Skip to main content

Advertisement

Log in

Crosstalk Between Inflammation and Glutamate System in Depression: Signaling Pathway and Molecular Biomarkers for Ketamine’s Antidepressant Effect

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Depression is a worldwide illness with a significant impact on both family and society. Conventional antidepressants are ineffective for more than 30% of patients. In such patients, who have what is called treatment-resistant depression (TRD), inflammatory biomarkers are expressed excessively in both the central nervous system (CNS) and the peripheral blood. Ketamine, a glutamate receptor antagonist, exerts a rapid and sustained therapeutic effect in patients with TRD. Thus, the investigation of the relations between inflammation and glutamate underlying depression has drawn great attention. Inflammation influences glutamate release, transmission, and metabolism, resulting in accumulated extracellular glutamate in the CNS. Downstream of the glutamate receptors, the mammalian target of rapamycin (mTOR) signaling pathway plays a key role in mediating ketamine’s antidepressant effect by improving neurogenesis and plasticity. Based on the mechanism and clinical evidence of the inflammatory contribution to the pathogenesis of depression, extensive research has been devoted to inflammatory biomarkers of the clinical response of depression to ketamine. The inconsistent findings from the biomarker investigations are at least partially attributable to the heterogeneity of depression, limited sample size, and complex gene–environment interactions. Deep exploration of the clinical observations and the underlying mechanism of ketamine’s antidepressant response can provide new insights into the selection of specific groups of depressed patients for ketamine treatment and to aid in monitoring the therapeutic effect during antidepressant medication. Further, targeting persistent inflammation in patients with TRD and the key molecules mediating ketamine’s antidepressant effect may encourage the development of novel therapeutic strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. World Health Organization (2008) The global burden of disease: 2004 update. World Health Organization, Geneva

    Google Scholar 

  2. Trivedi MH, Rush AJ, Wisniewski SR, Nierenberg AA, Warden D, Ritz L, Norquist G, Howland RH et al (2006) Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. Am J Psychiatry 163(1):28–40. https://doi.org/10.1176/appi.ajp.163.1.28

    Article  PubMed  Google Scholar 

  3. Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63(4):349–352. https://doi.org/10.1016/j.biopsych.2007.05.028

    Article  CAS  PubMed  Google Scholar 

  4. Ibrahim L, Diazgranados N, Luckenbaugh DA, Machado-Vieira R, Baumann J, Mallinger AG, Zarate CA Jr (2011) Rapid decrease in depressive symptoms with an N-methyl-d-aspartate antagonist in ECT-resistant major depression. Prog Neuro-Psychopharmacol Biol Psychiatry 35(4):1155–1159. https://doi.org/10.1016/j.pnpbp.2011.03.019

    Article  CAS  Google Scholar 

  5. Diazgranados N, Ibrahim L, Brutsche NE, Newberg A, Kronstein P, Khalife S, Kammerer WA, Quezado Z et al (2010) A randomized add-on trial of an N-methyl-D-aspartate antagonist in treatment-resistant bipolar depression. Arch Gen Psychiatry 67(8):793–802. https://doi.org/10.1001/archgenpsychiatry.2010.90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murrough JW, Perez AM, Pillemer S, Stern J, Parides MK, aan het Rot M, Collins KA, Mathew SJ et al (2013) Rapid and longer-term antidepressant effects of repeated ketamine infusions in treatment-resistant major depression. Biol Psychiatry 74(4):250–256. https://doi.org/10.1016/j.biopsych.2012.06.022

    Article  CAS  PubMed  Google Scholar 

  7. Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65(9):732–741. https://doi.org/10.1016/j.biopsych.2008.11.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16(1):22–34. https://doi.org/10.1038/nri.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22(4):370–379. https://doi.org/10.1016/S0893-133X(99)00134-7

    Article  CAS  PubMed  Google Scholar 

  10. Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 32(2):445–450. https://doi.org/10.1016/j.pnpbp.2007.09.015

    Article  CAS  Google Scholar 

  11. Raison CL, Rutherford RE, Woolwine BJ, Shuo C, Schettler P, Drake DF, Haroon E, Miller AH (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiatry 70(1):31–41. https://doi.org/10.1001/2013.jamapsychiatry.4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Haroon E, Fleischer CC, Felger JC, Chen X, Woolwine BJ, Patel T, Hu XP, Miller AH (2016) Conceptual convergence: increased inflammation is associated with increased basal ganglia glutamate in patients with major depression. Mol Psychiatry 21(10):1351–1357. https://doi.org/10.1038/mp.2015.206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62(1):63–77. https://doi.org/10.1016/j.neuropharm.2011.07.036

    Article  CAS  PubMed  Google Scholar 

  14. Yang JJ, Wang N, Yang C, Shi JY, Yu HY, Hashimoto K (2015) Serum interleukin-6 is a predictive biomarker for ketamine's antidepressant effect in treatment-resistant patients with major depression. Biol Psychiatry 77(3):e19–e20. https://doi.org/10.1016/j.biopsych.2014.06.021

    Article  CAS  PubMed  Google Scholar 

  15. Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, Patel M, Hodes GE et al (2017) Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 7(3):e1065. https://doi.org/10.1038/tp.2017.31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Park M, Newman LE, Gold PW, Luckenbaugh DA, Yuan P, Machado-Vieira R, Zarate CA Jr (2017) Change in cytokine levels is not associated with rapid antidepressant response to ketamine in treatment-resistant depression. J Psychiatr Res 84:113–118. https://doi.org/10.1016/j.jpsychires.2016.09.025

    Article  PubMed  Google Scholar 

  17. Maes M (1995) Evidence for an immune response in major depression: a review and hypothesis. Prog Neuro-Psychopharmacol Biol Psychiatry 19(1):11–38

    Article  CAS  Google Scholar 

  18. Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9(1):46–56. https://doi.org/10.1038/nrn2297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015) Neuroimmune mechanisms of depression. Nat Neurosci 18(10):1386–1393. https://doi.org/10.1038/nn.4113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27(1):24–31. https://doi.org/10.1016/j.it.2005.11.006

    Article  CAS  PubMed  Google Scholar 

  21. Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: A meta-analysis. Psychosom Med 71(2):171–186. https://doi.org/10.1097/PSY.0b013e3181907c1b

    Article  CAS  PubMed  Google Scholar 

  22. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67(5):446–457. https://doi.org/10.1016/j.biopsych.2009.09.033

    Article  CAS  PubMed  Google Scholar 

  23. Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215. https://doi.org/10.1016/j.bbi.2015.06.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Pandey GN, Rizavi HS, Ren X, Fareed J, Hoppensteadt DA, Roberts RC, Conley RR, Dwivedi Y (2012) Proinflammatory cytokines in the prefrontal cortex of teenage suicide victims. J Psychiatr Res 46(1):57–63. https://doi.org/10.1016/j.jpsychires.2011.08.006

    Article  PubMed  Google Scholar 

  25. Pandey GN, Rizavi HS, Ren X, Bhaumik R, Dwivedi Y (2014) Toll-like receptors in the depressed and suicide brain. J Psychiatr Res 53:62–68. https://doi.org/10.1016/j.jpsychires.2014.01.021

    Article  PubMed  PubMed Central  Google Scholar 

  26. Evans DL, Charney DS, Lewis L, Golden RN, Gorman JM, Krishnan KR, Nemeroff CB, Bremner JD et al (2005) Mood disorders in the medically ill: scientific review and recommendations. Biol Psychiatry 58(3):175–189. https://doi.org/10.1016/j.biopsych.2005.05.001

    Article  PubMed  Google Scholar 

  27. Graff LA, Walker JR, Bernstein CN (2009) Depression and anxiety in inflammatory bowel disease: A review of comorbidity and management. Inflamm Bowel Dis 15(7):1105–1118. https://doi.org/10.1002/ibd.20873

    Article  PubMed  Google Scholar 

  28. Sluzewska A, Sobieska M, Rybakowski JK (1997) Changes in acute-phase proteins during lithium potentiation of antidepressants in refractory depression. Neuropsychobiology 35(3):123–127

    Article  CAS  Google Scholar 

  29. Felger JC, Li L, Marvar PJ, Woolwine BJ, Harrison DG, Raison CL, Miller AH (2013) Tyrosine metabolism during interferon-alpha administration: association with fatigue and CSF dopamine concentrations. Brain Behav Immun 31:153–160. https://doi.org/10.1016/j.bbi.2012.10.010

    Article  CAS  PubMed  Google Scholar 

  30. Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 25(10):1532–1543. https://doi.org/10.1016/j.euroneuro.2015.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Capuron L, Gumnick JF, Musselman DL, Lawson DH, Reemsnyder A, Nemeroff CB, Miller AH (2002) Neurobehavioral effects of interferon-alpha in cancer patients: phenomenology and paroxetine responsiveness of symptom dimensions. Neuropsychopharmacology 26(5):643–652. https://doi.org/10.1016/S0893-133X(01)00407-9

    Article  CAS  PubMed  Google Scholar 

  32. Constant A, Castera L, Dantzer R, Couzigou P, de Ledinghen V, Demotes-Mainard J, Henry C (2005) Mood alterations during interferon-alfa therapy in patients with chronic hepatitis C: evidence for an overlap between manic/hypomanic and depressive symptoms. J Clin Psychiatry 66(8):1050–1057

    Article  CAS  Google Scholar 

  33. Eisenberger NI, Berkman ET, Inagaki TK, Rameson LT, Mashal NM, Irwin MR (2010) Inflammation-induced anhedonia: endotoxin reduces ventral striatum responses to reward. Biol Psychiatry 68(8):748–754. https://doi.org/10.1016/j.biopsych.2010.06.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Eisenberger NI, Inagaki TK, Mashal NM, Irwin MR (2010) Inflammation and social experience: an inflammatory challenge induces feelings of social disconnection in addition to depressed mood. Brain Behav Immun 24(4):558–563. https://doi.org/10.1016/j.bbi.2009.12.009

    Article  PubMed  PubMed Central  Google Scholar 

  35. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66(5):407–414. https://doi.org/10.1016/j.biopsych.2009.03.015

    Article  PubMed  PubMed Central  Google Scholar 

  36. Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiatry 71(12):1381–1391. https://doi.org/10.1001/jamapsychiatry.2014.1611

    Article  PubMed  Google Scholar 

  37. Tyring S, Gottlieb A, Papp K, Gordon K, Leonardi C, Wang A, Lalla D, Woolley M et al (2006) Etanercept and clinical outcomes, fatigue, and depression in psoriasis: double-blind placebo-controlled randomised phase III trial. Lancet 367(9504):29–35. https://doi.org/10.1016/S0140-6736(05)67763-X

    Article  CAS  PubMed  Google Scholar 

  38. Monk JP, Phillips G, Waite R, Kuhn J, Schaaf LJ, Otterson GA, Guttridge D, Rhoades C et al (2006) Assessment of tumor necrosis factor alpha blockade as an intervention to improve tolerability of dose-intensive chemotherapy in cancer patients. J Clin Oncol Off J Am Soc Clin Oncol 24(12):1852–1859. https://doi.org/10.1200/JCO.2005.04.2838

    Article  CAS  Google Scholar 

  39. Hashimoto K (2015) Inflammatory biomarkers as differential predictors of antidepressant response. Int J Mol Sci 16(4):7796–7801. https://doi.org/10.3390/ijms16047796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lopresti AL, Maker GL, Hood SD, Drummond PD (2014) A review of peripheral biomarkers in major depression: the potential of inflammatory and oxidative stress biomarkers. Prog Neuro-Psychopharmacol Biol Psychiatry 48:102–111. https://doi.org/10.1016/j.pnpbp.2013.09.017

    Article  Google Scholar 

  41. Benedetti F, Lucca A, Brambilla F, Colombo C, Smeraldi E (2002) Interleukine-6 serum levels correlate with response to antidepressant sleep deprivation and sleep phase advance. Prog Neuro-Psychopharmacol Biol Psychiatry 26(6):1167–1170

    Article  CAS  Google Scholar 

  42. Cattaneo A, Gennarelli M, Uher R, Breen G, Farmer A, Aitchison KJ, Craig IW, Anacker C et al (2013) Candidate genes expression profile associated with antidepressants response in the GENDEP study: differentiating between baseline 'predictors' and longitudinal 'targets'. Neuropsychopharmacology 38(3):377–385. https://doi.org/10.1038/npp.2012.191

    Article  CAS  PubMed  Google Scholar 

  43. Bufalino C, Hepgul N, Aguglia E, Pariante CM (2013) The role of immune genes in the association between depression and inflammation: a review of recent clinical studies. Brain Behav Immun 31:31–47. https://doi.org/10.1016/j.bbi.2012.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Uher R, Perroud N, Ng MY, Hauser J, Henigsberg N, Maier W, Mors O, Placentino A et al (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167(5):555–564. https://doi.org/10.1176/appi.ajp.2009.09070932

    Article  PubMed  Google Scholar 

  45. Wong ML, Dong C, Maestre-Mesa J, Licinio J (2008) Polymorphisms in inflammation-related genes are associated with susceptibility to major depression and antidepressant response. Mol Psychiatry 13(8):800–812. https://doi.org/10.1038/mp.2008.59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu YW, Chen TJ, Hong CJ, Chen HM, Tsai SJ (2003) Association study of the interleukin-1 beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology 28(6):1182–1185. https://doi.org/10.1038/sj.npp.1300172

    Article  CAS  PubMed  Google Scholar 

  47. Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, Krystal JH (2000) Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 47(4):351–354

    Article  CAS  Google Scholar 

  48. Zarate CA Jr, Singh JB, Carlson PJ, Brutsche NE, Ameli R, Luckenbaugh DA, Charney DS, Manji HK (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatry 63(8):856–864. https://doi.org/10.1001/archpsyc.63.8.856

    Article  CAS  PubMed  Google Scholar 

  49. Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S et al (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170(10):1134–1142. https://doi.org/10.1176/appi.ajp.2013.13030392

    Article  PubMed  PubMed Central  Google Scholar 

  50. DiazGranados N, Ibrahim LA, Brutsche NE, Ameli R, Henter ID, Luckenbaugh DA, Machado-Vieira R, Zarate CA Jr (2010) Rapid resolution of suicidal ideation after a single infusion of an N-methyl-D-aspartate antagonist in patients with treatment-resistant major depressive disorder. J Clin Psychiatry 71(12):1605–1611. https://doi.org/10.4088/JCP.09m05327blu

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Walker AK, Budac DP, Bisulco S, Lee AW, Smith RA, Beenders B, Kelley KW, Dantzer R (2013) NMDA receptor blockade by ketamine abrogates lipopolysaccharide-induced depressive-like behavior in C57BL/6J mice. Neuropsychopharmacology 38(9):1609–1616. https://doi.org/10.1038/npp.2013.71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. O'Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14(5):511–522. https://doi.org/10.1038/sj.mp.4002148

    Article  CAS  PubMed  Google Scholar 

  53. Haroon E, Miller AH (2017) Inflammation effects on brain glutamate in depression: mechanistic considerations and treatment implications. Curr Top Behav Neurosci 31:173–198. https://doi.org/10.1007/7854_2016_40

    Article  CAS  PubMed  Google Scholar 

  54. Haroon E, Miller AH, Sanacora G (2017) Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology 42(1):193–215. https://doi.org/10.1038/npp.2016.199

    Article  CAS  PubMed  Google Scholar 

  55. Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85(10):2059–2070. https://doi.org/10.1002/jnr.21325

    Article  CAS  PubMed  Google Scholar 

  56. Ida T, Hara M, Nakamura Y, Kozaki S, Tsunoda S, Ihara H (2008) Cytokine-induced enhancement of calcium-dependent glutamate release from astrocytes mediated by nitric oxide. Neurosci Lett 432(3):232–236. https://doi.org/10.1016/j.neulet.2007.12.047

    Article  CAS  PubMed  Google Scholar 

  57. Hardingham GE, Bading H (2010) Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 11(10):682–696. https://doi.org/10.1038/nrn2911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Raison CL, Miller AH (2013) Do cytokines really sing the blues? Cerebrum 2013:10

    PubMed  PubMed Central  Google Scholar 

  59. Zanos P, Moaddel R, Morris PJ, Georgiou P, Fischell J, Elmer GI, Alkondon M, Yuan P et al (2016) NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature 533(7604):481–486. https://doi.org/10.1038/nature17998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiefer J, Topper R, Schmidt W, Block F, Heinrich PC, Noth J, Schwarz M (1998) Expression of interleukin 6 in the rat striatum following stereotaxic injection of quinolinic acid. J Neuroimmunol 89(1–2):168–176

    Article  CAS  Google Scholar 

  61. Pemberton LA, Kerr SJ, Smythe G, Brew BJ (1997) Quinolinic acid production by macrophages stimulated with IFN-gamma, TNF-alpha, and IFN-alpha. J Interf Cytokine Res 17(10):589–595. https://doi.org/10.1089/jir.1997.17.589

    Article  CAS  Google Scholar 

  62. De Kock M, Loix S, Lavand’homme P (2013) Ketamine and peripheral inflammation. CNS Neurosci Ther 19(6):403–410. https://doi.org/10.1111/cns.12104

    Article  CAS  PubMed  Google Scholar 

  63. Dale O, Somogyi AA, Li Y, Sullivan T, Shavit Y (2012) Does intraoperative ketamine attenuate inflammatory reactivity following surgery? A systematic review and meta-analysis. Anesth Analg 115(4):934–943. https://doi.org/10.1213/ANE.0b013e3182662e30

    Article  CAS  PubMed  Google Scholar 

  64. Roytblat L, Talmor D, Rachinsky M, Greemberg L, Pekar A, Appelbaum A, Gurman GM, Shapira Y et al (1998) Ketamine attenuates the interleukin-6 response after cardiopulmonary bypass. Anesth Analg 87(2):266–271

    CAS  PubMed  Google Scholar 

  65. Yang C, Hong T, Shen J, Ding J, Dai XW, Zhou ZQ, Yang JJ (2013) Ketamine exerts antidepressant effects and reduces IL-1beta and IL-6 levels in rat prefrontal cortex and hippocampus. Exp Ther Med 5(4):1093–1096. https://doi.org/10.3892/etm.2013.930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583(2–3):174–185. https://doi.org/10.1016/j.ejphar.2007.11.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shansky RM, Morrison JH (2009) Stress-induced dendritic remodeling in the medial prefrontal cortex: effects of circuit, hormones and rest. Brain Res 1293:108–113. https://doi.org/10.1016/j.brainres.2009.03.062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Miller AH (2013) Conceptual confluence: the kynurenine pathway as a common target for ketamine and the convergence of the inflammation and glutamate hypotheses of depression. Neuropsychopharmacology 38(9):1607–1608. https://doi.org/10.1038/npp.2013.140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hashimoto K (2011) The role of glutamate on the action of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1558–1568. https://doi.org/10.1016/j.pnpbp.2010.06.013

    Article  CAS  Google Scholar 

  70. Javitt DC (2004) Glutamate as a therapeutic target in psychiatric disorders. Mol Psychiatry 9(11):984–997, 979. https://doi.org/10.1038/sj.mp.4001551

    Article  CAS  PubMed  Google Scholar 

  71. Huang Y, Kang BN, Tian J, Liu Y, Luo HR, Hester L, Snyder SH (2007) The cationic amino acid transporters CAT1 and CAT3 mediate NMDA receptor activation-dependent changes in elaboration of neuronal processes via the mammalian target of rapamycin mTOR pathway. J Neurosci 27(3):449–458. https://doi.org/10.1523/JNEUROSCI.4489-06.2007

    Article  CAS  PubMed  Google Scholar 

  72. Koike H, Iijima M, Chaki S (2011) Involvement of AMPA receptor in both the rapid and sustained antidepressant-like effects of ketamine in animal models of depression. Behav Brain Res 224(1):107–111. https://doi.org/10.1016/j.bbr.2011.05.035

    Article  CAS  PubMed  Google Scholar 

  73. Hoeffer CA, Klann E (2010) mTOR signaling: at the crossroads of plasticity, memory and disease. Trends Neurosci 33(2):67–75. https://doi.org/10.1016/j.tins.2009.11.003

    Article  CAS  PubMed  Google Scholar 

  74. Graber TE, McCamphill PK, Sossin WS (2013) A recollection of mTOR signaling in learning and memory. Learn Mem 20(10):518–530. https://doi.org/10.1101/lm.027664.112

    Article  CAS  PubMed  Google Scholar 

  75. Costa-Mattioli M, Monteggia LM (2013) mTOR complexes in neurodevelopmental and neuropsychiatric disorders. Nat Neurosci 16(11):1537–1543. https://doi.org/10.1038/nn.3546

    Article  CAS  PubMed  Google Scholar 

  76. Costa-Mattioli M, Sossin WS, Klann E, Sonenberg N (2009) Translational control of long-lasting synaptic plasticity and memory. Neuron 61(1):10–26. https://doi.org/10.1016/j.neuron.2008.10.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jernigan CS, Goswami DB, Austin MC, Iyo AH, Chandran A, Stockmeier CA, Karolewicz B (2011) The mTOR signaling pathway in the prefrontal cortex is compromised in major depressive disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 35(7):1774–1779. https://doi.org/10.1016/j.pnpbp.2011.05.010

    Article  CAS  Google Scholar 

  78. Burket JA, Benson AD, Tang AH, Deutsch SI (2015) NMDA receptor activation regulates sociability by its effect on mTOR signaling activity. Prog Neuro-Psychopharmacol Biol Psychiatry 60:60–65. https://doi.org/10.1016/j.pnpbp.2015.02.009

    Article  CAS  Google Scholar 

  79. Dwyer JM, Duman RS (2013) Activation of mammalian target of rapamycin and synaptogenesis: role in the actions of rapid-acting antidepressants. Biol Psychiatry 73(12):1189–1198. https://doi.org/10.1016/j.biopsych.2012.11.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peineau S, Taghibiglou C, Bradley C, Wong TP, Liu L, Lu J, Lo E, Wu D et al (2007) LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53(5):703–717. https://doi.org/10.1016/j.neuron.2007.01.029

    Article  CAS  PubMed  Google Scholar 

  81. Bramham CR, Messaoudi E (2005) BDNF function in adult synaptic plasticity: the synaptic consolidation hypothesis. Prog Neurobiol 76(2):99–125. https://doi.org/10.1016/j.pneurobio.2005.06.003

    Article  CAS  PubMed  Google Scholar 

  82. Pezet S, Malcangio M (2004) Brain-derived neurotrophic factor as a drug target for CNS disorders. Expert Opin Ther Targets 8(5):391–399. https://doi.org/10.1517/14728222.8.5.391

    Article  CAS  PubMed  Google Scholar 

  83. Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59(12):1116–1127. https://doi.org/10.1016/j.biopsych.2006.02.013

    Article  CAS  PubMed  Google Scholar 

  84. Bjorkholm C, Monteggia LM (2016) BDNF—a key transducer of antidepressant effects. Neuropharmacology 102:72–79. https://doi.org/10.1016/j.neuropharm.2015.10.034

    Article  CAS  PubMed  Google Scholar 

  85. Dwivedi Y, Rizavi HS, Conley RR, Roberts RC, Tamminga CA, Pandey GN (2003) Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry 60(8):804–815. https://doi.org/10.1001/archpsyc.60.8.804

    Article  CAS  PubMed  Google Scholar 

  86. Molteni R, Calabrese F, Chourbaji S, Brandwein C, Racagni G, Gass P, Riva MA (2010) Depression-prone mice with reduced glucocorticoid receptor expression display an altered stress-dependent regulation of brain-derived neurotrophic factor and activity-regulated cytoskeleton-associated protein. J Psychopharmacol 24(4):595–603. https://doi.org/10.1177/0269881108099815

    Article  CAS  PubMed  Google Scholar 

  87. Calabrese F, Molteni R, Cattaneo A, Macchi F, Racagni G, Gennarelli M, Ellenbroek BA, Riva MA (2010) Long-term duloxetine treatment normalizes altered brain-derived neurotrophic factor expression in serotonin transporter knockout rats through the modulation of specific neurotrophin isoforms. Mol Pharmacol 77(5):846–853. https://doi.org/10.1124/mol.109.063081

    Article  CAS  PubMed  Google Scholar 

  88. Hritcu L, Gorgan LD (2014) Intranigral lipopolysaccharide induced anxiety and depression by altered BDNF mRNA expression in rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 51:126–132. https://doi.org/10.1016/j.pnpbp.2014.01.016

    Article  CAS  Google Scholar 

  89. Schmidt HD, Duman RS (2007) The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive-like behavior. Behav Pharmacol 18(5–6):391–418. https://doi.org/10.1097/FBP.0b013e3282ee2aa8

    Article  CAS  PubMed  Google Scholar 

  90. Park SW, Phuong VT, Lee CH, Lee JG, Seo MK, Cho HY, Fang ZH, Lee BJ et al (2011) Effects of antipsychotic drugs on BDNF, GSK-3beta, and beta-catenin expression in rats subjected to immobilization stress. Neurosci Res 71(4):335–340. https://doi.org/10.1016/j.neures.2011.08.010

    Article  CAS  PubMed  Google Scholar 

  91. Calabrese F, Rossetti AC, Racagni G, Gass P, Riva MA, Molteni R (2014) Brain-derived neurotrophic factor: a bridge between inflammation and neuroplasticity. Front Cell Neurosci 8:430. https://doi.org/10.3389/fncel.2014.00430

    Article  PubMed  PubMed Central  Google Scholar 

  92. Akinfiresoye L, Tizabi Y (2013) Antidepressant effects of AMPA and ketamine combination: role of hippocampal BDNF, synapsin, and mTOR. Psychopharmacology 230(2):291–298. https://doi.org/10.1007/s00213-013-3153-2

    Article  CAS  PubMed  Google Scholar 

  93. Zhou W, Wang N, Yang C, Li XM, Zhou ZQ, Yang JJ (2014) Ketamine-induced antidepressant effects are associated with AMPA receptors-mediated upregulation of mTOR and BDNF in rat hippocampus and prefrontal cortex. Eur psychiatry 29(7):419–423. https://doi.org/10.1016/j.eurpsy.2013.10.005

    Article  CAS  PubMed  Google Scholar 

  94. Beurel E, Song L, Jope RS (2011) Inhibition of glycogen synthase kinase-3 is necessary for the rapid antidepressant effect of ketamine in mice. Mol Psychiatry 16(11):1068–1070. https://doi.org/10.1038/mp.2011.47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Liu RJ, Fuchikami M, Dwyer JM, Lepack AE, Duman RS, Aghajanian GK (2013) GSK-3 inhibition potentiates the synaptogenic and antidepressant-like effects of subthreshold doses of ketamine. Neuropsychopharmacology 38(11):2268–2277. https://doi.org/10.1038/npp.2013.128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Yang C, Hu YM, Zhou ZQ, Zhang GF, Yang JJ (2013) Acute administration of ketamine in rats increases hippocampal BDNF and mTOR levels during forced swimming test. Ups J Med Sci 118(1):3–8. https://doi.org/10.3109/03009734.2012.724118

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nosyreva E, Szabla K, Autry AE, Ryazanov AG, Monteggia LM, Kavalali ET (2013) Acute suppression of spontaneous neurotransmission drives synaptic potentiation. J Neurosci 33(16):6990–7002. https://doi.org/10.1523/JNEUROSCI.4998-12.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Koike H, Chaki S (2014) Requirement of AMPA receptor stimulation for the sustained antidepressant activity of ketamine and LY341495 during the forced swim test in rats. Behav Brain Res 271:111–115. https://doi.org/10.1016/j.bbr.2014.05.065

    Article  CAS  PubMed  Google Scholar 

  99. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, Li XY, Aghajanian G et al (2010) mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science 329(5994):959–964. https://doi.org/10.1126/science.1190287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Monteggia LM, Gideons E, Kavalali ET (2013) The role of eukaryotic elongation factor 2 kinase in rapid antidepressant action of ketamine. Biol Psychiatry 73(12):1199–1203. https://doi.org/10.1016/j.biopsych.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  101. Gideons ES, Kavalali ET, Monteggia LM (2014) Mechanisms underlying differential effectiveness of memantine and ketamine in rapid antidepressant responses. Proc Natl Acad Sci U S A 111(23):8649–8654. https://doi.org/10.1073/pnas.1323920111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475(7354):91–95. https://doi.org/10.1038/nature10130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Lepack AE, Fuchikami M, Dwyer JM, Banasr M, Duman RS (2014) BDNF release is required for the behavioral actions of ketamine. Int J Neuropsychopharmacol 18(1):pyu033. https://doi.org/10.1093/ijnp/pyu033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Barnes J, Mondelli V, Pariante CM (2017) Genetic contributions of inflammation to depression. Neuropsychopharmacology 42(1):81–98. https://doi.org/10.1038/npp.2016.169

    Article  CAS  PubMed  Google Scholar 

  105. Hwang JP, Tsai SJ, Hong CJ, Yang CH, Hsu CD, Liou YJ (2009) Interleukin-1 beta -511C/T genetic polymorphism is associated with age of onset of geriatric depression. NeuroMolecular Med 11(4):322–327. https://doi.org/10.1007/s12017-009-8078-x

    Article  CAS  PubMed  Google Scholar 

  106. Tartter M, Hammen C, Bower JE, Brennan PA, Cole S (2015) Effects of chronic interpersonal stress exposure on depressive symptoms are moderated by genetic variation at IL6 and IL1beta in youth. Brain Behav Immun 46:104–111. https://doi.org/10.1016/j.bbi.2015.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, Gonda X, Juhasz G et al (2016) Effects of IL1B single nucleotide polymorphisms on depressive and anxiety symptoms are determined by severity and type of life stress. Brain Behav Immun 56:96–104. https://doi.org/10.1016/j.bbi.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  108. Chi MH, Lee SY, Chang HH, Yang YK, Lin E, Chen PS (2011) Comparison of antidepressant efficacy-related SNPs among Taiwanese and four populations in the HapMap database. J Formos Med Assoc 110(7):478–482. https://doi.org/10.1016/S0929-6646(11)60071-5

    Article  CAS  PubMed  Google Scholar 

  109. Baune BT, Dannlowski U, Domschke K, Janssen DG, Jordan MA, Ohrmann P, Bauer J, Biros E et al (2010) The interleukin 1 beta (IL1B) gene is associated with failure to achieve remission and impaired emotion processing in major depression. Biol Psychiatry 67(6):543–549. https://doi.org/10.1016/j.biopsych.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  110. Bull SJ, Huezo-Diaz P, Binder EB, Cubells JF, Ranjith G, Maddock C, Miyazaki C, Alexander N et al (2009) Functional polymorphisms in the interleukin-6 and serotonin transporter genes, and depression and fatigue induced by interferon-alpha and ribavirin treatment. Mol Psychiatry 14(12):1095–1104. https://doi.org/10.1038/mp.2008.48

    Article  CAS  PubMed  Google Scholar 

  111. Udina M, Moreno-Espana J, Navines R, Gimenez D, Langohr K, Gratacos M, Capuron L, de la Torre R et al (2013) Serotonin and interleukin-6: The role of genetic polymorphisms in IFN-induced neuropsychiatric symptoms. Psychoneuroendocrinology 38(9):1803–1813. https://doi.org/10.1016/j.psyneuen.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  112. Kovacs D, Eszlari N, Petschner P, Pap D, Vas S, Kovacs P, Gonda X, Bagdy G et al (2016) Interleukin-6 promoter polymorphism interacts with pain and life stress influencing depression phenotypes. J Neural Transm 123(5):541–548. https://doi.org/10.1007/s00702-016-1506-9

    Article  CAS  PubMed  Google Scholar 

  113. Roetker NS, Yonker JA, Lee C, Chang V, Basson JJ, Roan CL, Hauser TS, Hauser RM et al (2012) Multigene interactions and the prediction of depression in the Wisconsin longitudinal study. BMJ Open 2(4):e000944. https://doi.org/10.1136/bmjopen-2012-000944

    Article  PubMed  PubMed Central  Google Scholar 

  114. Misener VL, Gomez L, Wigg KG, Luca P, King N, Kiss E, Daroczi G, Kapornai K et al (2008) Cytokine genes TNF, IL1A, IL1B, IL6, IL1RN and IL10, and childhood-onset mood disorders. Neuropsychobiology 58(2):71–80. https://doi.org/10.1159/000159775

    Article  CAS  PubMed  Google Scholar 

  115. Clerici M, Arosio B, Mundo E, Cattaneo E, Pozzoli S, Dell'osso B, Vergani C, Trabattoni D et al (2009) Cytokine polymorphisms in the pathophysiology of mood disorders. CNS Spectr 14(8):419–425

    Article  Google Scholar 

  116. Cerri AP, Arosio B, Viazzoli C, Confalonieri R, Teruzzi F, Annoni G (2009) 308(G/A) TNF-alpha gene polymorphism and risk of depression late in the life. Arch Gerontol Geriatr 49(Suppl 1):29–34. https://doi.org/10.1016/j.archger.2009.09.009

    Article  CAS  PubMed  Google Scholar 

  117. Dunn LB, Aouizerat BE, Langford DJ, Cooper BA, Dhruva A, Cataldo JK, Baggott CR, Merriman JD et al (2013) Cytokine gene variation is associated with depressive symptom trajectories in oncology patients and family caregivers. Eur J Oncol Nurs 17(3):346–353. https://doi.org/10.1016/j.ejon.2012.10.004

    Article  PubMed  Google Scholar 

  118. Ancelin ML, Farre A, Carriere I, Ritchie K, Chaudieu I, Ryan J (2015) C-reactive protein gene variants: Independent association with late-life depression and circulating protein levels. Transl Psychiatry 5:e499. https://doi.org/10.1038/tp.2014.145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Halder I, Marsland AL, Cheong J, Muldoon MF, Ferrell RE, Manuck SB (2010) Polymorphisms in the CRP gene moderate an association between depressive symptoms and circulating levels of C-reactive protein. Brain Behav Immun 24(1):160–167. https://doi.org/10.1016/j.bbi.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  120. Luciano M, Houlihan LM, Harris SE, Gow AJ, Hayward C, Starr JM, Deary IJ (2010) Association of existing and new candidate genes for anxiety, depression and personality traits in older people. Behav Genet 40(4):518–532. https://doi.org/10.1007/s10519-009-9326-4

    Article  PubMed  Google Scholar 

  121. Almeida OP, Norman PE, Allcock R, van Bockxmeer F, Hankey GJ, Jamrozik K, Flicker L (2009) Polymorphisms of the CRP gene inhibit inflammatory response and increase susceptibility to depression: the health in men study. Int J Epidemiol 38(4):1049–1059. https://doi.org/10.1093/ije/dyp199

    Article  PubMed  PubMed Central  Google Scholar 

  122. Liu Y, Ho RC, Mak A (2012) Interleukin (IL)-6, tumour necrosis factor alpha (TNF-alpha) and soluble interleukin-2 receptors (sIL-2R) are elevated in patients with major depressive disorder: a meta-analysis and meta-regression. J Affect Disord 139(3):230–239. https://doi.org/10.1016/j.jad.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  123. Walker AJ, Foley BM, Sutor SL, McGillivray JA, Frye MA, Tye SJ (2015) Peripheral proinflammatory markers associated with ketamine response in a preclinical model of antidepressant-resistance. Behav Brain Res 293:198–202. https://doi.org/10.1016/j.bbr.2015.07.026

    Article  CAS  PubMed  Google Scholar 

  124. Jun TY, Pae CU, Hoon H, Chae JH, Bahk WM, Kim KS, Serretti A (2003) Possible association between -G308A tumour necrosis factor-alpha gene polymorphism and major depressive disorder in the Korean population. Psychiatr Genet 13(3):179–181. https://doi.org/10.1097/01.ypg.0000066962.66429.49

    Article  PubMed  Google Scholar 

  125. Valkanova V, Ebmeier KP, Allan CL (2013) CRP, IL-6 and depression: a systematic review and meta-analysis of longitudinal studies. J Affect Disord 150(3):736–744. https://doi.org/10.1016/j.jad.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  126. Senapathi TG, Widnyana IM, Wiryana M, Aribawa IG, Aryabiantara IW, Hartawan IG, Sinardja IK, Suarjaya IP et al (2016) Effectiveness of low-dose intravenous ketamine to attenuate stress response in patients undergoing emergency cesarean section with spinal anesthesia. J Pain Res 9:689–692. https://doi.org/10.2147/JPR.S109616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57(9):1068–1072. https://doi.org/10.1016/j.biopsych.2005.01.008

    Article  CAS  PubMed  Google Scholar 

  128. Monteleone P, Serritella C, Martiadis V, Maj M (2008) Decreased levels of serum brain-derived neurotrophic factor in both depressed and euthymic patients with unipolar depression and in euthymic patients with bipolar I and II disorders. Bipolar Disord 10(1):95–100. https://doi.org/10.1111/j.1399-5618.2008.00459.x

    Article  CAS  PubMed  Google Scholar 

  129. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64(6):527–532. https://doi.org/10.1016/j.biopsych.2008.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Goldstein BI, Collinger KA, Lotrich F, Marsland AL, Gill MK, Axelson DA, Birmaher B (2011) Preliminary findings regarding proinflammatory markers and brain-derived neurotrophic factor among adolescents with bipolar spectrum disorders. J Child Adolesc Psychopharmacol 21(5):479–484. https://doi.org/10.1089/cap.2011.0009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Haile CN, Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Foulkes A, Iqbal S, Mahoney JJ III et al (2014) Plasma brain derived neurotrophic factor (BDNF) and response to ketamine in treatment-resistant depression. Int J Neuropsychopharmacol 17(2):331–336. https://doi.org/10.1017/S1461145713001119

    Article  CAS  PubMed  Google Scholar 

  132. Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR et al (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuro-Psychopharmacol Biol Psychiatry 32(1):140–144. https://doi.org/10.1016/j.pnpbp.2007.07.027

    Article  CAS  Google Scholar 

  133. Allen AP, Naughton M, Dowling J, Walsh A, Ismail F, Shorten G, Scott L, McLoughlin DM et al (2015) Serum BDNF as a peripheral biomarker of treatment-resistant depression and the rapid antidepressant response: a comparison of ketamine and ECT. J Affect Disord 186:306–311. https://doi.org/10.1016/j.jad.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  134. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A, Zaitsev E, Gold B et al (2003) The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 112(2):257–269

    Article  CAS  Google Scholar 

  135. Lang UE, Hellweg R, Sander T, Gallinat J (2009) The Met allele of the BDNF Val66Met polymorphism is associated with increased BDNF serum concentrations. Mol Psychiatry 14(2):120–122. https://doi.org/10.1038/mp.2008.80

    Article  CAS  PubMed  Google Scholar 

  136. Pregelj P, Nedic G, Paska AV, Zupanc T, Nikolac M, Balazic J, Tomori M, Komel R et al (2011) The association between brain-derived neurotrophic factor polymorphism (BDNF Val66Met) and suicide. J Affect Disord 128(3):287–290. https://doi.org/10.1016/j.jad.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  137. Gatt JM, Nemeroff CB, Schofield PR, Paul RH, Clark CR, Gordon E, Williams LM (2010) Early life stress combined with serotonin 3A receptor and brain-derived neurotrophic factor valine 66 to methionine genotypes impacts emotional brain and arousal correlates of risk for depression. Biol Psychiatry 68(9):818–824. https://doi.org/10.1016/j.biopsych.2010.06.025

    Article  CAS  PubMed  Google Scholar 

  138. Hayden EP, Klein DN, Dougherty LR, Olino TM, Dyson MW, Durbin CE, Sheikh HI, Singh SM (2010) The role of brain-derived neurotrophic factor genotype, parental depression, and relationship discord in predicting early-emerging negative emotionality. Psychol Sci 21(11):1678–1685. https://doi.org/10.1177/0956797610385357

    Article  PubMed  PubMed Central  Google Scholar 

  139. Montag C, Basten U, Stelzel C, Fiebach CJ, Reuter M (2010) The BDNF Val66Met polymorphism and anxiety: support for animal knock-in studies from a genetic association study in humans. Psychiatry Res 179(1):86–90. https://doi.org/10.1016/j.psychres.2008.08.005

    Article  CAS  PubMed  Google Scholar 

  140. Bukh JD, Bock C, Vinberg M, Werge T, Gether U, Vedel Kessing L (2009) Interaction between genetic polymorphisms and stressful life events in first episode depression. J Affect Disord 119(1–3):107–115. https://doi.org/10.1016/j.jad.2009.02.023

    Article  CAS  PubMed  Google Scholar 

  141. Kim JM, Stewart R, Kim SW, Yang SJ, Shin IS, Kim YH, Yoon JS (2008) BDNF genotype potentially modifying the association between incident stroke and depression. Neurobiol Aging 29(5):789–792. https://doi.org/10.1016/j.neurobiolaging.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  142. Laje G, Lally N, Mathews D, Brutsche N, Chemerinski A, Akula N, Kelmendi B, Simen A et al (2012) Brain-derived neurotrophic factor Val66Met polymorphism and antidepressant efficacy of ketamine in depressed patients. Biol Psychiatry 72(11):e27–e28. https://doi.org/10.1016/j.biopsych.2012.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zittermann SI, Issekutz AC (2006) Basic fibroblast growth factor (bFGF, FGF-2) potentiates leukocyte recruitment to inflammation by enhancing endothelial adhesion molecule expression. Am J Pathol 168(3):835–846. https://doi.org/10.2353/ajpath.2006.050479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Machado-Vieira R, Gold PW, Luckenbaugh DA, Ballard ED, Richards EM, Henter ID, De Sousa RT, Niciu MJ et al (2017) The role of adipokines in the rapid antidepressant effects of ketamine. Mol Psychiatry 22(1):127–133. https://doi.org/10.1038/mp.2016.36

    Article  CAS  PubMed  Google Scholar 

  145. McEwen BS (2000) The neurobiology of stress: from serendipity to clinical relevance. Brain Res 886(1–2):172–189

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the China Precision Medicine Initiative (2016YFC0906300) and Research Center for Air Pollution and Health of Zhejiang University. We thank Dr. David L. Bronson for excellent editing of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenyan Cui or Ming D. Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, W., Ning, Y., Hong, W. et al. Crosstalk Between Inflammation and Glutamate System in Depression: Signaling Pathway and Molecular Biomarkers for Ketamine’s Antidepressant Effect. Mol Neurobiol 56, 3484–3500 (2019). https://doi.org/10.1007/s12035-018-1306-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1306-3

Keywords

Navigation