Skip to main content

Advertisement

Log in

Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The pentane extract of the Peruvian plant, Lepidium meyenii (Maca), has been demonstrated to possess neuroprotective activity in previous in vitro and in vivo studies (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al. in Am J Neuroprot Neuroregener 3:87–92, 2011). This extract contains a number of macamides that may act on the endocannabinoid system (Pino-Figueroa et al. in Ann N Y Acad Sci 1199:77–85, 2010; Pino-Figueroa et al., 2011; Dini et al. in Food Chem 49:347–349, 1994). The aim of this study was to characterize the inhibitory activity of four of these maccamides (N-benzylstearamide, N-benzyloleamide, N-benzyloctadeca-9Z,12Z-dienamide, and N-benzyloctadeca-9Z,12Z,15Z-trienamide) on fatty acid amide hydrolase (FAAH), an enzyme that is responsible for endocannabinoid degradation in the nervous system (Kumar et al. in Anaesthesia 56:1059–1068, 2001). The four compounds were tested at concentrations between 1 and 100 μM, utilizing an FAAH inhibitor screening assay. The results demonstrated concentration-dependent FAAH inhibitory activities for the four macamides tested. N-Benzyloctadeca-9Z,12Z-dienamide demonstrated the highest FAAH inhibitory activity whereas N-benzylstearamide had the lowest inhibitory activity. In addition, N-benzylstearamide, N-benzyloleamide, and N-benzyloctadeca-9Z,12Z-dienamide demonstrated time-dependent inhibition when tested after a pre-incubation period, indicating that the mechanism of inhibition for these compounds most likely is irreversible. Of interest, unsaturation in the fatty acid moiety resulted in greater FAAH inhibitory activity. LC/MS/MS analysis demonstrated that FAAH was able to hydrolyze N-benzyloctadeca-9Z,12Z-dienamide, suggesting that N-benzyloctadeca-9Z,12Z-dienamide is also a slow substrate for FAAH. These results provide useful information about the mechanism of action of Lepidium meyenii and may help with the development of new compounds with FAAH inhibitory or modulatory activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kumar RN, Chambers WA, Pertwee RG (2001) Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesthesia 56:1059–1068

    Article  CAS  Google Scholar 

  2. Pacher P, Bátkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    Article  CAS  Google Scholar 

  3. Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(Suppl 1):S163–S171

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    Article  CAS  Google Scholar 

  5. Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611

    Article  CAS  Google Scholar 

  6. Rhee MH, Bayewitch M, Avidor-Reiss T, Levy R, Vogel Z (1998) Cannabinoid receptor activation differentially regulates the various adenylyl cyclase isozymes. J Neurochem 71:1525–1534

    Article  CAS  Google Scholar 

  7. Shohami E, Cohen-Yeshurun A, Magid L, Algali M, Mechoulam R (2011) Endocannabinoids and traumatic brain injury. Br J Pharmacol 163:1402–1410

    Article  CAS  Google Scholar 

  8. Van der Stelt M, Di Marzo V (2005) Cannabinoid receptors and their role in neuroprotection. Neuromol Med 7:37–50

  9. Van der Stelt M, Veldhuis WB, Van Haaften GW, Fezza F, Bisogno T, Bär PR, Veldink GA, Vliegenthart JFG et al (2001) Exogenous anandamide protects rat brain against acute neuronal injury in vivo. J Neurosci 21:8765–8771

  10. Day TA, Rakhshan F, Deutsch DG, Barker EL (2001) Role of fatty acid amide hydrolase in the transport of the endogenous cannabinoid anandamide. Mol Pharmacol 59:1369–1375

    Article  CAS  Google Scholar 

  11. Hwang J, Adamson C, Butler D, Janero DR, Makriyannis A, Bahr BA (2010) Enhancement of endocannabinoid signaling by fatty acid amide hydrolase inhibition: a neuroprotective therapeutic modality. Life Sci 86:615–623

    Article  CAS  Google Scholar 

  12. Fernández-Ruiz J, Romero J, Ramos JA (2015) Endocannabinoids and neurodegenerative disorders: Parkinson’s disease, Huntington’s chorea, Alzheimer’s disease, and others. In: Pertwee R (ed) Endocannabinoids, Handbook of experimental pharmacology, vol 231. Springer, Heidelberg, pp. 233–259

    Chapter  Google Scholar 

  13. Zogopoulos P, Vasileiou I, Patsouris E, Theocharis S (2013) The neuroprotective role of endocannabinoids against chemical-induced injury and other adverse effects. J Appl Toxicol 33:246–264

    Article  Google Scholar 

  14. Shouman B, Fontaine RH, Baud O, Schwendimann L, Keller M, Spedding M, Lelièvre V, Gressens P (2006) Endocannabinoids potently protect the newborn brain against AMPA-kainate receptor-mediated excitotoxic damage. Br J Pharmacol 148:442–451

    Article  CAS  Google Scholar 

  15. Alhouayek M, Muccioli GG (2014) COX-2-derived endocannabinoid metabolites as novel inflammatory mediators. Trends Pharmacol Sci 35:284–292

    Article  CAS  Google Scholar 

  16. Alhouayek M, Masquelier J, Muccioli GG (2014) Controlling 2-arachidonoylglycerol metabolism as an anti-inflammatory strategy. Drug Discov Today 19:295–304

    Article  CAS  Google Scholar 

  17. Cajanus K, Holmström EJ, Wessman M, Anttila V, Kaunisto MA, Kalso E (2016) Effect of endocannabinoid degradation on pain: role of FAAH polymorphisms in experimental and postoperative pain in women treated for breast cancer. Pain 157:361–369

    Article  CAS  Google Scholar 

  18. Guindon J (2017) A novel inhibitor of endocannabinoid catabolic enzymes sheds light on behind the scene interplay between chronic pain, analgesic tolerance, and heroin dependence. Neuropharmacology 114:168–171

    Article  CAS  Google Scholar 

  19. Guindon J, Lai Y, Takacs SM, Bradshaw HB, Hohmann AG (2013) Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: Effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment. Pharmacol Res 67:94–109

    Article  CAS  Google Scholar 

  20. Grim TW, Ghosh S, Hsu KL, Cravatt BF, Kinsey SG, Lichtman AH (2014) Combined inhibition of FAAH and COX produces enhanced anti-allodynic effects in mouse neuropathic and inflammatory pain models. Pharmacol Biochem Behav 124:405–411

    Article  CAS  Google Scholar 

  21. Adamson Barnes NS, Mitchell VA, Kazantzis NP, Vaughan CW (2016) Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model. Br J Pharmacol 173:77–87

    Article  CAS  Google Scholar 

  22. Vázquez C, Tolón RM, Pazos MR, Moreno M, Koester EC, Cravatt BF, Romero J (2015) Endocannabinoids regulate the activity of astrocytic hemichannels and the microglial response against an injury: in vivo studies. Neurobiol Dis 79:41–50

    Article  Google Scholar 

  23. Iannotti FA, Di Marzo V, Petrosino S (2016) Endocannabinoids and endocannabinoid-related mediators: targets, metabolism and role in neurological disorders. Prog Lipid Res 62:107–128

    Article  CAS  Google Scholar 

  24. Pino-Figueroa A, Nguyen D, Maher TJ (2010) Neuroprotective effects of Lepidium meyenii (maca). Ann N Y Acad Sci 1199:77–85

    Article  Google Scholar 

  25. Pino-Figueroa A, Vu H, Kelley CJ, Maher TJ (2011) Mechanism of action of Lepidium meyenii (maca): an explanation for its neuroprotective activity. Am J Neuroprot Neuroregener 3:87–92

    Article  Google Scholar 

  26. Cui B, Zheng BL, He K, Zheng QY (2003) Imidazole alkaloids from Lepidium meyenii. J Nat Prod 66:1101–1103

    Article  CAS  Google Scholar 

  27. Dini A, Migliuolo G, Rastrelli L, Saturnino P, Schettino O (1994) Chemical composition of Lepidium meyenii. Food Chem 49:347–349

    Article  CAS  Google Scholar 

  28. Balick M, Lee R (2002) Maca: from traditional food crop to energy and libido stimulant. Altern Ther Health Med 8:96–98

    PubMed  Google Scholar 

  29. Valentová K, Ulrichová J (2003) Smallanthus sonchifolius and Lepidium meyenii-prospective Andean crops for the prevention of chronic diseases. Biomed Pap 147:119–130

  30. Večeřa R, Orolin J, Škottová N, KazdovA L, Oliyarnik O, Ulrichova J, Šimánek V (2007) The influence of maca (Lepidium meyenii) on antioxidant status, lipid and glucose metabolism in rat. Plant Foods Hum Nutr 62:59–63

    Article  Google Scholar 

  31. Wu H, Kelley CJ, Pino-Figueroa A, Vu HD, Maher TJ (2013) Macamides and their synthetic analogs: evaluation of in vitro FAAH inhibition. Bioorg Med Chem 17:5188–5197

  32. Almukadi H, Wu H, Böhlke M, Kelley CJ, Maher TJ, Pino-Figueroa A (2013) The macamide N-3-methoxybenzyl-linoleamide is a time-dependent fatty acid amide hydrolase (FAAH) inhibitor. Mol Neurobiol 48:333–339

    Article  CAS  Google Scholar 

  33. Wang Y, Zhang X (2017) FAAH inhibition produces antidepressant-like efforts of mice to acute stress via synaptic long-term depression. Behav Brain Res 324:138–145

    Article  CAS  Google Scholar 

  34. Cravatt BF, Lichtman AH (2003) Fatty acid amide hydrolase: an emerging therapeutic target in the endocannabinoid system. Curr Opin Chem Biol 7:469–475

    Article  CAS  Google Scholar 

  35. McKinney MK, Cravatt BF (2005) Structure and function of fatty acid amide hydrolase. Annu Rev Biochem 74:411–432

    Article  CAS  Google Scholar 

  36. Labar G, Michaux C (2007) Fatty acid amide hydrolase: from characterization to therapeutics. Chem Biodivers 4:1882–1902

    Article  CAS  Google Scholar 

  37. Vandevoorde S (2008) Overview of the chemical families of fatty acid amide hydrolase and monoacylglycerol lipase inhibitors. Curr Top Med Chem 8:247–267

    Article  CAS  Google Scholar 

  38. Deplano A, Morgillo CM, Demurtas M, Björklund E, Cipriano M, Svensson M, Hashemian S, Smaldone G et al (2017) Novel propanamides as fatty acid amide hydrolase inhibitors. Eur J Med Chem 136:523–542

  39. Kaur R, Sidhu P, Singh S (2016) What failed BIA 10–2474 phase I clinical trial? Global speculations and recommendations for future phase I trials. J Pharmacol Pharmacother 3:120–126

  40. Pino-Figueroa A, Böhlke M, Maher TJ, Awaad A, Kaushik G (2011) Lepidium meyenii (maca): a review on its phytochemical and pharmacological profile. In: Govil, JN (ed) Recent progress in medicinal plants. Studium Press, New Delhi, pp. 11–29

  41. Rubio J, Caldas M, Dávila S, Gasco M, Gonzales GF (2006) Effect of three different cultivars of Lepidium meyenii (maca) on learning and depression in ovariectomized mice. BMC Complement Altern Med 6:23

    Article  Google Scholar 

  42. Rubio J, Dang H, Gong M, Liu X, Chen SL, Gonzales GF (2007) Aqueous and hydroalcoholic extracts of black maca (Lepidium meyenii) improve scopolamine-induced memory impairment in mice. Food Chem Toxicol 45:1882–1890

    Article  CAS  Google Scholar 

  43. Rubio J, Qiong W, Liu X, Jiang Z, Dang H, Chen SL (2011) Gonzales GF (2011) aqueous extract of black maca (Lepidium meyenii) on memory impairment induced by ovariectomy in mice. Evid Based Complement Alternat Med

  44. Muhammad I, Zhao J, Dunbar DC, Khan IA (2002) Constituents of Lepidium meyenii ‘maca’. Phytochemistry 59:105–110

    Article  CAS  Google Scholar 

  45. Ahn K, Smith SE, Liimatta MB, Beidler D, Sadagopan N, Dudley DT, Young T, Wren P et al (2011) Mechanistic and pharmacological characterization of PF-04457845: a highly potent and selective fatty acid amide hydrolase inhibitor that reduces inflammatory and non-inflammatory pain. J Pharmacol Exp Ther 338:114–124

Download references

Acknowledgements

This work was supported by grants from the College of Medicine, King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah 22384, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pino-Figueroa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alasmari, M., Bӧhlke, M., Kelley, C. et al. Inhibition of Fatty Acid Amide Hydrolase (FAAH) by Macamides. Mol Neurobiol 56, 1770–1781 (2019). https://doi.org/10.1007/s12035-018-1115-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-1115-8

Keywords

Navigation