Skip to main content

Advertisement

Log in

Effects of Toll-Like Receptor 4 Antagonists Against Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Toll-like receptor 4 (TLR4) signaling may play a crucial role in the occurrence of cerebral vasospasm after subarachnoid hemorrhage (SAH). The main purpose of this study was to assess if selective blockage of TLR4 on cerebral arteries prevents cerebral vasospasm development and neurological impairments after SAH in mice. One hundred fourteen mice underwent endovascular perforation SAH or sham operation and were randomly divided into the following 6 groups: sham+vehicle, sham+LPS-RS ultrapure 8 μg, sham+LPS-RS ultrapure 40 μg, SAH+vehicle, SAH+LPS-RS ultrapure 8 μg, and SAH+LPS-RS ultrapure 40 μg. A selective TLR4 antagonist, LPS-RS ultrapure (8 or 40 μg), was administered intracerebroventricularly to mice at 30 min, and the effects were evaluated by neurobehavioral tests and India-ink angiography at 24–48 h, and Western blotting and immunohistochemistry on cerebral arteries at 24 h post-SAH. Higher but not lower dosages of LPS-RS ultrapure significantly prevented post-SAH neurological impairments and ameliorated cerebral vasospasm. SAH caused TLR4 activation and cyclooxygenase-1 (COX1) upregulation in the endothelial cells and smooth muscle cells of spastic cerebral arteries, both of which were significantly suppressed by LPS-RS ultrapure. Another selective TLR4 antagonist, IAXO-102, which has a different binding site from LPS-RS ultrapure, also showed similar protective effects to LPS-RS ultrapure. These findings suggest that TLR4 signaling is implicated in cerebral vasospasm development at least partly via COX1 upregulation, and that TLR4 antagonists have therapeutic potential as a new therapy against cerebral vasospasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ACA:

Anterior cerebral artery

ANOVA:

Analysis of variance

BA:

Basilar artery

COX:

Cyclooxygenase

COX1:

Cyclooxygenase-1

COX2:

Cyclooxygenase-2

CSF:

Cerebrospinal fluid

DCI:

Delayed cerebral ischemia

ET:

Endothelin

HE:

Hematoxylin and eosin

ICA:

Internal carotid artery

ICAM:

Intercellular adhesion molecule

IL:

Interleukin

MCA:

Middle cerebral artery

MCP:

Monocyte chemoattractant protein

NO:

Nitric oxide

PBS:

Phosphate-buffered saline

NF:

Nuclear factor

SAH:

Subarachnoid hemorrhage

TLR4:

Toll-like receptor 4

TNF:

Tumor necrosis factor

References

  1. Taki W, Sakai N, Suzuki H, Prospective Registry of Subarachnoid Aneurysms Treatment (PRESAT) group (2011) Determinants of poor outcome following aneurysmal subarachnoid hemorrhage when both clipping and coiling are available: PRESAT in Japan. World Neurosurg 76:437–445

    Article  PubMed  Google Scholar 

  2. Keyrouz S, Diringer M (2007) Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care 11:220. doi:10.1186/cc5958

    Article  PubMed  PubMed Central  Google Scholar 

  3. Suzuki H (2015) What is early brain injury? Transl Stroke Res 6:1–3

    Article  PubMed  Google Scholar 

  4. Crowley RW, Medel R, Dumont AS, Ilodigwe D, Kassell NF, Mayer SA, Ruefenacht D, Schmiedek P et al (2011) Angiographic vasospasm is strongly correlated with cerebral infarction after subarachnoid hemorrhage. Stroke 42:919–923

    Article  PubMed  Google Scholar 

  5. Fang H, Wang PF, Zhou Y, Wang YC, Yang QW (2013) Toll-like receptor 4 signaling in intracerebral hemorrhage-induced inflammation and injury. J Neuroinflammation 10:27. doi:10.1186/1742-2094-10-27

  6. Ma C, Zhou W, Yan Z, Qu M, Bu X (2015) Toll-like receptor 4 (TLR4) is associated with cerebral vasospasm and delayed cerebral ischemia in aneurysmal subarachnoid hemorrhage. Neurol Med Chir (Tokyo) 55:878–884

    Article  Google Scholar 

  7. Zhang T, Su J, Guo B, Wang K, Li X, Liang G (2015) Apigenin protects blood-brain barrier and ameliorates early brain injury by inhibiting TLR4-mediated inflammatory pathway in subarachnoid hemorrhage rats. Int Immunopharmacol 28:79–87

    Article  PubMed  Google Scholar 

  8. Zhou ML, Wu W, Ding YS, Zhang FF, Hang CH, Wang HD, Cheng HL, Yin HX et al (2007) Expression of Toll-like receptor 4 in the basilar artery after experimental subarachnoid hemorrhage in rabbits: a preliminary study. Brain Res 1173:110–116

    Article  CAS  PubMed  Google Scholar 

  9. Johnson GB, Brunn GJ, Platt JL (2003) Activation of mammalian Toll-like receptors by endogenous agonists. Crit Rev Immunol 23:15–44

    Article  CAS  PubMed  Google Scholar 

  10. Suzuki H, Kawakita F (2016) Tenascin-C in aneurysmal subarachnoid hemorrhage: deleterious or protective? Neural Regen Res 11:230–231

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fujimoto M, Suzuki H, Shiba M, Shimojo N, Imanaka-Yoshida K, Yoshida T, Kanamaru K, Matsushima S et al (2013) Tenascin-C induces prolonged constriction of cerebral arteries in rats. Neurobiol Dis 55:104–109

    Article  CAS  PubMed  Google Scholar 

  12. Lee SJ, Lee S (2002) Toll-like receptors and inflammation in the CNS. Curr Drug Targets Inflamm Allergy 1:181–191

    Article  CAS  PubMed  Google Scholar 

  13. Zhang T, Su J, Guo B, Zhu T, Wang K, Li X (2014) Ursolic acid alleviates early brain injury after experimental subarachnoid hemorrhage by suppressing TLR4-mediated inflammatory pathway. Int Immunopharmacol 23:585–591

    Article  PubMed  Google Scholar 

  14. Chang CZ, Wu SC, Kwan AL (2014) Glycyrrhizin attenuates Toll like receptor-2, -4 and experimental vasospasm in a rat model. J Immunol Res 2014:740549. doi:10.1155/2014/740549

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wu Y, Tang K, Huang RQ, Zhuang Z, Cheng HL, Yin HX, Shi JX (2011) Therapeutic potential of peroxisome proliferator-activated receptor γ agonist rosiglitazone in cerebral vasospasm after a rat experimental subarachnoid hemorrhage model. J Neurol Sci 305:85–91

    Article  CAS  PubMed  Google Scholar 

  16. Paschon V, Takada SH, Ikebara JM, Sousa E, Raeisossadati R, Ulrich H, Kihara AH (2016) Interplay between exosomes, microRNAs and Toll-like receptors in brain disorders. Mol Neurobiol 53:2016–2028

    Article  CAS  PubMed  Google Scholar 

  17. Hanafy KA (2013) The role of microglia and the TLR4 pathway in neuronal apoptosis and vasospasm after subarachnoid hemorrhage. J Neuroinflammation 10:83. doi:10.1186/1742-2094-10-83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altay O, Suzuki H, Hasegawa Y, Caner B, Krafft PR, Fujii M, Tang J, Zhang JH (2012) Isoflurane attenuates blood-brain barrier disruption in ipsilateral hemisphere after subarachnoid hemorrhage in mice. Stroke 43:2513–2516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sasaki T, Murota SI, Wakai S, Asano T, Sano K (1981) Evaluation of prostaglandin biosynthetic activity in canine basilar artery following subarachnoid injection of blood. J Neurosurg 55:771–778

    Article  CAS  PubMed  Google Scholar 

  20. Munakata A, Naraoka M, Katagai T, Shimamura N, Ohkuma H (2016) Role of cyclooxygenase-2 in relation to nitric oxide and endothelin-1 on pathogenesis of cerebral vasospasm after subarachnoid hemorrhage in rabbit. Transl Stroke Res 7:220–227

    Article  CAS  PubMed  Google Scholar 

  21. Sugawara T, Ayer R, Jadhav V, Zhang JH (2008) A new grading system evaluating bleeding scale in filament perforation subarachnoid hemorrhage rat model. J Neurosci Methods 167:327–334

    Article  PubMed  Google Scholar 

  22. Zappaterra MW, LaMantia AS, Walsh CA, Lehtinen MK (2013) Isolation of cerebrospinal fluid from rodent embryos for use with dissected cerebral cortical explants. J Vis Exp 73:e50333

    Google Scholar 

  23. Yaksh TL (1999) Spinal cerebrospinal fluid chemistry and physiology. In: Artru AA (ed) Spinal drug delivery, 1st Ed. Elsevier, Amsterdam, pp. 216–217

    Google Scholar 

  24. Suzuki H, Hasegawa Y, Chen W, Kanamaru K, Zhang JH (2010) Recombinant osteopontin in cerebral vasospasm after subarachnoid hemorrhage. Ann Neurol 68:650–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buchanan MM, Hutchinson M, Watkins LR, Yin H (2010) Toll-like receptor 4 in CNS pathologies. J Neurochem 114:13–27

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu Y, Zhao XD, Zhuang Z, Xue YJ, Cheng HL, Yin HX, Shi JX (2010) Peroxisome proliferator-activated receptor gamma agonist rosiglitazone attenuates oxyhemoglobin-induced Toll-like receptor 4 expression in vascular smooth muscle cells. Brain Res 1322:102–108

    Article  CAS  PubMed  Google Scholar 

  27. Visintin A, Halmen KA, Latz E, Monks BG, Golenbock DT (2005) Pharmacological inhibition of endotoxin responses is achieved by targeting the TLR4 coreceptor, MD-2. J Immunol 175:6465–6472

    Article  CAS  PubMed  Google Scholar 

  28. Peri F, Piazza M, Calabrese V, Damore G, Cighetti R (2010) Exploring the LPS/TLR4 signal pathway with small molecules. Biochem Soc Trans 38:1390–1395

    Article  CAS  PubMed  Google Scholar 

  29. Titova E, Ostrowski RP, Zhang JH, Tang J (2009) Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm. Neurol Res 31:568–581

    Article  PubMed  Google Scholar 

  30. Vanhoutte PM (2011) Endothelium-dependent contractions in hypertension: when prostacyclin becomes ugly. Hypertension 57:526–531

    Article  CAS  PubMed  Google Scholar 

  31. Mukherjee K, Gitlin JM, Loftin CD (2012) Effectiveness of cyclooxygenase-2 inhibition in limiting abdominal aortic aneurysm progression in mice correlates with a differentiated smooth muscle cell phenotype. J Cardiovasc Pharmacol 60:520–529

    Article  CAS  PubMed  Google Scholar 

  32. Shimamura N, Ohkuma H (2014) Phenotypic transformation of smooth muscle in vasospasm after aneurysmal subarachnoid hemorrhage. Transl Stroke Res 5:357–364

    Article  CAS  PubMed  Google Scholar 

  33. Flavahan NA (2007) Balancing prostanoid activity in the human vascular system. Trends Pharmacol Sci 28:106–110

    Article  CAS  PubMed  Google Scholar 

  34. Vanhoutte PM (2009) COX-1 and vascular disease. Clin Pharmacol Ther 86:212–215

    Article  CAS  PubMed  Google Scholar 

  35. Liang C-F, Liu JTC, Wang Y, Xu A, Vanhoutte PM (2013) Toll-like receptor 4 mutation protects obese mice against endothelial dysfunction by decreasing NADPH oxidase isoforms 1 and 4. Arterioscler Thromb Vasc Biol 33:777–784

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Ms. Chiduru Yamamoto (Department of Neurosurgery, Mie University Graduate School of Medicine) for her technical assistance. This work was supported by a Grant-in-Aid for Scientific Research from SENSHIN Medical Research Foundation to Dr. Suzuki, and Japan Society for the Promotion of Science to Dr. Fujimoto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidenori Suzuki.

Ethics declarations

Funding

This work was funded by a Grant-in-Aid for Scientific Research from SENSHIN Medical Research Foundation to Dr. Suzuki, and Japan Society for the Promotion of Science to Dr. Fujimoto.

Conflict of Interest

The authors declare that they have no conflict of interest.

Research Involving Animals

All procedures were approved by the Animal Ethics Review Committee of Mie University and were carried out according to the institution’s Guidelines for Animal Experiments.

Electronic supplementary material

ESM 1

(PDF 4714 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakita, F., Fujimoto, M., Liu, L. et al. Effects of Toll-Like Receptor 4 Antagonists Against Cerebral Vasospasm After Experimental Subarachnoid Hemorrhage in Mice. Mol Neurobiol 54, 6624–6633 (2017). https://doi.org/10.1007/s12035-016-0178-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0178-7

Keywords

Navigation