Skip to main content

Advertisement

Log in

Hypoxia-Preconditioned Human Umbilical Vein Endothelial Cells Protect Against Neurovascular Damage After Hypoxic Ischemia in Neonatal Brain

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Therapy targeting the neurovascular unit may provide effective neuroprotection against neonatal hypoxia–ischemia (HI). We hypothesized that the peripheral injection of hypoxia-preconditioned human umbilical vein endothelial cells (HUVECs) following HI protects against neurovascular damage and provides long-term neuroprotection in a postpartum (P) day-7 rat pup model. Compared with normoxic HUVECs, hypoxic HUVECs showed enhanced migration and angiogenesis in vitro and had augmented migration effects into the brain when administered intraperitoneally in vivo after HI. Moreover, 24 and 72 h post-HI, the hypoxic HUVECs group but not the normoxic HUVECs or culture-medium groups had significantly higher preservation of microvessels and neurons, and attenuation of blood–brain barrier damage than the normal-saline group. Compared to control or normal-saline groups, only the hypoxic HUVECs group had no impaired foot steps and showed a significant reduction of brain area loss at P42. Next-generation sequencing showed hypoxia-induced upregulation and downregulation of 209 and 215 genes in HUVECs, respectively. Upstream regulator analysis by ingenuity pathway analysis (IPA) identified hypoxia-inducible factor 1-alpha as the key predicted activated transcription regulator. After hypoxia, 12 genes (ADAMTS1, EFNA1, HIF1A, LOX, MEOX2, SELE, VEGFA, VEGFC, CX3CL1, HMMR, SDC, and SERPINE) associated with migration and/or angiogenesis were regulated in HUVECs. In addition, 6 genes (VEGFA, VEGFC, NTN4, TGFA, SERPINE1, and CX3CL1) involved in the survival of endothelial and neuronal cells were also markedly altered in hypoxic HUVECs. Thus, cell therapy by using hypoxic HUVECs that enhance migration and neurovascular protection may provide an effective therapeutic strategy for treating neonatal asphyxia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ferriero DM (2004) Neonatal brain injury. N Engl J Med 351(19):1985–1995. https://doi.org/10.1056/NEJMra041996

    Article  PubMed  CAS  Google Scholar 

  2. Johnston MV, Fatemi A, Wilson MA, Northington F (2011) Treatment advances in neonatal neuroprotection and neurointensive care. Lancet Neurol 10(4):372–382. https://doi.org/10.1016/S1474-4422(11)70016-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM et al (2005) Selective head cooling with mild systemic hypothermia after neonatal encephalopathy. Lancet 365(9460):663–670. https://doi.org/10.1016/S0140-6736(05)17946-X

    Article  PubMed  Google Scholar 

  4. Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK et al (2005) Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 353(15):1574–1584. https://doi.org/10.1056/NEJMcps050929

    Article  PubMed  CAS  Google Scholar 

  5. Azzopardi DV, Strohm B, Edwards AD, Dyet L, Halliday HL, Juszczak E, Kapellou O, Levene M et al (2009) Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 361(14):1349–1358. https://doi.org/10.1056/NEJMoa0900854

    Article  PubMed  CAS  Google Scholar 

  6. Shankaran S, Pappas A, McDonald SA, Vohr BR, Hintz SR, Yolton K, Gustafson KE, Leach TM et al (2012) Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 366(22):2085–2092. https://doi.org/10.1056/NEJMoa1112066

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Azzopardi D, Strohm B, Marlow N, Brocklehurst P, Deierl A, Eddama O, Goodwin J, Halliday HL et al (2014) Effects of hypothermia for perinatal asphyxia on childhood outcomes. N Engl J Med 371(2):140–149. https://doi.org/10.1056/NEJMoa1315788

    Article  PubMed  CAS  Google Scholar 

  8. Quaegebeur A, Lange C, Carmeliet P (2011) The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron 71(3):406–424. https://doi.org/10.1016/j.neuron.2011.07.013

    Article  PubMed  CAS  Google Scholar 

  9. Hawkins BT, Davis TP (2005) The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 57(2):173–185. https://doi.org/10.1124/pr.57.2.4

    Article  PubMed  CAS  Google Scholar 

  10. Lee HT, Chang YC, YF T et al (2009) VEGF-A/VEGFR-2 signaling leading to camp response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells. J Neurosci 29(14):4356–4368. https://doi.org/10.1523/JNEUROSCI.5497-08.2009

    Article  PubMed  CAS  Google Scholar 

  11. Moretti R, Pansiot J, Bettati D et al (2015) Blood-brain barrier dysfunction in disorders of the developing brain. Front Neurosci 9:40

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lee BF, Wang LW, Lin SH, Jhuo TJ, Chiu NT, Huang CC, Hsia CC, Shen LH (2012) Tc-99m-HL91 imaging in early detection of neuronal injury in a neonatal rat model of hypoxic ischemia. Crit Care Med 40(6):1930–1938. https://doi.org/10.1097/CCM.0b013e31824e1883

    Article  PubMed  CAS  Google Scholar 

  13. Hsu YC, Chang YC, Lin YC, Sze CI, Huang CC, Ho CJ (2014) Cerebral microvascular damage occurs early after hypoxia-ischemia via nNOS activation in neonatal brain. J Cereb Blood Flow & Metab 34(4):668–676. https://doi.org/10.1038/jcbfm.2013.244

    Article  CAS  Google Scholar 

  14. Tam SJ, Watts RJ (2010) Connecting vascular and nervous system development: angiogenesis and the blood-brain barrier. Ann Rev Neurosci 33(1):379–408. https://doi.org/10.1146/annurev-neuro-060909-152829

    Article  PubMed  CAS  Google Scholar 

  15. Tu YF, Lu PJ, Huang CC (2012) Moderate dietary restriction reduces p53-mediated neurovascular damage and microglia activation after hypoxic ischemia in neonatal brain. Stroke 43:491–498

    Article  CAS  Google Scholar 

  16. Mouhieddine TH, Kobeissy FH, Itani M, Nokkari A, Wang KK (2014) Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects. Neural Regen Res 9(9):901–906. https://doi.org/10.4103/1673-5374.133129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Titomanlio L, Kavelaars A, Dalous J, Mani S, el Ghouzzi V, Heijnen C, Baud O, Gressens P (2011) Stem cell therapy for neonatal brain injury: perspectives and challenges. Ann Neurol 70(5):698–712. https://doi.org/10.1002/ana.22518

    Article  PubMed  Google Scholar 

  18. Aleynik A, Gernavage KM, Mourad YSH, Sherman LS, Liu K, Gubenko YA, Rameshwar P (2014) Stem cell delivery of therapies for brain disorders. Clinical and Translational Medicine 3(1):24. https://doi.org/10.1186/2001-1326-3-24

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wu CC, Chen YC, Chang YC et al (2013) Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via SDF-1/CXCR4. Stroke 44:1402–1409

    Article  Google Scholar 

  20. Cruz FF, Rocco PRM (2015) Hypoxic preconditioning enhances mesenchymal stromal cell lung repair capacity. Stem Cell Res Ther 6(1):130. https://doi.org/10.1186/s13287-015-0120-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Jiang YZ, Li Y, Wang K, Dai CF, Huang SA, Chen DB, Zheng J (2014) Distinic roles of HIF1A in endothelial adaptations to physiological and ambient oxygen. Mol Cell Endocrinol 391(1-2):60–67. https://doi.org/10.1016/j.mce.2014.04.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Baudin B, Bruneel A, Bosselut N, Vaubourdolle M (2007) A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc 2(3):481–485. https://doi.org/10.1038/nprot.2007.54

    Article  PubMed  CAS  Google Scholar 

  23. Izuta H, Chikaraishi Y, Shimazawa M, Mishima S, Hara H (2009) 10-Hydroxy-2-decenoic acid, a major fatty acid from royal jelly, inhibits VEGF-induced angiogenesis in human umbilical vein endothelial cells. Evid Based Complement Alternat Med 6(4):489–494. https://doi.org/10.1093/ecam/nem152

    Article  PubMed  Google Scholar 

  24. Koyanagi S, Tanigawa N, Nakagawa H, Soeda S, Shimeno H (2003) Oversulfation of fucoidan enhances its anti-angiogenic and antitumor activities. Biochem Pharmacol 65(2):173–179. https://doi.org/10.1016/S0006-2952(02)01478-8

    Article  PubMed  CAS  Google Scholar 

  25. Li J, Cubbon RM, Wilson LA, Amer MS, McKeown L, Hou B, Majeed Y, Tumova S et al (2011) Orai1 and CRAC channel dependence of VEGF-activated Ca2+ entry and endothelial tube formation. Circ Res 108(10):1190–1198. https://doi.org/10.1161/CIRCRESAHA.111.243352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Tu YF, Jiang ST, Chow YH et al (2016) Insulin receptor substrate-1 activation mediated p53 downregulation protects against hypoxic-ischemia in the neonatal brain. Mol Neurobiol 53:3658–3669

    Article  CAS  Google Scholar 

  27. Germanò A, Caffo M, Angileri FF et al (2007) NMDA receptor antagonist felbamate reduces behavioral deficits and blood-brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma 24(4):732–744. https://doi.org/10.1089/neu.2006.0181

    Article  PubMed  Google Scholar 

  28. Hung PL, Huang CC, DG T et al (2013) Thyroxin treatment protects against white matter injury in the immature brain via brain-derived neurotrophic factor. Stroke 44(8):2275–2283. https://doi.org/10.1161/STROKEAHA.113.001552

    Article  PubMed  CAS  Google Scholar 

  29. Paxinos G, Watson C (1986) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  30. Bouras C, Kövari E, Herrmann FR, Rivara CB, Bailey TL, von Gunten A, Hof PR, Giannakopoulos P (2006) Stereologic analysis of microvascular morphology in the elderly: Alzheimer disease pathology and cognitive status. J Neuropathol Exp Neurol 65(3):235–244. https://doi.org/10.1097/01.jnen.0000203077.53080.2c

    Article  PubMed  Google Scholar 

  31. Liu H, Liu S, Li Y, Wang X, Xue W, Ge G, Luo X (2012) The role of SDF-1-CXCR4/ CXCR7 axis in the therapeutic effects of hypoxia-preconditioned mesenchymal stem cells for renal ischemia/reperfusion injury. PLoS One 7(4):e34608. https://doi.org/10.1371/journal.pone.0034608

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Wei N, SP Y, Gu X et al (2013) Delayed intranasal delivery of hypoxic-preconditioned bone marroe mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant 22(6):977–991. https://doi.org/10.3727/096368912X657251

    Article  PubMed  Google Scholar 

  33. Yu X, Lu C, Liu H, Rao S, Cai J, Liu S, Kriegel AJ, Greene AS et al (2013) Hypoxic preconditioning with cobalt of bone marrow mesenchymal stem cells improves cell migration and enhances therapy for treatment of ischemic acute kidney injury. PLoS One 8(5):e62703. https://doi.org/10.1371/journal.pone.0062703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chacko SM, Ahmed S, Selvendiran K, Kuppusamy ML, Khan M, Kuppusamy P (2010) Hypoxic preconditioning induces the expression of prosurvival and proangiogenic markers in mesenchymal stem cells. Am J Physiol Cell Physiol 299(6):C1562–C1570. https://doi.org/10.1152/ajpcell.00221.2010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Tsai CC, Yew TL, Yang DC, Huang WH, Hung SC (2012) Benefits of hypoxic culture on bone marrow multipotent stromal cells. Am J Blood Res 2(3):148–159

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Yu Y, RX W, Gao LN et al (2016) Stromal cell-derived factor-1-directed bone marrow mesenchymal stem cell migration in response to inflammatory and/or hypoxic stimuli. Cell Adhes Migr 8:1–18

    Article  CAS  Google Scholar 

  37. Eichmann A, Simons M (2005) VEGF signaling inside vascular endothelial cells and beyond. Curr Opin Cell Biol 24:188–193

    Article  CAS  Google Scholar 

  38. Cheng N, Brantley DM, Liu H, Lin Q, Enriquez M, Gale N, Yancopoulos G, Cerretti DP et al (2002) Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1(1):2–11

    Article  PubMed  CAS  Google Scholar 

  39. Hunter SG, Zhuang G, Brantley-Sieders D, Swat W, Cowan CW, Chen J (2006) Essential role of Vav family guanine nucleotide exchange factors in EphA receptor-mediated angiogenesis. Mol Cell Biol 26(13):4830–4842. https://doi.org/10.1128/MCB.02215-05

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Baker AM, Bird D, Welti JC, Gourlaouen M, Lang G, Murray GI, Reynolds AR, Cox TR et al (2013) Lysyl oxidase plays a critical role in endothelial cell stimulation to drive tumor angiogenesis. Cancer Res 73(2):583–594. https://doi.org/10.1158/0008-5472.CAN-12-2447

    Article  PubMed  CAS  Google Scholar 

  41. Kumar P, Amin MA, Harlow LA, Polverini PJ, Koch AE (2003) Src and phosphatidylinositol 3–kinase mediate soluble E-selectin–induced angiogenesis. Blood 101(10):3960–3968. https://doi.org/10.1182/blood-2002-04-1237

    Article  PubMed  CAS  Google Scholar 

  42. Namiki A, Brogi E, Kearney M, Kim EA, Wu T, Couffinhal T, Varticovski L, Isner JM (1995) Hypoxia induces vascular endothelial growth factor in cultured human endothelial cells. J Biol Chem 270(52):31189–31195. https://doi.org/10.1074/jbc.270.52.31189

    Article  PubMed  CAS  Google Scholar 

  43. Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL (1996) Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16(9):4604–4613. https://doi.org/10.1128/MCB.16.9.4604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Borentain P, Carmona S, Mathieu S, Jouve E, el-Battari A, Gérolami R (2016) Inhibition of E-selectin expression on the surface of endothelial cells inhibits hepatocellular carcinoma growth by preventing tumor angiogenesis. Cancer Chemother Pharmacol 77(4):847–856. https://doi.org/10.1007/s00280-016-3006-x

    Article  PubMed  CAS  Google Scholar 

  45. Hatipoglu OF, Hirohata S, Cilek MZ (2009) ADAMTS1 is a unique hypoxic early response gene expressed by endothelial cells. J Biol Chem 284(24):16325–16333. https://doi.org/10.1074/jbc.M109.001313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Patel S, Leal AD, Gorski DH (2005) The homeobox gene Gax inhibits angiogenesis through inhibition of nuclear factor-kappaB-dependent endothelial cell gene expression. Cancer Res 65(4):1414–1424. https://doi.org/10.1158/0008-5472.CAN-04-3431

    Article  PubMed  CAS  Google Scholar 

  47. Zhang J, Li X, Chai S, Wang X (2015) Neuroprotective effect of lentivirus mediated VEGF on rat model with cerebral ischemic injury. Int J Clin Exp Med 8(3):4094–4100

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Horie N, Pereira MP, Niizuma K, Sun G, Keren-Gill H, Encarnacion A, Shamloo M, Hamilton SA et al (2011) Transplanted stem cell-secreted vascular endothelial growth factor effects poststroke recovery, inflammation, and vascular repair. Stem Cells 29(2):274–285. https://doi.org/10.1002/stem.584

    Article  PubMed  CAS  Google Scholar 

  49. Larrieu-Lahargue F, Welm AL, Thomas KR, Li DY (2010) Netrin-4 induces lymphangiogenesis in vivo. Blood 115(26):5418–5426. https://doi.org/10.1182/blood-2009-11-252338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Viñals F, Pouysségur J (2001) Transforming growth factor beta1 (TGF-beta1) promotes endothelial cell survival during in vitro angiogenesis via an autocrine mechanism implicating TGF-alpha signaling. Mol Cell Biol 21(21):7218–7230. https://doi.org/10.1128/MCB.21.21.7218-7230.2001

    Article  PubMed  PubMed Central  Google Scholar 

  51. Cheng Q, Zhang Z, Zhang S, Yang H, Zhang X, Pan J, Weng L, Sha D et al (2015) Human umbilical cord mesenchymal stem cells protect against ischemic brain injury in mouse by regulating peripheral immunoinflammation. Brain Res 1594:293–304. https://doi.org/10.1016/j.brainres.2014.10.065

    Article  PubMed  CAS  Google Scholar 

  52. Jeon H, Kim JH, Kim JH et al (2012) Plasminogen activator inhibitor type 1 regulates microglial motility and phagocytic activity. J Neuroinflammation 9:149

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yang D, Nemkul N, Shereen A, Jone A, Dunn RS, Lawrence DA, Lindquist D, Kuan CY (2009) Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns. J Neurosci 29(27):8669–8674. https://doi.org/10.1523/JNEUROSCI.1117-09.2009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yang D, Sun YY, Nemkul N, Baumann JM, Shereen A, Dunn RS, Wills-Karp M, Lawrence DA et al (2013) Plasminogen activator inhibitor-1 mitigates brain injury in a rat model of infection-sensitized neonatal hypoxia–ischemia. Cereb Cortex 23(5):1218–1229. https://doi.org/10.1093/cercor/bhs115

    Article  PubMed  Google Scholar 

  55. Yang D, Sun YY, Lin X, Baumann JM, Warnock M, Lawrence DA, Kuan CY (2013) Taming neonatal hypoxic-ischemic brain injury by intranasal delivery of plasminogen activator inhibitor-1. Stroke 44(9):2623–2627. https://doi.org/10.1161/STROKEAHA.113.001233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Hughes PM, Botham MS, Frentzel S, Mir A, Perry VH (2002) Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, during acute and chronic inflammation in the rodent CNS. Glia 37(4):314–327. https://doi.org/10.1002/glia.10037

    Article  PubMed  Google Scholar 

  57. Limatola C, Ransohoff RM (2014) Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 8:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Suzuki M, El-Hage N, Zou S, Hahn YK, Sorrell ME, Sturgill JL, Conrad DH, Knapp PE et al (2011) Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol Neurodegener 6(1):78. https://doi.org/10.1186/1750-1326-6-78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Noda M, Doi Y, Liang J, Kawanokuchi J, Sonobe Y, Takeuchi H, Mizuno T, Suzumura A (2011) Fractalkine attenuates excito-neurotoxicity via microglial clearance of damaged neurons and antioxidant enzyme heme oxygenase-1 expression. J Biol Chem 286(3):2308–2319. https://doi.org/10.1074/jbc.M110.169839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the Ministry of Science and Technology (103-2314-B-038-062-MY3 and 104-2314-B-006-093-MY3) of Taiwan. We acknowledge Wallace Academic Editing (www.editing.tw) for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ching Huang.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Research Involving Animals

This study was approved by the Institutional Animal Care Committee of National Cheng Kung University’s.

Informed Consent

Not indicated

Electronic Supplementary Material

ESM 1

(XLSX 22 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, YC., Chang, YC., Wu, CC. et al. Hypoxia-Preconditioned Human Umbilical Vein Endothelial Cells Protect Against Neurovascular Damage After Hypoxic Ischemia in Neonatal Brain. Mol Neurobiol 55, 7743–7757 (2018). https://doi.org/10.1007/s12035-018-0867-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-018-0867-5

Keywords

Navigation