Skip to main content

Advertisement

Log in

EGb761 Ameliorates Neuronal Apoptosis and Promotes Angiogenesis in Experimental Intracerebral Hemorrhage via RSK1/GSK3β Pathway

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Neuronal apoptosis after intracerebral hemorrhage (ICH) plays an essential role in neurological deterioration. Preclinical studies have shown that EGb761, an extract of Ginkgo biloba, is neuroprotective in some other neurological diseases with apoptosis. This study was conducted to investigate the potential neuroprotective effect of EGb761 on neuronal apoptosis in experimental ICH. A model of ICH was induced in C57BL/6 mice by injecting collagenase. EGb761 was administered for 21 days and neurologic behaviors were assessed at 1, 3, 7, 14, and 21 days after ICH. RNAi-mediated knockdown of p90 ribosomal S6 kinase 1 (RSK1) was used to further investigate the role of RSK1 in EGb761-induced neuroprotective effects. Neuronal death was determined by TUNEL staining. The image datasets of neurovascular networks were acquired via micro-optical sectioning tomography (MOST). The glycogen synthase kinase-3β (GSK3β) activity was assayed using commercial kit. Primary cultured cortical neurons were exposed to ferrous iron and treated with EGb761. Apoptotic neurons were counted by flow cytometry. RSK1, GSK3β, phosphorylated-GSK3β (pGSK3β), Bcl2, Bax, cleaved-caspase3 (CC3), and VEGF were measured by Western blot. The pGSK3β was also detected by immunofluorescence staining. We found that mice in EGb761 group performed better on rotarod test. Reduced TUNEL-positive neurons and richer microvascular networks were observed in mice treated with EGb761. EGb761 attenuates neuronal apoptosis induced by ferrous iron counted by flow cytometry in vitro. Decreased GSK3β activity was observed in EGb761-treated mice compared with mice with ICH. EGb761 increased the expression of pGSK3β (Ser9), RSK1 and the Bcl2/Bax ratio, and VEGF and decreased CC3 expression. In conclusion, EGb761 reduces neuronal apoptosis and promotes angiogenesis in experimental intracerebral hemorrhage via RSK1/GSK3β pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Qureshi AI, Mendelow AD, Hanley DF (2009) Intracerebral haemorrhage. Lancet 373(9675):1632–1644

    Article  PubMed  PubMed Central  Google Scholar 

  2. Wilson D, Adams ME, Robertson F, Murphy M, Werring DJ (2015) Investigating intracerebral haemorrhage. BMJ 350:h2484

    Article  PubMed  Google Scholar 

  3. Qureshi AI, Tuhrim S, Broderick JP, Batjer HH, Hondo H, Hanley DF (2001) Spontaneous intracerebral hemorrhage. N Engl J Med 344(19):1450–1460

    Article  CAS  PubMed  Google Scholar 

  4. Labovitz DL, Halim A, Boden-Albala B, Hauser WA, Sacco RL (2005) The incidence of deep and lobar intracerebral hemorrhage in whites, blacks, and hispanics. Neurology 65(4):518–522

    Article  CAS  PubMed  Google Scholar 

  5. Sudlow CL, Warlow CP (1997) Comparable studies of the incidence of stroke and its pathological types: results from an international collaboration. Stroke 28(3):491–499

    Article  CAS  PubMed  Google Scholar 

  6. Mikulik R, Wahlgren N (2015) Treatment of acute stroke: an update. J Intern Med 278(2):145–165

    Article  CAS  PubMed  Google Scholar 

  7. Gong C, Boulis N, Qian J, Turner DE, Hoff JT, Keep RF (2001) Intracerebral hemorrhage-induced neuronal death. Neurosurgery 48(4):875–882

    CAS  PubMed  Google Scholar 

  8. Mracsko E, Veltkamp R (2014) Neuroinflammation after intracerebral hemorrhage. Front Cell Neurosci 8:388

    Article  PubMed  PubMed Central  Google Scholar 

  9. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5(1):53–63

    Article  PubMed  Google Scholar 

  10. Takahashi-Yanaga F (2013) Activator or inhibitor? GSK-3 as a new drug target. Biochem Pharmacol 86(2):191–199

    Article  CAS  PubMed  Google Scholar 

  11. Chiara F, Rasola A (2013) GSK-3 and mitochondria in cancer cells. Front Oncol 3:16

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kaidanovich-Beilin O, Woodgett JR (2011) GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci 4:40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH et al (2015) Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of GSK-3β. J Cell Biol 209(3):419–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miyawaki T, Ofengeim D, Noh KM, Latuszek-Barrantes A, Hemmings BA, Follenzi A, Zukin RS (2009) The endogenous inhibitor of Akt, CTMP, is critical to ischemia-induced neuronal death. Nat Neurosci 12(5):618–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee HC, Lin YZ, Lai YT, Huang WJ, Hu JR, Tsai JN, Tsai HJ (2014) Glycogen synthase kinase 3 beta in somites plays a role during the angiogenesis of zebrafish embryos. FEBS J 281(19):4367–4383

    Article  CAS  PubMed  Google Scholar 

  16. Romeo Y, Zhang X, Roux PP (2012) Regulation and function of the RSK family of protein kinases. Biochem J 441(2):553–569

    Article  CAS  PubMed  Google Scholar 

  17. Frodin M, Gammeltoft S (1999) Role and regulation of 90 kDa ribosomal s6 kinase (RSK) in signal transduction. Mol Cell Endocrinol 151(1–2):65–77

    Article  CAS  PubMed  Google Scholar 

  18. Stambolic V, Woodgett JR (1994) Mitogen inactivation of glycogen synthase kinase-3 beta in intact cells via serine 9 phosphorylation. Biochem J 303(Pt 3):701–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Diamond BJ, Bailey MR (2013) Ginkgo biloba: indications, mechanisms, and safety. Psychiatr Clin North Am 36(1):73–83

    Article  PubMed  Google Scholar 

  20. Janssen IM, Sturtz S, Skipka G, Zentner A, Velasco GM, Busse R (2010) Ginkgo biloba in Alzheimer’s disease: a systematic review. Wien Med Wochenschr 160(21–22):539–546

    Article  PubMed  Google Scholar 

  21. Weinmann S, Roll S, Schwarzbach C, Vauth C, Willich SN (2010) Effects of Ginkgo biloba in dementia: systematic review and meta-analysis. BMC Geriatr 10:14

    Article  PubMed  PubMed Central  Google Scholar 

  22. Sun BL, Yuan H, Yang MF, Xia ZL, Zhang SM, Wang LX (2007) Effects of extract of Ginkgo biloba on intracranial pressure, cerebral perfusion pressure, and cerebral blood flow in a rat model of subarachnoid haemorrhage. Int J Neurosci 117(5):655–665

    Article  PubMed  Google Scholar 

  23. Tanaka K, Galduroz RF, Gobbi LT, Galduroz JC (2013) Ginkgo biloba extract in an animal model of Parkinson’s disease: a systematic review. Curr Neuropharmacol 11(4):430–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yan M, Liu YW, Shao W, Mao XG, Yang M, Ye ZX, Liang W, Luo ZJ (2016) EGb761 improves histological and functional recovery in rats with acute spinal cord contusion injury. Spinal Cord 54(4):259–265

    Article  CAS  PubMed  Google Scholar 

  25. Sun L, Zhuang W, Xu X, Yang J, Teng J, Zhang F (2013) The effect of injection of EGb761 into the lateral ventricle on hippocampal cell apoptosis and stem cell stimulation in situ of the ischemic/reperfusion rat model. Neurosci Lett 555:123–128

    Article  CAS  PubMed  Google Scholar 

  26. Kwon KJ, Lee EJ, Cho KS, Cho DH, Shin CY, Han SH (2015) Ginkgo biloba extract (EGb761) attenuates zinc-induced tau phosphorylation at ser262 by regulating gsk3beta activity in rat primary cortical neurons. Food Funct 6(6):2058–2067

    Article  CAS  PubMed  Google Scholar 

  27. Sun BL, Hu DM, Yuan H, Ye WJ, Wang XC, Xia ZL, Zhang SM, Wang LX (2009) Extract of Ginkgo biloba promotes the expression of VEGF following subarachnoid hemorrhage in rats. Int J Neurosci 119(7):995–1005

    Article  CAS  PubMed  Google Scholar 

  28. Nada SE, Tulsulkar J, Shah ZA (2014) Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after permanent ischemic stroke in mice. Mol Neurobiol 49(2):945–956

    Article  CAS  PubMed  Google Scholar 

  29. Gao X, Lin B, Sadayappan S, Patel TB (2014) Interactions between the regulatory subunit of type I protein kinase a and p90 ribosomal S6 Kinase1 regulate cardiomyocyte apoptosis. Mol Pharmacol 85(2):357–367

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y et al (2012) Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther 18(10):847–854

    Article  PubMed  Google Scholar 

  31. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M (2001) Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 32(4):1005–1011

    Article  CAS  PubMed  Google Scholar 

  32. Li A, Gong H, Zhang B, Wang Q, Yan C, Wu J, Liu Q, Zeng S et al (2010) Micro-optical sectioning tomography to obtain a high-resolution atlas of the mouse brain. Science 330(6009):1404–1408

    Article  CAS  PubMed  Google Scholar 

  33. Wu J, He Y, Yang Z, Guo C, Luo Q, Zhou W, Chen S, Li A et al (2014) 3D brain CV: simultaneous visualization and analysis of cells and capillaries in a whole mouse brain with one-micron voxel resolution. NeuroImage 87:199–208

    Article  PubMed  Google Scholar 

  34. Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C et al (2014) DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci 34(19):6546–6556

    Article  CAS  PubMed  Google Scholar 

  35. Liu D, Wei N, Man HY, Lu Y, Zhu LQ, Wang JZ (2015) The MT2 receptor stimulates axonogenesis and enhances synaptic transmission by activating Akt signaling. Cell Death Differ 22(4):583–596

    Article  CAS  PubMed  Google Scholar 

  36. Chen J, Regan RF (2004) Heme oxygenase-2 gene deletion increases astrocyte vulnerability to hemin. Biochem Biophys Res Commun 318(1):88–94

    Article  CAS  PubMed  Google Scholar 

  37. Chen-Roetling J, Chen L, Regan RF (2009) Minocycline attenuates iron neurotoxicity in cortical cell cultures. Biochem Biophys Res Commun 386(2):322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pei L, Wang S, Jin H, Bi L, Wei N, Yan H, Yang X, Yao C et al (2015) A novel mechanism of spine damages in stroke via DAPK1 and tau. Cereb Cortex 25(11):4559–4571

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qu N, Zhou XY, Han L, Wang L, Xu JX, Zhang T, Jiang C, Qiao C et al (2016) Combination of PPT with LiCl treatment prevented bilateral ovariectomy-induced hippocampal-dependent cognition deficit in rats. Mol Neurobiol 53(2):894–904

    Article  CAS  PubMed  Google Scholar 

  40. Tang T, Liu XJ, Zhang ZQ, Zhou HJ, Luo JK, Huang JF, Yang QD, Li XQ (2007) Cerebral angiogenesis after collagenase-induced intracerebral hemorrhage in rats. Brain Res 1175:134–142

    Article  CAS  PubMed  Google Scholar 

  41. Arai K, Jin G, Navaratna D, Lo EH (2009) Brain angiogenesis in developmental and pathological processes: neurovascular injury and angiogenic recovery after stroke. FEBS J 276(17):4644–4652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Seto SW, Chang D, Jenkins A, Bensoussan A, Kiat H (2016) Angiogenesis in ischemic stroke and angiogenic effects of Chinese herbal medicine. J Clin Med 5(6). doi:10.3390/jcm5060056

Download references

Acknowledgements

This investigation was supported by Prof. Zhouping Tang’s National Natural Science Foundation of China (81171089, 81471211). We would like to express our gratitude to Dr. Teng Zhang for his assistance in this experiment.

We are very grateful to Wuhan Oebio Biology Co., Ltd. (http://www.oebio.com/) for kindly assisting us with the MOST technique used in the reconstruction of 3D neurovascular networks. Ginkgo biloba (EGb761) was kindly provided by Dr. Willmar Schwabe Pharmaceuticals, Germany.

Authors’ Contributions

Chao Pan performed most of the experiments and drafted the manuscript; Na Liu and Ping Zhang conducted the neuronal culture studies; Qian Wu performed the flow cytometry; Hong Deng established the animal models; Feng Xu bred the mice and conducted the behavioral tests; Lifei Lian and Qiming Liang performed the Western blot; Yang Hu conducted the statistical analysis; and Prof. Zhouping Tang and Suiqiang Zhu designed and guided the experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suiqiang Zhu or Zhouping Tang.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Electronic supplementary material

Video 1

(MOV 7702 kb)

Video 2

(MOV 7817 kb)

Video 3

(MOV 8264 kb)

Video 4

(MOV 8150 kb)

Glossary

AD

Alzheimer’s disease

CC3

Cleaved-caspase3

GSK3β

Glycogen synthase kinase-3β

ICH

Intracerebral hemorrhage

mNSS

Modified neurological severity score

MOST

Micro-optical sectioning tomography

PD

Parkinson’s disease

pGSK3β

Phosphorylated-GSK3β

PI

Propidium iodide

RNAi

RNA interference

RSK1

p90 ribosomal S6 kinase 1

SAH

Subarachnoid hemorrhage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, C., Liu, N., Zhang, P. et al. EGb761 Ameliorates Neuronal Apoptosis and Promotes Angiogenesis in Experimental Intracerebral Hemorrhage via RSK1/GSK3β Pathway. Mol Neurobiol 55, 1556–1567 (2018). https://doi.org/10.1007/s12035-016-0363-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0363-8

Keywords

Navigation