Skip to main content
Log in

Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is one of the several neurodegenerative diseases where accumulation of aggregated proteins like α-synuclein occurs. Dysfunction in autophagy leading to this protein build-up and subsequent dopaminergic neurodegeneration may be one of the causes of PD. The mechanisms that impair autophagy remain poorly understood. 1-Methyl-4-phenylpiridium ion (MPP+) is a neurotoxin that induces experimental PD in vitro. Our studies have shown that glia maturation factor (GMF), a brain-localized inflammatory protein, induces dopaminergic neurodegeneration in PD and that suppression of GMF prevents MPP+-induced loss of dopaminergic neurons. In the present study, we demonstrate a molecular action of GMF on the autophagic machinery resulting in dopaminergic neuronal loss and propose GMF-mediated autophagic dysfunction as one of the contributing factors in PD progression. Using dopaminergic N27 neurons, primary neurons from wild type (WT), and GMF-deficient (GMF-KO) mice, we show that GMF and MPP+ enhanced expression of MAPKs increased the mammalian target of rapamycin (mTOR) activation and endoplasmic reticulum stress markers such as phospho-eukaryotic translation initiation factor 2 alpha kinase 3 (p-PERK) and inositol-requiring enzyme 1α (IRE1α). Further, GMF and MPP+ reduced Beclin 1, focal adhesion kinase (FAK) family-interacting protein of 200 kD (FIP200), and autophagy-related proteins (ATGs) 3, 5, 7, 16L, and 12. The combined results demonstrate that GMF affects autophagy through autophagosome formation with significantly reduced lysosomal-associated membrane protein 1/2, and the number of autophagic acidic vesicles. Using primary neurons, we show that MPP+ treatment leads to differential expression and localization of p62/sequestosome and in GMF-KO neurons, there was a marked increase in p62 staining implying autophagy deficiency with very little co-localization of α-synuclein and p62 as compared with WT neurons. Collectively, this study provides a bidirectional role for GMF in executing dopaminergic neuronal death mediated by autophagy that is relevant to PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Khan MM, Kempuraj D, Zaheer S, Zaheer A (2014) Glia maturation factor deficiency suppresses 1-methyl-4-phenylpyridinium-induced oxidative stress in astrocytes. J Mol Neurosci 53(4):590–599. https://doi.org/10.1007/s12031-013-0225-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Berry C, La Vecchia C, Nicotera P (2010) Paraquat and Parkinson’s disease. Cell Death Differ 17(7):1115–1125. https://doi.org/10.1038/cdd.2009.217

    Article  CAS  PubMed  Google Scholar 

  3. Pringsheim T, Jette N, Frolkis A, Steeves TD (2014) The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord 29(13):1583–1590. https://doi.org/10.1002/mds.25945

    Article  PubMed  Google Scholar 

  4. Tysnes OB, Storstein A (2017) Epidemiology of Parkinson’s disease. J Neural Transm (Vienna) 124(8):901–905. https://doi.org/10.1007/s00702-017-1686-y

    Article  Google Scholar 

  5. de Rijk MC, Tzourio C, Breteler MM, Dartigues JF, Amaducci L, Lopez-Pousa S, Manubens-Bertran JM, Alperovitch A et al (1997) Prevalence of parkinsonism and Parkinson’s disease in Europe: the EUROPARKINSON Collaborative Study. European Community Concerted Action on the Epidemiology of Parkinson’s disease. J Neurol Neurosurg Psychiatry 62(1):10–15

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chua CE, Tang BL (2006) Alpha-synuclein and Parkinson’s disease: the first roadblock. J Cell Mol Med 10(4):837–846

    Article  CAS  PubMed  Google Scholar 

  7. Pan T, Kondo S, Le W, Jankovic J (2008) The role of autophagy-lysosome pathway in neurodegeneration associated with Parkinson’s disease. Brain 131(Pt 8):1969–1978. https://doi.org/10.1093/brain/awm318

    Article  PubMed  Google Scholar 

  8. Tan JM, Wong ES, Lim KL (2009) Protein misfolding and aggregation in Parkinson’s disease. Antioxid Redox Signal 11(9):2119–2134. https://doi.org/10.1089/ARS.2009.2490

    Article  CAS  PubMed  Google Scholar 

  9. Janda E, Isidoro C, Carresi C, Mollace V (2012) Defective autophagy in Parkinson’s disease: role of oxidative stress. Mol Neurobiol 46(3):639–661. https://doi.org/10.1007/s12035-012-8318-1

    Article  CAS  PubMed  Google Scholar 

  10. Laguna A, Schintu N, Nobre A, Alvarsson A, Volakakis N, Jacobsen JK, Gomez-Galan M, Sopova E et al (2015) Dopaminergic control of autophagic-lysosomal function implicates Lmx1b in Parkinson’s disease. Nat Neurosci 18(6):826–835. https://doi.org/10.1038/nn.4004

    Article  CAS  PubMed  Google Scholar 

  11. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord 26(6):1049–1055. https://doi.org/10.1002/mds.23732

    Article  PubMed  Google Scholar 

  12. Lynch-Day MA, Mao K, Wang K, Zhao M, Klionsky DJ (2012) The role of autophagy in Parkinson’s disease. Cold Spring Harb Perspect Med 2(4):a009357. https://doi.org/10.1101/cshperspect.a009357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mizushima N, Klionsky DJ (2007) Protein turnover via autophagy: implications for metabolism. Annu Rev Nutr 27:19–40. https://doi.org/10.1146/annurev.nutr.27.061406.093749

    Article  CAS  PubMed  Google Scholar 

  14. Mizushima N (2007) Autophagy: process and function. Genes Dev 21(22):2861–2873. https://doi.org/10.1101/gad.1599207

    Article  CAS  PubMed  Google Scholar 

  15. Kinghorn KJ, Asghari AM, Castillo-Quan JI (2017) The emerging role of autophagic-lysosomal dysfunction in Gaucher disease and Parkinson’s disease. Neural Regen Res 12(3):380–384. https://doi.org/10.4103/1673-5374.202934

    Article  PubMed  PubMed Central  Google Scholar 

  16. Moors TE, Hoozemans JJ, Ingrassia A, Beccari T, Parnetti L, Chartier-Harlin MC, van de Berg WD (2017) Therapeutic potential of autophagy-enhancing agents in Parkinson’s disease. Mol Neurodegener 12(1):11. https://doi.org/10.1186/s13024-017-0154-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R (2001) An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 105(7):891–902

    Article  CAS  PubMed  Google Scholar 

  18. Hu ZY, Chen B, Zhang JP, Ma YY (2017) Up-regulation of autophagy-related gene 5 (ATG5) protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J Biol Chem 292(44):18062–18074. https://doi.org/10.1074/jbc.M116.764795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, Taniguchi M et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26(24):9220–9231. https://doi.org/10.1128/MCB.01453-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Takacs-Vellai K, Vellai T, Puoti A, Passannante M, Wicky C, Streit A, Kovacs AL, Muller F (2005) Inactivation of the autophagy gene bec-1 triggers apoptotic cell death in C. elegans. Curr Biol 15(16):1513–1517. https://doi.org/10.1016/j.cub.2005.07.035

    Article  CAS  PubMed  Google Scholar 

  21. Kon M, Cuervo AM (2010) Chaperone-mediated autophagy in health and disease. FEBS Lett 584(7):1399–1404. https://doi.org/10.1016/j.febslet.2009.12.025

    Article  CAS  PubMed  Google Scholar 

  22. Lim R, Zaheer A (1996) In vitro enhancement of p38 mitogen-activated protein kinase activity by phosphorylated glia maturation factor. J Biol Chem 271(38):22953–22956

    Article  CAS  PubMed  Google Scholar 

  23. Zaheer A, Lim R (1996) In vitro inhibition of MAP kinase (ERK1/ERK2) activity by phosphorylated glia maturation factor (GMF). Biochemistry 35(20):6283–6288. https://doi.org/10.1021/bi960034c

    Article  CAS  PubMed  Google Scholar 

  24. Zaheer A, Lim R (1997) Protein kinase A (PKA)- and protein kinase C-phosphorylated glia maturation factor promotes the catalytic activity of PKA. J Biol Chem 272(8):5183–5186

    Article  CAS  PubMed  Google Scholar 

  25. Zaheer S, Thangavel R, Sahu SK, Zaheer A (2011) Augmented expression of glia maturation factor in Alzheimer’s disease. Neuroscience 194:227–233. https://doi.org/10.1016/j.neuroscience.2011.07.069

    Article  CAS  PubMed  Google Scholar 

  26. Lim R, Zaheer A, Lane WS (1990) Complete amino acid sequence of bovine glia maturation factor beta. Proc Natl Acad Sci U S A 87(14):5233–5237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lim R, Miller JF, Zaheer A (1989) Purification and characterization of glia maturation factor beta: a growth regulator for neurons and glia. Proc Natl Acad Sci U S A 86(10):3901–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zaheer A, Fink BD, Lim R (1993) Expression of glia maturation factor beta mRNA and protein in rat organs and cells. J Neurochem 60(3):914–920

    Article  CAS  PubMed  Google Scholar 

  29. Zaheer A, Haas JT, Reyes C, Mathur SN, Yang B, Lim R (2006) GMF-knockout mice are unable to induce brain-derived neurotrophic factor after exercise. Neurochem Res 31(4):579–584. https://doi.org/10.1007/s11064-006-9049-3

    Article  CAS  PubMed  Google Scholar 

  30. Thangavel R, Stolmeier D, Yang X, Anantharam P, Zaheer A (2012) Expression of glia maturation factor in neuropathological lesions of Alzheimer’s disease. Neuropathol Appl Neurobiol 38(6):572–581. https://doi.org/10.1111/j.1365-2990.2011.01232.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lim R, Zaheer A, Khosravi H, Freeman JH Jr, Halverson HE, Wemmie JA, Yang B (2004) Impaired motor performance and learning in glia maturation factor-knockout mice. Brain Res 1024(1–2):225–232. https://doi.org/10.1016/j.brainres.2004.08.003

    Article  CAS  PubMed  Google Scholar 

  32. Zaheer A, Yang B, Cao X, Lim R (2004) Decreased copper-zinc superoxide dismutase activity and increased resistance to oxidative stress in glia maturation factor-null astrocytes. Neurochem Res 29(8):1473–1480

    Article  CAS  PubMed  Google Scholar 

  33. Kaimori JY, Takenaka M, Nakajima H, Hamano T, Horio M, Sugaya T, Ito T, Hori M et al (2003) Induction of glia maturation factor-beta in proximal tubular cells leads to vulnerability to oxidative injury through the p38 pathway and changes in antioxidant enzyme activities. J Biol Chem 278(35):33519–33527. https://doi.org/10.1074/jbc.M301552200

    Article  CAS  PubMed  Google Scholar 

  34. Baldwin RM, Garratt-Lalonde M, Parolin DA, Krzyzanowski PM, Andrade MA, Lorimer IA (2006) Protection of glioblastoma cells from cisplatin cytotoxicity via protein kinase Ciota-mediated attenuation of p38 MAP kinase signaling. Oncogene 25(20):2909–2919. https://doi.org/10.1038/sj.onc.1209312

    Article  CAS  PubMed  Google Scholar 

  35. Zaheer S, Thangavel R, Wu Y, Khan MM, Kempuraj D, Zaheer A (2013) Enhanced expression of glia maturation factor correlates with glial activation in the brain of triple transgenic Alzheimer’s disease mice. Neurochem Res 38(1):218–225. https://doi.org/10.1007/s11064-012-0913-z

    Article  CAS  PubMed  Google Scholar 

  36. Kempuraj D, Khan MM, Thangavel R, Xiong Z, Yang E, Zaheer A (2013) Glia maturation factor induces interleukin-33 release from astrocytes: implications for neurodegenerative diseases. J NeuroImmune Pharmacol 8(3):643–650. https://doi.org/10.1007/s11481-013-9439-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zaheer A, Yorek MA, Lim R (2001) Effects of glia maturation factor overexpression in primary astrocytes on MAP kinase activation, transcription factor activation, and neurotrophin secretion. Neurochem Res 26(12):1293–1299

    Article  CAS  PubMed  Google Scholar 

  38. Khan MM, Zaheer S, Thangavel R, Patel M, Kempuraj D, Zaheer A (2015) Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism. Neurochem Res 40(5):980–990. https://doi.org/10.1007/s11064-015-1553-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zupanska A, Dziembowska M, Ellert-Miklaszewska A, Gaweda-Walerych K, Kaminska B (2005) Cyclosporine a induces growth arrest or programmed cell death of human glioma cells. Neurochem Int 47(6):430–441. https://doi.org/10.1016/j.neuint.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  40. Afeseh Ngwa H, Kanthasamy A, Anantharam V, Song C, Witte T, Houk R, Kanthasamy AG (2009) Vanadium induces dopaminergic neurotoxicity via protein kinase Cdelta dependent oxidative signaling mechanisms: relevance to etiopathogenesis of Parkinson’s disease. Toxicol Appl Pharmacol 240(2):273–285. https://doi.org/10.1016/j.taap.2009.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 256(3):227–240. https://doi.org/10.1016/j.taap.2011.07.018

    Article  CAS  PubMed  Google Scholar 

  42. Zaheer A, Mathur SN, Lim R (2002) Overexpression of glia maturation factor in astrocytes leads to immune activation of microglia through secretion of granulocyte-macrophage-colony stimulating factor. Biochem Biophys Res Commun 294(2):238–244. https://doi.org/10.1016/S0006-291X(02)00467-9

    Article  CAS  PubMed  Google Scholar 

  43. Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS et al (2011) Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade. J Neuroinflammation 8:129. https://doi.org/10.1186/1742-2094-8-129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ahmed ME, Tucker D, Dong Y, Lu Y, Zhao N, Wang R, Zhang Q (2016) Methylene blue promotes cortical neurogenesis and ameliorates behavioral deficit after photothrombotic stroke in rats. Neuroscience 336:39–48. https://doi.org/10.1016/j.neuroscience.2016.08.036

    Article  CAS  PubMed  Google Scholar 

  45. Gan SD, Patel KR (2013) Enzyme immunoassay and enzyme-linked immunosorbent assay. J Invest Dermatol 133(9):e12–e13. https://doi.org/10.1038/jid.2013.287

    Article  CAS  PubMed  Google Scholar 

  46. Dehay B, Bove J, Rodriguez-Muela N, Perier C, Recasens A, Boya P, Vila M (2010) Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci 30(37):12535–12544. https://doi.org/10.1523/JNEUROSCI.1920-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, Yu WH, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 28(27):6926–6937. https://doi.org/10.1523/JNEUROSCI.0800-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Thome MP, Filippi-Chiela EC, Villodre ES, Migliavaca CB, Onzi GR, Felipe KB, Lenz G (2016) Ratiometric analysis of acridine orange staining in the study of acidic organelles and autophagy. J Cell Sci 129(24):4622–4632. https://doi.org/10.1242/jcs.195057

    Article  CAS  PubMed  Google Scholar 

  49. He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y, Mao Z (2018) p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol 217(1):315–328. https://doi.org/10.1083/jcb.201701049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mukherjee S, Dash S, Lohitesh K, Chowdhury R (2017) The dynamic role of autophagy and MAPK signaling in determining cell fate under cisplatin stress in osteosarcoma cells. PLoS One 12(6):e0179203. https://doi.org/10.1371/journal.pone.0179203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Crisan TO, Plantinga TS, van de Veerdonk FL, Farcas MF, Stoffels M, Kullberg BJ, van der Meer JW, Joosten LA et al (2011) Inflammasome-independent modulation of cytokine response by autophagy in human cells. PLoS One 6(4):e18666. https://doi.org/10.1371/journal.pone.0018666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schuepbach WM, Rau J, Knudsen K, Volkmann J, Krack P, Timmermann L, Halbig TD, Hesekamp H et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368(7):610–622. https://doi.org/10.1056/NEJMoa1205158

    Article  CAS  PubMed  Google Scholar 

  53. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339(16):1130–1143. https://doi.org/10.1056/NEJM199810153391607

    Article  CAS  PubMed  Google Scholar 

  54. Pickrell Alicia M, Youle Richard J (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pickrell AM, Youle RJ (2015) The roles of PINK1, parkin, and mitochondrial fidelity in Parkinson’s disease. Neuron 85(2):257–273. https://doi.org/10.1016/j.neuron.2014.12.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lim R, Hicklin DJ, Ryken TC, Miller JF, Bosch EP (1988) Endogenous immunoreactive glia maturation factor-like molecule in cultured rat Schwann cells. Brain Res 468(2):277–284

    Article  CAS  PubMed  Google Scholar 

  57. Zaheer A, Zaheer S, Sahu SK, Knight S, Khosravi H, Mathur SN, Lim R (2007) A novel role of glia maturation factor: induction of granulocyte-macrophage colony-stimulating factor and pro-inflammatory cytokines. J Neurochem 101(2):364–376. https://doi.org/10.1111/j.1471-4159.2006.04385.x

    Article  CAS  PubMed  Google Scholar 

  58. Asai K, Fujita K, Yamamoto M, Hotta T, Morikawa M, Kokubo M, Moriyama A, Kato T (1998) Isolation of novel human cDNA (hGMF-gamma) homologous to glia maturation factor-beta gene. Biochim Biophys Acta 1396(3):242–244

    Article  CAS  PubMed  Google Scholar 

  59. Inagaki M, Aoyama M, Sobue K, Yamamoto N, Morishima T, Moriyama A, Katsuya H, Asai K (2004) Sensitive immunoassays for human and rat GMFB and GMFG, tissue distribution and age-related changes. Biochim Biophys Acta 1670(3):208–216. https://doi.org/10.1016/j.bbagen.2003.12.006

    Article  CAS  PubMed  Google Scholar 

  60. Lim R, Zaheer A, Kraakevik JA, Darby CJ, Oberley LW (1998) Overexpression of glia maturation factor in C6 cells promotes differentiation and activates superoxide dismutase. Neurochem Res 23(11):1445–1451

    Article  CAS  PubMed  Google Scholar 

  61. Lim R, Zaheer A, Yorek MA, Darby CJ, Oberley LW (2000) Activation of nuclear factor-kappaB in C6 rat glioma cells after transfection with glia maturation factor. J Neurochem 74(2):596–602

    Article  CAS  PubMed  Google Scholar 

  62. Zaheer A, Lim R (1998) Overexpression of glia maturation factor (GMF) in PC12 pheochromocytoma cells activates p38 MAP kinase, MAPKAP kinase-2, and tyrosine hydroxylase. Biochem Biophys Res Commun 250(2):278–282. https://doi.org/10.1006/bbrc.1998.9301

    Article  CAS  PubMed  Google Scholar 

  63. Sanchez-Perez AM, Claramonte-Clausell B, Sanchez-Andres JV, Herrero MT (2012) Parkinson’s disease and autophagy. Parkinsons Dis 2012:429524–429526. https://doi.org/10.1155/2012/429524

    Article  PubMed  PubMed Central  Google Scholar 

  64. Chandramani Shivalingappa P, Jin H, Anantharam V, Kanthasamy A, Kanthasamy A (2012) N-Acetyl cysteine protects against methamphetamine-induced dopaminergic neurodegeneration via modulation of redox status and autophagy in dopaminergic cells. Parkinsons Dis 2012:424285–424211. https://doi.org/10.1155/2012/424285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang B, Abraham N, Gao G, Yang Q (2016) Dysregulation of autophagy and mitochondrial function in Parkinson’s disease. Translational Neurodegeneration 5(1):19. https://doi.org/10.1186/s40035-016-0065-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhang Z, Miah M, Culbreth M, Aschner M (2016) Autophagy in neurodegenerative diseases and metal neurotoxicity. Neurochem Res 41(1–2):409–422. https://doi.org/10.1007/s11064-016-1844-x

    Article  CAS  PubMed  Google Scholar 

  67. Alers S, Loffler AS, Wesselborg S, Stork B (2012) Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol Cell Biol 32(1):2–11. https://doi.org/10.1128/MCB.06159-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Feng D, Liu L, Zhu Y, Chen Q (2013) Molecular signaling toward mitophagy and its physiological significance. Exp Cell Res 319(12):1697–1705. https://doi.org/10.1016/j.yexcr.2013.03.034

    Article  CAS  PubMed  Google Scholar 

  69. Mendoza MC, Er EE, Blenis J (2011) The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 36(6):320–328. https://doi.org/10.1016/j.tibs.2011.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Carriere A, Romeo Y, Acosta-Jaquez HA, Moreau J, Bonneil E, Thibault P, Fingar DC, Roux PP (2011) ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex 1 (mTORC1). J Biol Chem 286(1):567–577. https://doi.org/10.1074/jbc.M110.159046

    Article  CAS  PubMed  Google Scholar 

  71. Memmott RM, Dennis PA (2009) Akt-dependent and independent mechanisms of mTOR regulation in cancer. Cell Signal 21(5):656–664. https://doi.org/10.1016/j.cellsig.2009.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Deretic V (2012) Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. Curr Opin Immunol 24(1):21–31. https://doi.org/10.1016/j.coi.2011.10.006

    Article  CAS  PubMed  Google Scholar 

  73. Huang Q, Liu X, Cao C, Lei J, Han D, Chen G, Yu J, Chen L et al (2016) Apelin-13 induces autophagy in hepatoma HepG2 cells through ERK1/2 signaling pathway-dependent upregulation of Beclin1. Oncol Lett 11(2):1051–1056. https://doi.org/10.3892/ol.2015.3991

    Article  CAS  PubMed  Google Scholar 

  74. Zaheer A, Zaheer S, Sahu SK, Yang B, Lim R (2007) Reduced severity of experimental autoimmune encephalomyelitis in GMF-deficient mice. Neurochem Res 32(1):39–47. https://doi.org/10.1007/s11064-006-9220-x

    Article  CAS  PubMed  Google Scholar 

  75. Kang R, Zeh HJ, Lotze MT, Tang D (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18(4):571–580. https://doi.org/10.1038/cdd.2010.191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Souquere S, Pierron G, Codogno P (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281(41):30373–30382. https://doi.org/10.1074/jbc.M602097200

    Article  CAS  PubMed  Google Scholar 

  77. Copetti T, Bertoli C, Dalla E, Demarchi F, Schneider C (2009) p65/RelA modulates BECN1 transcription and autophagy. Mol Cell Biol 29(10):2594–2608. https://doi.org/10.1128/MCB.01396-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dan HC, Baldwin AS (2008) Differential involvement of IkappaB kinases alpha and beta in cytokine- and insulin-induced mammalian target of rapamycin activation determined by Akt. J Immunol 180(11):7582–7589

    Article  CAS  PubMed  Google Scholar 

  79. Weichhart T, Haidinger M, Katholnig K, Kopecky C, Poglitsch M, Lassnig C, Rosner M, Zlabinger GJ et al (2011) Inhibition of mTOR blocks the anti-inflammatory effects of glucocorticoids in myeloid immune cells. Blood 117(16):4273–4283. https://doi.org/10.1182/blood-2010-09-310888

    Article  CAS  PubMed  Google Scholar 

  80. Weichhart T, Hengstschlager M, Linke M (2015) Regulation of innate immune cell function by mTOR. Nat Rev Immunol 15(10):599–614. https://doi.org/10.1038/nri3901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Ding WX, Yin XM (2012) Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem 393(7):547–564. https://doi.org/10.1515/hsz-2012-0119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741. https://doi.org/10.1016/j.cell.2011.10.026

    Article  CAS  PubMed  Google Scholar 

  83. Trocoli A, Djavaheri-Mergny M (2011) The complex interplay between autophagy and NF-κB signaling pathways in cancer cells. Am J Cancer Res 1(5):629–649

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu ZY, Chen B, Zhang JP, Ma YY (2017) Upregulation of autophagy-related gene 5 protects dopaminergic neurons in a zebrafish model of Parkinson’s disease. J Biol Chem 292:18062–18074. https://doi.org/10.1074/jbc.M116.764795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441(7095):885–889. https://doi.org/10.1038/nature04724

    Article  CAS  PubMed  Google Scholar 

  86. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441(7095):880–884. https://doi.org/10.1038/nature04723

    Article  CAS  PubMed  Google Scholar 

  87. Hu Z, Zhang J, Zhang Q (2011) Expression pattern and functions of autophagy-related gene atg5 in zebrafish organogenesis. Autophagy 7(12):1514–1527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Chu Y, Dodiya H, Aebischer P, Olanow CW, Kordower JH (2009) Alterations in lysosomal and proteasomal markers in Parkinson’s disease: relationship to alpha-synuclein inclusions. Neurobiol Dis 35(3):385–398. https://doi.org/10.1016/j.nbd.2009.05.023

    Article  CAS  PubMed  Google Scholar 

  89. Remondelli P, Renna M (2017) The endoplasmic reticulum unfolded protein response in neurodegenerative disorders and its potential therapeutic significance. Front Mol Neurosci 10:187. https://doi.org/10.3389/fnmol.2017.00187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kim DS, Kim JH, Lee GH, Kim HT, Lim JM, Chae SW, Chae HJ, Kim HR (2010) p38 mitogen-activated protein kinase is involved in endoplasmic reticulum stress-induced cell death and autophagy in human gingival fibroblasts. Biol Pharm Bull 33(4):545–549

    Article  CAS  PubMed  Google Scholar 

  91. Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403(6765):98–103. https://doi.org/10.1038/47513

    Article  CAS  PubMed  Google Scholar 

  92. Mishra R, Karande AA (2014) Endoplasmic reticulum stress-mediated activation of p38 MAPK, caspase-2 and caspase-8 leads to abrin-induced apoptosis. PLoS One 9(3):e92586. https://doi.org/10.1371/journal.pone.0092586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jiang P, Gan M, Ebrahim AS, Lin WL, Melrose HL, Yen SH (2010) ER stress response plays an important role in aggregation of alpha-synuclein. Mol Neurodegener 5:56. https://doi.org/10.1186/1750-1326-5-56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Veterans Affairs Merit Award I01BX002477 and National Institutes of Health Grants AG048205 and NS073670 to AZ. We would like to thank Dr. Alexander Jurkevich, Associate Director of Molecular Cytology core, University of Missouri, Columbia-MO for his help in preparation and validation of confocal images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asgar Zaheer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvakumar, G.P., Iyer, S.S., Kempuraj, D. et al. Molecular Association of Glia Maturation Factor with the Autophagic Machinery in Rat Dopaminergic Neurons: a Role for Endoplasmic Reticulum Stress and MAPK Activation. Mol Neurobiol 56, 3865–3881 (2019). https://doi.org/10.1007/s12035-018-1340-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1340-1

Keywords

Navigation