Skip to main content
Log in

Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Glutamate is the major excitatory transmitter of the vertebrate brain. It exerts its actions through the activation of specific plasma membrane receptors expressed both in neurons and in glial cells. Recent evidence has shown that glutamate uptake systems, particularly enriched in glia cells, trigger biochemical cascades in a similar fashion as receptors. A tight regulation of glutamate extracellular levels prevents neuronal overstimulation and cell death, and it is critically involved in glutamate turnover. Glial glutamate transporters are responsible of the majority of the brain glutamate uptake activity. Once internalized, this excitatory amino acid is rapidly metabolized to glutamine via the astrocyte-enriched enzyme glutamine synthetase. A coupling between glutamate uptake and glutamine synthesis and release has been commonly known as the glutamate/glutamine shuttle. Taking advantage of the established model of cultured Bergmann glia cells, in this contribution, we explored the gene expression regulation of glutamine synthetase. A time- and dose-dependent regulation of glutamine synthetase protein and activity levels was found. Moreover, glutamate exposure resulted in the transient shift of glutamine synthetase mRNA from the monosomal to the polysomal fraction. These results demonstrate a novel mode of glutamate-dependent glutamine synthetase regulation and strengthen the notion of an exquisite glia neuronal interaction in glutamatergic synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mayer ML (2011) Emerging models of glutamate receptor ion channel structure and function. Structure 19:1370–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Sengmany K, Gregory KJ (2016) Metabotropic glutamate receptor subtype 5: molecular pharmacology, allosteric modulation and stimulus bias. Br J Pharmacol 173:3001–3017

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Y, Danbolt NC (2014) Glutamate as a neurotransmitter in the healthy brain. J Neural Transm 121:799–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hertz L, Rothman D (2017) Glutamine-glutamate cycle flux is similar in cultured astrocytes and brain and both glutamate production and oxidation are mainly catalyzed by aspartate aminotransferase. Biology (Basel) 6:17

    Google Scholar 

  5. Martínez-Lozada Z, Ortega A (2015) Glutamatergic transmission: a matter of three. Neural Plast 2015:1–11

    Article  Google Scholar 

  6. Suárez-Pozos E, Martínez-Lozada Z, Mendez-Flores O et al (2017) Characterization of the cystine/glutamate antiporter in cultured Bergmann glia cells. Neurochem. Int 52:52–59

  7. Martínez-Lozada Z, Guillem AM, Flores-Méndez M et al (2013) GLAST/EAAT1-induced glutamine release via SNAT3 in Bergmann glial cells: evidence of a functional and physical coupling. J Neurochem 125:545–554

    Article  PubMed  Google Scholar 

  8. Todd AC, Marx M-C, Hulme SR, et al (2017) SNAT3-mediated glutamine transport in perisynaptic astrocytes in situ is regulated by intracellular sodium. Glia 65:900–916

  9. Rose EM, Koo JCP, Antflick JE et al (2009) Glutamate transporter coupling to Na,K-ATPase. J Neurosci 29:8143–8155

    Article  CAS  PubMed  Google Scholar 

  10. Pellerin L, Bonvento G, Chatton P et al (2002) Role of neuron-glia interaction in the regulation of brain glucose utilization. Diabetes Nutr Metab 15:268–273

    CAS  PubMed  Google Scholar 

  11. González-Mejia ME, Morales M, Hernández-Kelly LC et al (2006) Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience 141:1389–1398

    Article  PubMed  Google Scholar 

  12. Bröer A, Deitmer JW, Bröer S (2004) Astroglial glutamine transport by system N is upregulated by glutamate. Glia 48:298–310

    Article  PubMed  Google Scholar 

  13. Ortega A, Eshhar N, Teichberg VI (1991) Properties of kainate receptor/channels on cultured Bergmann glia. Neuroscience 41:335–349

    Article  CAS  PubMed  Google Scholar 

  14. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clèries R, Galvez J, Espino M et al (2012) BootstRatio: a web-based statistical analysis of fold-change in qPCR and RT-qPCR data using resampling methods. Comput Biol Med 42:438–445

    Article  PubMed  Google Scholar 

  16. Haghighat N (2005) Estrogen (17-beta-Estradiol) enhances glutamine synthetase activity in C6-glioma cells. Neurochem Res 30:661–667

    Article  CAS  PubMed  Google Scholar 

  17. Anlauf E, Derouiche A (2013) Glutamine synthetase as an astrocytic marker: Its cell type and vesicle localization. Front Endocrinol (Lausanne) 4:144

    Google Scholar 

  18. Ruiz M, Ortega A (1995) Characterization of an Na+-dependent glutamate/aspartate transporter from cultured Bergmann glia. Neuroreport 6:2041–2044. https://doi.org/10.1097/00001756-199510010-00021

    Article  CAS  PubMed  Google Scholar 

  19. Biever A, Boubaker-vitre J, Cutando L et al (2017) Repeated exposure to d-amphetamine decreases global protein synthesis and regulates the translation of a subset of mRNAs in the striatum. Front Mol Neurosci 9:1–11

    Article  Google Scholar 

  20. Danbolt NC, Furness DN, Zhou Y (2016) Neuronal vs glial glutamate uptake: resolving the conundrum. Neurochem Int 98:29–45

    Article  CAS  PubMed  Google Scholar 

  21. McKenna MC, Stridh MH, McNair LF et al (2016) Glutamate oxidation in astrocytes: roles of glutamate dehydrogenase and aminotransferases. J Neurosci Res 94:1561–1571

    Article  CAS  PubMed  Google Scholar 

  22. McKenna MC (2013) Glutamate pays its own way in astrocytes. Front Endocrinol (Lausanne) 4:191

    Google Scholar 

  23. López-Colomé AM, López E, Mendez-Flores OG, Ortega A (2016) Glutamate receptor stimulation up-regulates glutamate uptake in human Müller glia cells. Neurochem Res 41:1797–1805

    Article  PubMed  Google Scholar 

  24. Uwechue NM, Marx M-C, Chevy Q, Billups B (2012) Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J Physiol 590:2317–2331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mendez-Flores OG, Hernández-Kelly LC, Suárez-Pozos E et al (2016) Coupling of glutamate and glucose uptake in cultured Bergmann glial cells. Neurochem Int 98:72–81

    Article  CAS  PubMed  Google Scholar 

  26. Gonzalez-Mejia ME, Morales M, Hernandez-Kelly LCR et al (2006) Glutamate-dependent translational regulation in cultured Bergmann glia cells: involvement of p70S6K. Neuroscience 141:1389–1398

    Article  CAS  PubMed  Google Scholar 

  27. Barrera I, Flores-Méndez M, Hernández-Kelly LC et al (2010) Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochem Int 57:795–803

    Article  CAS  PubMed  Google Scholar 

  28. Shin D, Park C (2004) N-terminal extension of canine glutamine synthetase created by splicing alters its enzymatic property. J Biol Chem 279:1184–1190

    Article  CAS  PubMed  Google Scholar 

  29. Ruvinsky I, Meyuhas O (2006) Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31:342–348

    Article  CAS  PubMed  Google Scholar 

  30. Barrera I, Hernández-Kelly LC, Castelán F, Ortega A (2008) Glutamate-dependent elongation factor-2 phosphorylation in Bergmann glial cells. Neurochem Int 52:1167–1175

    Article  CAS  PubMed  Google Scholar 

  31. Zepeda RC, Barrera I, Castelán F et al (2008) Glutamate-dependent transcriptional regulation in Bergmann glia cells: involvement of p38 MAP kinase. Neurochem Res 33:1277–1285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

RTF and DM are supported by CONACyT Mexico scholarships. This work was funded by CONACyT, Mexico (255087), and Soluciones para un México Verde, S.A. de C.V. grants to AO.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Ortega.

Ethics declarations

All efforts were made to reduce the number of embryos used and their suffering according to International Guidelines on the Ethical Use of Animals.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiburcio-Félix, R., Escalante-López, M., López-Bayghen, B. et al. Glutamate-Dependent Translational Control of Glutamine Synthetase in Bergmann Glia Cells. Mol Neurobiol 55, 5202–5209 (2018). https://doi.org/10.1007/s12035-017-0756-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-017-0756-3

Keywords

Navigation