE (2018) Blockade of Neuroglobin reduces protection of conditioned medium from human mesenchymal stem cells in human astrocyte model (T98G) under a scratch assay. Mol Neurobiol 55(3):2285–2300. https://doi.org/10.1007/s12035-017-0481-y

    Article  CAS  PubMed  Google Scholar 

  12. Torrente D, Avila MF, Cabezas R, Morales L, Gonzalez J, Samudio I, Barreto GE (2014) Paracrine factors of human mesenchymal stem cells increase wound closure and reduce reactive oxygen species production in a traumatic brain injury in vitro model. Hum Exp Toxicol 33(7):673–684. https://doi.org/10.1177/0960327113509659

    Article  CAS  PubMed  Google Scholar 

  13. Baez-Jurado E, Hidalgo-Lanussa O, Guio-Vega G, Ashraf GM, Echeverria V, Aliev G, Barreto GE (2018) Conditioned medium of human adipose mesenchymal stem cells increases wound closure and protects human astrocytes following scratch assay in vitro. Mol Neurobiol 55(6):5377–5392. https://doi.org/10.1007/s12035-017-0771-4

    Article  CAS  PubMed  Google Scholar 

  14. Crespo-Castrillo A, Yanguas-Casas N, Arevalo MA, Azcoitia I, Barreto GE, Garcia-Segura LM (2018) The synthetic steroid Tibolone decreases reactive gliosis and neuronal death in the cerebral cortex of female mice after a stab wound injury. Mol Neurobiol 55(11):8651–8667. https://doi.org/10.1007/s12035-018-1008-x

    Article  CAS  PubMed  Google Scholar 

  15. Hidalgo-Lanussa O, Avila-Rodriguez M, Baez-Jurado E, Zamudio J, Echeverria V, Garcia-Segura LM, Barreto GE (2018) Tibolone reduces oxidative damage and inflammation in microglia stimulated with palmitic acid through mechanisms involving estrogen receptor Beta. Mol Neurobiol 55(7):5462–5477. https://doi.org/10.1007/s12035-017-0777-y

    Article  CAS  PubMed  Google Scholar 

  16. Gonzalez-Giraldo Y, Garcia-Segura LM, Echeverria V, Barreto GE (2018) Tibolone preserves mitochondrial functionality and cell morphology in astrocytic cells treated with palmitic acid. Mol Neurobiol 55(5):4453–4462. https://doi.org/10.1007/s12035-017-0667-3

    Article  CAS  PubMed  Google Scholar 

  17. Acaz-Fonseca E, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Regulation of astroglia by gonadal steroid hormones under physiological and pathological conditions. Prog Neurobiol 144:5–26. https://doi.org/10.1016/j.pneurobio.2016.06.002

    Article  CAS  PubMed  Google Scholar 

  18. Avila-Rodriguez M, Garcia-Segura LM, Hidalgo-Lanussa O, Baez E, Gonzalez J, Barreto GE (2016) Tibolone protects astrocytic cells from glucose deprivation through a mechanism involving estrogen receptor beta and the upregulation of neuroglobin expression. Mol Cell Endocrinol 433:35–46. https://doi.org/10.1016/j.mce.2016.05.024

    Article  CAS  PubMed  Google Scholar 

  19. Avila Rodriguez M, Garcia-Segura LM, Cabezas R, Torrente D, Capani F, Gonzalez J, Barreto GE (2014) Tibolone protects T98G cells from glucose deprivation. J Steroid Biochem Mol Biol 144(Pt B):294–303. https://doi.org/10.1016/j.jsbmb.2014.07.009

    Article  CAS  PubMed  Google Scholar 

  20. Cabezas R, Vega-Vela NE, Gonzalez-Sanmiguel J, Gonzalez J, Esquinas P, Echeverria V, Barreto GE (2018) PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates Neuroglobin in an astrocytic model under rotenone insult. Mol Neurobiol 55(4):3085–3095. https://doi.org/10.1007/s12035-017-0567-6

    Article  CAS  PubMed  Google Scholar 

  21. Cabezas R, Avila MF, Gonzalez J, El-Bacha RS, Barreto GE (2015) PDGF-BB protects mitochondria from rotenone in T98G cells. Neurotox Res 27(4):355–367. https://doi.org/10.1007/s12640-014-9509-5

    Article  CAS  PubMed  Google Scholar 

  22. Mirra SS, Heyman A, McKeel D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP et al (1991) The consortium to establish a registry for Alzheimer's disease (CERAD). Part II. Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 41(4):479–486

    Article  CAS  PubMed  Google Scholar 

  23. Lill R, Kispal G (2001) Mitochondrial ABC transporters. Res Microbiol 152(3–4):331–340

    Article  CAS  PubMed  Google Scholar 

  24. Neupert W, Herrmann JM (2007) Translocation of proteins into mitochondria. Annu Rev Biochem 76:723–749. https://doi.org/10.1146/annurev.biochem.76.052705.163409

    Article  CAS  PubMed  Google Scholar 

  25. O'Rourke B (2007) Mitochondrial ion channels. Annu Rev Physiol 69:19–49. https://doi.org/10.1146/annurev.physiol.69.031905.163804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Palmieri L, Lasorsa FM, Vozza A, Agrimi G, Fiermonte G, Runswick MJ, Walker JE, Palmieri F (2000) Identification and functions of new transporters in yeast mitochondria. Biochim Biophys Acta 1459(2–3):363–369

    Article  CAS  PubMed  Google Scholar 

  27. Martin LJ (2010) Mitochondrial and cell death mechanisms in neurodegenerative diseases. Pharmaceuticals 3(4):839–915. https://doi.org/10.3390/ph3040839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6(8):657–663. https://doi.org/10.1038/nrm1697

    Article  CAS  PubMed  Google Scholar 

  29. Trifunovic A (2006) Mitochondrial DNA and ageing. Biochim Biophys Acta 1757(5–6):611–617. https://doi.org/10.1016/j.bbabio.2006.03.003

    Article  CAS  PubMed  Google Scholar 

  30. Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488

    Article  CAS  PubMed  Google Scholar 

  31. Khachaturian ZS (1985) Diagnosis of Alzheimer's disease. Arch Neurol 42(11):1097–1105

    Article  CAS  PubMed  Google Scholar 

  32. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y et al (2001) Mitochondrial abnormalities in Alzheimer's disease. J Neurosci 21(9):3017–3023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Swerdlow RH, Khan SM (2004) A "mitochondrial cascade hypothesis" for sporadic Alzheimer's disease. Med Hypotheses 63(1):8–20. https://doi.org/10.1016/j.mehy.2003.12.045

    Article  CAS  PubMed  Google Scholar 

  34. Swerdlow RH, Khan SM (2009) The Alzheimer's disease mitochondrial cascade hypothesis: An update. Exp Neurol 218(2):308–315. https://doi.org/10.1016/j.expneurol.2009.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang X, Su B, Fujioka H, Zhu X (2008) Dynamin-like protein 1 reduction underlies mitochondrial morphology and distribution abnormalities in fibroblasts from sporadic Alzheimer's disease patients. Am J Pathol 173(2):470–482. https://doi.org/10.2353/ajpath.2008.071208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Carroll CJ, Brilhante V, Suomalainen A (2014) Next-generation sequencing for mitochondrial disorders. Br J Pharmacol 171(8):1837–1853. https://doi.org/10.1111/bph.12469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Madreiter-Sokolowski CT, Sokolowski AA, Waldeck-Weiermair M, Malli R, Graier WF (2018) Targeting mitochondria to counteract age-related cellular dysfunction. Genes 9(3). https://doi.org/10.3390/genes9030165

    Article  PubMed Central  Google Scholar 

  38. Mantzavinos V, Alexiou A (2017) Biomarkers for Alzheimer's disease diagnosis. Curr Alzheimer Res 14(11):1149–1154. https://doi.org/10.2174/1567205014666170203125942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Giatti S, Garcia-Segura LM, Barreto GE, Melcangi RC (2018) Neuroactive steroids, neurosteroidogenesis and sex. Prog Neurobiol. https://doi.org/10.1016/j.pneurobio.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  40. Bavarsad K, Barreto GE, Hadjzadeh MA, Sahebkar A (2018) Protective effects of curcumin against ischemia-reperfusion injury in the nervous system. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1169-7

    Article  PubMed  Google Scholar 

  41. Baez E, Guio-Vega GP, Echeverria V, Sandoval-Rueda DA, Barreto GE (2017) 4'-Chlorodiazepam protects mitochondria in T98G astrocyte cell line from glucose deprivation. Neurotox Res 32(2):163–171. https://doi.org/10.1007/s12640-017-9733-x

    Article  CAS  PubMed  Google Scholar 

  42. Baez E, Echeverria V, Cabezas R, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Protection by Neuroglobin expression in brain pathologies. Front Neurol 7:146. https://doi.org/10.3389/fneur.2016.00146

    Article  PubMed  PubMed Central  Google Scholar 

  43. Toro-Urrego N, Garcia-Segura LM, Echeverria V, Barreto GE (2016) Testosterone protects mitochondrial function and regulates Neuroglobin expression in astrocytic cells exposed to glucose deprivation. Front Aging Neurosci 8:152. https://doi.org/10.3389/fnagi.2016.00152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gonzalez-Giraldo Y, Forero DA, Echeverria V, Gonzalez J, Avila-Rodriguez M, Garcia-Segura LM, Barreto GE (2016) Neuroprotective effects of the catalytic subunit of telomerase: A potential therapeutic target in the central nervous system. Ageing Res Rev 28:37–45. https://doi.org/10.1016/j.arr.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  45. Sun X, Budas GR, Xu L, Barreto GE, Mochly-Rosen D, Giffard RG (2013) Selective activation of protein kinase C in mitochondria is neuroprotective in vitro and reduces focal ischemic brain injury in mice. J Neurosci Res 91(6):799–807. https://doi.org/10.1002/jnr.23186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vesga-Jimenez DJ, Hidalgo-Lanussa O, Baez-Jurado E, Echeverria V, Ashraf GM, Sahebkar A, Barreto GE (2018) Raloxifene attenuates oxidative stress and preserves mitochondrial function in astrocytic cells upon glucose deprivation. J Cell Physiol. https://doi.org/10.1002/jcp.27481

    Article  PubMed  Google Scholar 

  47. Hansson CA, Frykman S, Farmery MR, Tjernberg LO, Nilsberth C, Pursglove SE, Ito A, Winblad B et al (2004) Nicastrin, presenilin, APH-1, and PEN-2 form active gamma-secretase complexes in mitochondria. J Biol Chem 279(49):51654–51660. https://doi.org/10.1074/jbc.M404500200

    Article  CAS  PubMed  Google Scholar 

  48. Moreira PI, Cardoso SM, Santos MS, Oliveira CR (2006) The key role of mitochondria in Alzheimer's disease. J Alzheim Dis : JAD 9(2):101–110

    Article  CAS  Google Scholar 

  49. Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer's amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161(1):41–54. https://doi.org/10.1083/jcb.200207030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Barraud Q, Obeid I, Aubert I, Barriere G, Contamin H, McGuire S, Ravenscroft P, Porras G et al (2010) Neuroanatomical study of the A11 diencephalospinal pathway in the non-human primate. PLoS One 5(10):e13306. https://doi.org/10.1371/journal.pone.0013306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gibson G, Martins R, Blass J, Gandy S (1996) Altered oxidation and signal transduction systems in fibroblasts from Alzheimer patients. Life Sci 59(5–6):477–489

    Article  CAS  PubMed  Google Scholar 

  52. Chen H, Chan DC (2009) Mitochondrial dynamics--fusion, fission, movement, and mitophagy--in neurodegenerative diseases. Hum Mol Genet 18(R2):R169–R176. https://doi.org/10.1093/hmg/ddp326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chaumette T, Lebouvier T, Aubert P, Lardeux B, Qin C, Li Q, Accary D, Bezard E et al (2009) Neurochemical plasticity in the enteric nervous system of a primate animal model of experimental parkinsonism. Neurogastroenterol Motil 21(2):215–222. https://doi.org/10.1111/j.1365-2982.2008.01226.x

    Article  CAS  PubMed  Google Scholar 

  54. Purisai MG, McCormack AL, Langston WJ, Johnston LC, Di Monte DA (2005) Alpha-synuclein expression in the substantia nigra of MPTP-lesioned non-human primates. Neurobiol Dis 20(3):898–906. https://doi.org/10.1016/j.nbd.2005.05.028

    Article  CAS  PubMed  Google Scholar 

  55. Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Muller-Spahn F, Haass C et al (2004) Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279(48):50310–50320. https://doi.org/10.1074/jbc.M405600200

    Article  CAS  PubMed  Google Scholar 

  56. Vital A, Li Q, Canron MH, Ravenscroft P, Hill M, Bezard E (2010) Comprehensive pathological analysis in MPTP-treated macaques reveal widespread synucleopathy and tauopathy. Mov Disord 25:S203–S203

    Google Scholar 

  57. Dodson MW, Guo M (2007) Pink1, Parkin, DJ-1 and mitochondrial dysfunction in Parkinson's disease. Curr Opin Neurobiol 17(3):331–337. https://doi.org/10.1016/j.conb.2007.04.010

    Article  CAS  PubMed  Google Scholar 

  58. Wood-Kaczmar A, Gandhi S, Wood NW (2006) Understanding the molecular causes of Parkinson's disease. Trends Mol Med 12(11):521–528. https://doi.org/10.1016/j.molmed.2006.09.007

    Article  CAS  PubMed  Google Scholar 

  59. Wang J, Xiong S, Xie C, Markesbery WR, Lovell MA (2005) Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem 93(4):953–962. https://doi.org/10.1111/j.1471-4159.2005.03053.x

    Article  CAS  PubMed  Google Scholar 

  60. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608. https://doi.org/10.1038/33416

    Article  CAS  PubMed  Google Scholar 

  61. Chan DC (2006) Mitochondrial fusion and fission in mammals. Annu Rev Cell Dev Biol 22:79–99. https://doi.org/10.1146/annurev.cellbio.22.010305.104638

    Article  CAS  PubMed  Google Scholar 

  62. Chan DC (2007) Mitochondrial dynamics in disease. N Engl J Med 356(17):1707–1709. https://doi.org/10.1056/NEJMp078040

    Article  CAS  PubMed  Google Scholar 

  63. Chen H, McCaffery JM, Chan DC (2007) Mitochondrial fusion protects against neurodegeneration in the cerebellum. Cell 130(3):548–562. https://doi.org/10.1016/j.cell.2007.06.026

    Article  CAS  PubMed  Google Scholar 

  64. Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118(Pt 23):5411–5419. https://doi.org/10.1242/jcs.02745

    Article  CAS  PubMed  Google Scholar 

  65. Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290(5497):1717–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Twig G, Elorza A, Molina AJ, Mohamed H, Wikstrom JD, Walzer G, Stiles L, Haigh SE et al (2008) Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J 27(2):433–446. https://doi.org/10.1038/sj.emboj.7601963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Filipek PA, Juranek J, Smith M, Mays LZ, Ramos ER, Bocian M, Masser-Frye D, Laulhere TM et al (2003) Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol 53(6):801–804. https://doi.org/10.1002/ana.10596

    Article  CAS  PubMed  Google Scholar 

  68. Fillano JJ, Goldenthal MJ, Rhodes CH, Marin-Garcia J (2002) Mitochondrial dysfunction in patients with hypotonia, epilepsy, autism, and developmental delay: HEADD syndrome. J Child Neurol 17(6):435–439. https://doi.org/10.1177/088307380201700607

    Article  PubMed  Google Scholar 

  69. Courchesne E, Pierce K, Schumann CM, Redcay E, Buckwalter JA, Kennedy DP, Morgan J (2007) Mapping early brain development in autism. Neuron 56(2):399–413. https://doi.org/10.1016/j.neuron.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  70. Oliveira G, Diogo L, Grazina M, Garcia P, Ataide A, Marques C, Miguel T, Borges L et al (2005) Mitochondrial dysfunction in autism spectrum disorders: A population-based study. Dev Med Child Neurol 47(3):185–189

    Article  CAS  PubMed  Google Scholar 

  71. Stjernholm RL (1967) Carbohydrate metabolism in leukocytes. VII. Metabolism of glucose, acetate, and propionate by human plasma cells. J Bacteriol 93(5):1657–1661

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Kalyanaraman B, Cheng G, Hardy M, Ouari O, Bennett B, Zielonka J (2018) Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biol 15:347–362. https://doi.org/10.1016/j.redox.2017.12.012

    Article  CAS  PubMed  Google Scholar 

  73. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94(3):909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Alzheimer's A (2015) 2015 Alzheimer's disease facts and figures. Alzheimers Dement 11(3):332–384

    Article  Google Scholar 

  75. Abbott A, Dolgin E (2016) Failed Alzheimer's trial does not kill leading theory of disease. Nature 540(7631):15–16. https://doi.org/10.1038/nature.2016.21045

    Article  CAS  PubMed  Google Scholar 

  76. Appels BA, Scherder E (2010) The diagnostic accuracy of dementia-screening instruments with an administration time of 10 to 45 minutes for use in secondary care: A systematic review. Am J Alzheimers Dis Dementias 25(4):301–316. https://doi.org/10.1177/1533317510367485

    Article  Google Scholar 

  77. Ashraf J, Ahmad J, Ali A, Ul-Haq Z (2018) Analyzing the behavior of neuronal pathways in Alzheimer's disease using petri net modeling approach. Front Neuroinformatics 12:26. https://doi.org/10.3389/fninf.2018.00026

    Article  Google Scholar 

  78. Callahan BL, Ramirez J, Berezuk C, Duchesne S, Black SE, Alzheimer's Disease Neuroimaging I (2015) Predicting Alzheimer's disease development: A comparison of cognitive criteria and associated neuroimaging biomarkers. Alzheimers Res Ther 7(1):68. https://doi.org/10.1186/s13195-015-0152-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Desikan RS, Fan CC, Wang Y, Schork AJ, Cabral HJ, Cupples LA, Thompson WK, Besser L et al (2017) Genetic assessment of age-associated Alzheimer disease risk: Development and validation of a polygenic hazard score. PLoS Med 14(3):e1002258. https://doi.org/10.1371/journal.pmed.1002258

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gavidia-Bovadilla G, Kanaan-Izquierdo S, Mataro-Serrat M, Perera-Lluna A, Alzheimer's Disease Neuroimaging I (2017) Early prediction of Alzheimer's disease using null longitudinal model-based classifiers. PLoS One 12(1):e0168011. https://doi.org/10.1371/journal.pone.0168011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Popuri K, Balachandar R, Alpert K, Lu D, Bhalla M, Mackenzie IR, Hsiung RG, Wang L et al (2018) Development and validation of a novel dementia of Alzheimer's type (DAT) score based on metabolism FDG-PET imaging. NeuroImage Clin 18:802–813. https://doi.org/10.1016/j.nicl.2018.03.007

    Article  PubMed  PubMed Central  Google Scholar 

  82. Rondina JM, Ferreira LK, de Souza Duran FL, Kubo R, Ono CR, Leite CC, Smid J, Nitrini R et al (2018) Selecting the most relevant brain regions to discriminate Alzheimer's disease patients from healthy controls using multiple kernel learning: A comparison across functional and structural imaging modalities and atlases. NeuroImage Clin 17:628–641. https://doi.org/10.1016/j.nicl.2017.10.026

    Article  PubMed  Google Scholar 

  83. Sase S, Yamamoto H, Kawashima E, Tan X, Sawa Y (2018) Discrimination between patients with mild Alzheimer's disease and healthy subjects based on cerebral blood flow images of the lateral views in xenon-enhanced computed tomography. Psychogeriatrics 18(1):3–12. https://doi.org/10.1111/psyg.12281

    Article  PubMed  Google Scholar 

  84. Teipel SJ, Kurth J, Krause B, Grothe MJ, Alzheimer's Disease Neuroimaging I (2015) The relative importance of imaging markers for the prediction of Alzheimer's disease dementia in mild cognitive impairment - beyond classical regression. NeuroImage Clin 8:583–593. https://doi.org/10.1016/j.nicl.2015.05.006

    Article  PubMed  PubMed Central  Google Scholar 

  85. Wang Y, Xu C, Lee S, Stern Y, Kim JH, Yoo S, Kim HS, Cha J (2018) Accurate Prediction of Alzheimer's Disease Using Multi-Modal MRI and High-Throughput Brain Phenotyping bioRxiv:255141. https://doi.org/10.1101/255141

  86. Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010) Mitochondrial dysfunction is a trigger of Alzheimer's disease pathophysiology. Biochim Biophys Acta 1802(1):2–10. https://doi.org/10.1016/j.bbadis.2009.10.006

    Article  CAS  PubMed  Google Scholar 

  87. Zhang L, Trushin S, Christensen TA, Tripathi U, Hong C, Geroux RE, Howell KG, Poduslo JF et al (2018) Differential effect of amyloid beta peptides on mitochondrial axonal trafficking depends on their state of aggregation and binding to the plasma membrane. Neurobiol Dis 114:1–16. https://doi.org/10.1016/j.nbd.2018.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chen X, Yan SD (2006) Mitochondrial Abeta: A potential cause of metabolic dysfunction in Alzheimer's disease. IUBMB Life 58(12):686–694. https://doi.org/10.1080/15216540601047767

    Article  CAS  PubMed  Google Scholar 

  89. Bubber P, Haroutunian V, Fisch G, Blass JP, Gibson GE (2005) Mitochondrial abnormalities in Alzheimer brain: Mechanistic implications. Ann Neurol 57(5):695–703. https://doi.org/10.1002/ana.20474

    Article  CAS  PubMed  Google Scholar 

  90. Sergeant N, Wattez A, Galvan-valencia M, Ghestem A, David JP, Lemoine J, Sautiere PE, Dachary J et al (2003) Association of ATP synthase alpha-chain with neurofibrillary degeneration in Alzheimer's disease. Neuroscience 117(2):293–303

    Article  CAS  PubMed  Google Scholar 

  91. Kumar U, Dunlop DM, Richardson JS (1994) Mitochondria from Alzheimer's fibroblasts show decreased uptake of calcium and increased sensitivity to free radicals. Life Sci 54(24):1855–1860

    Article  CAS  PubMed  Google Scholar 

  92. Gasparini L, Racchi M, Binetti G, Trabucchi M, Solerte SB, Alkon D, Etcheberrigaray R, Gibson G et al (1998) Peripheral markers in testing pathophysiological hypotheses and diagnosing Alzheimer's disease. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 12(1):17–34

    Article  CAS  Google Scholar 

  93. Reddy PH, McWeeney S, Park BS, Manczak M, Gutala RV, Partovi D, Jung Y, Yau V et al (2004) Gene expression profiles of transcripts in amyloid precursor protein transgenic mice: Up-regulation of mitochondrial metabolism and apoptotic genes is an early cellular change in Alzheimer's disease. Hum Mol Genet 13(12):1225–1240. https://doi.org/10.1093/hmg/ddh140

    Article  CAS  PubMed  Google Scholar 

  94. Reddy PH, Tripathi R, Troung Q, Tirumala K, Reddy TP, Anekonda V, Shirendeb UP, Calkins MJ et al (2012) Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: Implications to mitochondria-targeted antioxidant therapeutics. Biochim Biophys Acta 1822(5):639–649. https://doi.org/10.1016/j.bbadis.2011.10.011

    Article  CAS  PubMed  Google Scholar 

  95. Kim HS, Lee JH, Lee JP, Kim EM, Chang KA, Park CH, Jeong SJ, Wittendorp MC et al (2002) Amyloid beta peptide induces cytochrome C release from isolated mitochondria. Neuroreport 13(15):1989–1993

    Article  CAS  PubMed  Google Scholar 

  96. Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB journal : official publication of the Federation of American Societies for Experimental Biology 15(8):1439–1441

    Article  CAS  Google Scholar 

  97. Cabezas R, Baez-Jurado E, Hidalgo-Lanussa O, Echeverria V, Ashrad GM, Sahebkar A, Barreto GE (2018) Growth factors and Neuroglobin in astrocyte protection against neurodegeneration and oxidative stress. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1203-9

    Article  PubMed  Google Scholar 

  98. Jurado-Coronel JC, Avila-Rodriguez M, Echeverria V, Hidalgo OA, Gonzalez J, Aliev G, Barreto GE (2016) Implication of green tea as a possible therapeutic approach for Parkinson disease. CNS & Neurol Disord Drug Targets 15(3):292–300

    Article  CAS  Google Scholar 

  99. Barreto GE, Iarkov A, Moran VE (2014) Beneficial effects of nicotine, cotinine and its metabolites as potential agents for Parkinson's disease. Front Aging Neurosci 6:340. https://doi.org/10.3389/fnagi.2014.00340

    Article  PubMed  Google Scholar 

  100. Cabezas R, Avila M, Gonzalez J, El-Bacha RS, Baez E, Garcia-Segura LM, Jurado Coronel JC, Capani F et al (2014) Astrocytic modulation of blood brain barrier: Perspectives on Parkinson's disease. Front Cell Neurosci 8:211. https://doi.org/10.3389/fncel.2014.00211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Sutachan JJ, Casas Z, Albarracin SL, Stab BR 2nd, Samudio I, Gonzalez J, Morales L, Barreto GE (2012) Cellular and molecular mechanisms of antioxidants in Parkinson's disease. Nutr Neurosci 15(3):120–126. https://doi.org/10.1179/1476830511Y.0000000033

    Article  CAS  PubMed  Google Scholar 

  102. Albarracin SL, Stab B, Casas Z, Sutachan JJ, Samudio I, Gonzalez J, Gonzalo L, Capani F et al (2012) Effects of natural antioxidants in neurodegenerative disease. Nutr Neurosci 15(1):1–9. https://doi.org/10.1179/1476830511Y.0000000028

    Article  CAS  PubMed  Google Scholar 

  103. Jurado-Coronel JC, Loaiza AE, Diaz JE, Cabezas R, Ashraf GM, Sahebkar A, Echeverria V, Gonzalez J et al (2018) (E)-Nicotinaldehyde O-Cinnamyloxime, a nicotine analog, attenuates neuronal cells death against rotenone-induced neurotoxicity. Mol Neurobiol. https://doi.org/10.1007/s12035-018-1163-0

    Article  PubMed  Google Scholar 

  104. Jurado-Coronel JC, Cabezas R, Avila Rodriguez MF, Echeverria V, Garcia-Segura LM, Barreto GE (2018) Sex differences in Parkinson's disease: Features on clinical symptoms, treatment outcome, sexual hormones and genetics. Front Neuroendocrinol 50:18–30. https://doi.org/10.1016/j.yfrne.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  105. Jurado-Coronel JC, Avila-Rodriguez M, Capani F, Gonzalez J, Moran VE, Barreto GE (2016) Targeting the nicotinic acetylcholine receptors (nAChRs) in astrocytes as a potential therapeutic target in Parkinson's disease. Curr Pharm Des 22(10):1305–1311

    Article  CAS  PubMed  Google Scholar 

  106. Heikkila VM, Turkka J, Korpelainen J, Kallanranta T, Summala H (1998) Decreased driving ability in people with Parkinson's disease. J Neurol Neurosurg Psychiatry 64(3):325–330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bonifati V, Rohe CF, Breedveld GJ, Fabrizio E, De Mari M, Tassorelli C, Tavella A, Marconi R et al (2005) Early-onset parkinsonism associated with PINK1 mutations: Frequency, genotypes, and phenotypes. Neurology 65(1):87–95. https://doi.org/10.1212/01.wnl.0000167546.39375.82

    Article  CAS  PubMed  Google Scholar 

  108. Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K, Gispert S, Ali Z, Del Turco D et al (2004) Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304(5674):1158–1160. https://doi.org/10.1126/science.1096284

    Article  CAS  PubMed  Google Scholar 

  109. Clark IE, Dodson MW, Jiang C, Cao JH, Huh JR, Seol JH, Yoo SJ, Hay BA et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441(7097):1162–1166. https://doi.org/10.1038/nature04779

    Article  CAS  PubMed  Google Scholar 

  110. Park J, Lee SB, Lee S, Kim Y, Song S, Kim S, Bae E, Kim J et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441(7097):1157–1161. https://doi.org/10.1038/nature04788

    Article  CAS  PubMed  Google Scholar 

  111. Yang Y, Gehrke S, Imai Y, Huang Z, Ouyang Y, Wang JW, Yang L, Beal MF et al (2006) Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pink1 is rescued by Parkin. Proc Natl Acad Sci U S A 103(28):10793–10798. https://doi.org/10.1073/pnas.0602493103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Legros F, Lombes A, Frachon P, Rojo M (2002) Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 13(12):4343–4354. https://doi.org/10.1091/mbc.e02-06-0330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Athanasios Alexiou, George E. Barreto or Ghulam Md Ashraf.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexiou, A., Soursou, G., Chatzichronis, S. et al. Role of GTPases in the Regulation of Mitochondrial Dynamics in Alzheimer’s Disease and CNS-Related Disorders. Mol Neurobiol 56, 4530–4538 (2019). https://doi.org/10.1007/s12035-018-1397-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1397-x

Keywords

Navigation