Skip to main content

Advertisement

Log in

Phenotypic Transformation of Smooth Muscle in Vasospasm after Aneurysmal Subarachnoid Hemorrhage

  • Original Article
  • Published:
Translational Stroke Research Aims and scope Submit manuscript

Abstract

Differentiated smooth muscle cells (SMC) control vasoconstriction and vasodilation, but they can undergo transformation, proliferate, secret cytokines, and migrate into the subendotherial layer with adverse consequences. In this review, we discuss the phenotypic transformation of SMC in cerebral vasospasm after subarachnoid hemorrhage. Phenotypic transformation starts with an insult as caused by aneurysm rupture: Elevation of intracranial and blood pressure, secretion of norepinephrine, and mechanical force on an artery are factors that can cause aneurysm. The phenotypic transformation of SMC is accelerated by inflammation, thrombin, and growth factors. A wide variety of cytokines (e.g., interleukin (IL)-1β, IL-33, matrix metalloproteinases, nitric oxidase synthases, endothelins, thromboxane A2, mitogen-activated protein kinase, platelet-derived vascular growth factors, and vascular endothelial factor) all play roles in cerebral vasospasm (CVS). We summarize the correlations between various factors and the phenotypic transformation of SMC. A new target of this study is the transient receptor potential channel in CVS. Statin together with fasdil prevents phenotypic transformation of SMC in an animal model. Clazosentan prevents CVS and improves outcome in aneurysmal subarachnoid hemorrhage in a dose-dependent manner. Clinical trials of cilostazol for the prevention of phenotypic transformation of SMC have been reported, along with requisite experimental evidence. To conquer CVS in its complexity, we will ultimately need to elucidate its general, underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. King Jr JT. Epidemiology of aneurysmal subarachnoid hemorrhage. Neuroimaging Clin N Am. 1997;7:659–68.

    PubMed  Google Scholar 

  2. Ohkuma H, Fujita S, Suzuki S. Incidence of aneurysmal subarachnoid hemorrhage in Shimokita, Japan, from 1989 to 1998. Stroke. 2002;33:195–9.

    Article  PubMed  Google Scholar 

  3. Pluta RM, Hansen-Schwartz J, Dreier J, et al. Cerebral vasospasm following subarachnoid hemorrhage: time for a new world of thought. Neurol Res. 2009;31:151–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Morita A, Kirino T, Hashi K, et al. The natural course of unruptured cerebral aneurysms in a Japanese cohort. N Engl J Med. 2012;366:2474–82.

    Article  PubMed  Google Scholar 

  5. Inagawa T. What are the actual incidence and mortality rates of subarachnoid hemorrhage? Surg Neurol. 1997;47:47–52.

    Article  CAS  PubMed  Google Scholar 

  6. Shimamura N, Munakata A, Ohkuma H. Current management of subarachnoid hemorrhage in advanced age. Acta Neurochir Suppl. 2011;110:151–5.

    PubMed  Google Scholar 

  7. Broderick JP, Brott TG, Duldner JE, Tomsick T, Leach A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:1342–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kassell NF, Torner JC, Jane JA, Haley Jr EC, Adams HP. The International Cooperative Study on the Timing of Aneurysm Surgery. Part 2: Surgical results. J Neurosurg. 1990;73:37–47.

    Article  CAS  PubMed  Google Scholar 

  9. Weir B, Macdonald RL, Stoodley M. Etiology of cerebral vasospasm. Acta Neurochir Suppl. 1999;72:27–46.

    CAS  PubMed  Google Scholar 

  10. Findlay JM, Kassell NF, Weir BK, et al. A randomized trial of intraoperative, intracisternal tissue plasminogen activator for the prevention of vasospasm. Neurosurgery. 1995;37:168–76.

    Article  CAS  PubMed  Google Scholar 

  11. Senbokuya N, Kinouchi H, Kanemaru K, et al. Effects of cilostazol on cerebral vasospasm after aneurysmal subarachnoid hemorrhage: a multicenter prospective, randomized, open-label blinded end point trial. J Neurosurg. 2013;118:121–30.

    Article  CAS  PubMed  Google Scholar 

  12. Suzuki S, Sayama T, Nakamura T, et al. Cilostazol improves outcome after subarachnoid hemorrhage: a preliminary report. Cerebrovasc Dis. 2011;32:89–93.

    Article  CAS  PubMed  Google Scholar 

  13. Vajkoczy P, Meyer B, Weidauer S, et al. Clazosentan (AXV-034343), a selective endothelin A receptor antagonist, in the prevention of cerebral vasospasm following severe aneurysmal subarachnoid hemorrhage: results of a randomized, double-blind, placebo-controlled, multicenter phase IIa study. J Neurosurg. 2005;103:9–17.

    Article  CAS  PubMed  Google Scholar 

  14. Keyrouz SG, Diringer MN. Clinical review: prevention and therapy of vasospasm in subarachnoid hemorrhage. Crit Care. 2007;11:220.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Munakata A, Ohkuma H, Nakano T, Shimamura N, Asano K, Naraoka M. Effect of a free radical scavenger, edaravone, in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery. 2009;64:423–8.

    Article  PubMed  Google Scholar 

  16. Salomone S, Soydan G, Moskowitz MA, Sims JR. Inhibition of cerebral vasoconstriction by dantrolene and nimodipine. Neurocrit Care. 2009;10:93–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke. 2008;39:3015–21.

    Article  CAS  PubMed  Google Scholar 

  18. Macdonald RL, Higashida RT, Keller E, et al. Preventing vasospasm improves outcome after aneurysmal subarachnoid hemorrhage: rationale and design of CONSCIOUS-2 and CONSCIOUS-3 trials. Neurocrit Care. 2010;13:416–24.

    Article  PubMed  Google Scholar 

  19. Brown RJ, Kumar A, Dhar R, Sampson TR, Diringer MN. The relationship between delayed infarcts and angiographic vasospasm after aneurysmal subarachnoid hemorrhage. Neurosurgery. 2013;72:702–7.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang JH, Badaut J, Tang J, Obenaus A, Hartman R, Pearce WJ. The vascular neural network—a new paradigm in stroke pathophysiology. Nat Rev Neurol. 2012;8:711–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nishimura G, Manabe I, Tsushima K, et al. DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Dev Cell. 2006;11:93–104.

    Article  CAS  PubMed  Google Scholar 

  23. Severs NJ, Rothery S, Dupont E, et al. Immunocytochemical analysis of connexin expression in the healthy and diseased cardiovascular system. Microsc Res Tech. 2001;52:301–22.

    Article  CAS  PubMed  Google Scholar 

  24. Geary RL, Williams JK, Golden D, Brown DG, Benjamin ME, Adams MR. Time course of cellular proliferation, intimal hyperplasia, and remodeling following angioplasty in monkeys with established atherosclerosis. A nonhuman primate model of restenosis. Arterioscler Thromb Vasc Biol. 1996;16:34–43.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Chen J, Sun Y, et al. Regulation of connexin expression after balloon injury: possible mechanisms for antiproliferative effect of statins. Am J Hypertens. 2005;18:1146–53.

    Article  PubMed  Google Scholar 

  26. Shroff RC, Shanahan CM. The vascular biology of calcification. Semin Dial. 2007;20:103–9.

    Article  PubMed  Google Scholar 

  27. Torikoshi K, Abe H, Matsubara T, et al. Protein inhibitor of activated STAT, PIASy regulates alpha-smooth muscle actin expression by interacting with E12 in mesangial cells. PLoS One. 2012;7:e41186.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Ferns GA, Reidy MA, Ross R. Balloon catheter de-endothelialization of the nude rat carotid. Response to injury in the absence of functional T lymphocytes. Am J Pathol. 1991;138:1045–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Guan H, Gao L, Zhu L, et al. Apigenin attenuates neointima formation via suppression of vascular smooth muscle cell phenotypic transformation. J Cell Biochem. 2012;113:1198–207.

    Article  CAS  PubMed  Google Scholar 

  30. Yeh HI, Lupu F, Dupont E, Severs NJ. Upregulation of connexin43 gap junctions between smooth muscle cells after balloon catheter injury in the rat carotid artery. Arterioscler Thromb Vasc Biol. 1997;17:3174–84.

    Article  CAS  PubMed  Google Scholar 

  31. Jiao L, Wang MC, Yang YA, et al. Norepinephrine reversibly regulates the proliferation and phenotypic transformation of vascular smooth muscle cells. Exp Mol Pathol. 2008;85:196–200.

    Article  CAS  PubMed  Google Scholar 

  32. Macdonald RL, Weir B. Pathology and pathogenesis. In: Macdonald RL, Weir B, editors. Cerebral vasospasm. New York: Academic Press; 2001. p. 87–174.

  33. Doczi T, Ambrose J, O’Laoire S. Significance of contrast enhancement in cranial computerized tomography after subarachnoid hemorrhage. J Neurosurg. 1984;60:335–42.

    Article  CAS  PubMed  Google Scholar 

  34. Doczi T, Joo F, Adam G, Bozoky B, Szerdahelyi P. Blood–brain barrier damage during the acute stage of subarachnoid hemorrhage, as exemplified by a new animal model. Neurosurgery. 1986;18:733–9.

    Article  CAS  PubMed  Google Scholar 

  35. Sasaki T, Kassell NF, Yamashita M, Fujiwara S, Zuccarello M. Barrier disruption in the major cerebral arteries following experimental subarachnoid hemorrhage. J Neurosurg. 1985;63:433–40.

    Article  CAS  PubMed  Google Scholar 

  36. Alford PW, Dabiri BE, Goss JA, Hemphill MA, Brigham MD, Parker KK. Blast-induced phenotypic switching in cerebral vasospasm. Proc Natl Acad Sci U S A. 2011;108:12705–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Fountas KN, Tasiou A, Kapsalaki EZ, et al. Serum and cerebrospinal fluid C-reactive protein levels as predictors of vasospasm in aneurysmal subarachnoid hemorrhage. Clinical article. Neurosurg Focus. 2009;26:E22.

    Article  PubMed  Google Scholar 

  38. Fassbender K, Hodapp B, Rossol S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J Neurol Neurosurg Psychiatry. 2001;70:534–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Chou SH, Feske SK, Simmons SL, et al. Elevated Peripheral Neutrophils and Matrix Metalloproteinase 9 as Biomarkers of Functional Outcome Following Subarachnoid Hemorrhage. Transl Stroke Res. 2011;2:600–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Faleiro LC, Machado CR, Gripp Jr A, Resende RA, Rodrigues PA. Cerebral vasospasm: presence of mast cells in human cerebral arteries after aneurysm rupture. J Neurosurg. 1981;54:733–5.

    Article  CAS  PubMed  Google Scholar 

  41. Nam DH, Kim JS, Hong SC, et al. Expression of interleukin-1 beta in lipopolysaccharide stimulated monocytes derived from patients with aneurysmal subarachnoid hemorrhage is correlated with cerebral vasospasm. Neurosci Lett. 2001;312:41–4.

    Article  CAS  PubMed  Google Scholar 

  42. Allen C, Thornton P, Denes A, et al. Neutrophil cerebrovascular transmigration triggers rapid neurotoxicity through release of proteases associated with decondensed DNA. J Immunol. 2012;189:381–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Vikman P, Ansar S, Edvinsson L. Transcriptional regulation of inflammatory and extracellular matrix-regulating genes in cerebral arteries following experimental subarachnoid hemorrhage in rats. Laboratory investigation. J Neurosurg. 2007;107:1015–22.

    Article  CAS  PubMed  Google Scholar 

  44. Chaichana KL, Pradilla G, Huang J, Tamargo RJ. Role of inflammation (leukocyte-endothelial cell interactions) in vasospasm after subarachnoid hemorrhage. World Neurosurg. 2010;73:22–41.

    Article  PubMed  Google Scholar 

  45. Onda H, Kasuya H, Takakura K, et al. Identification of genes differentially expressed in canine vasospastic cerebral arteries after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 1999;19:1279–88.

    Article  CAS  PubMed  Google Scholar 

  46. Miller AM, Liew FY. The IL-33/ST2 pathway—a new therapeutic target in cardiovascular disease. Pharmacol Ther. 2011;131:179–86.

    Article  CAS  PubMed  Google Scholar 

  47. Forsyth EA, Aly HM, Neville RF, Sidawy AN. Proliferation and extracellular matrix production by human infragenicular smooth muscle cells in response to interleukin-1 beta. J Vasc Surg. 1997;26:1002–7.

    Article  CAS  PubMed  Google Scholar 

  48. Murphy AM, Xenocostas A, Pakkiri P, Lee TY. Hemodynamic effects of recombinant human erythropoietin on the central nervous system after subarachnoid hemorrhage: reduction of microcirculatory impairment and functional deficits in a rabbit model. J Neurosurg. 2008;109:1155–64.

    Article  PubMed  Google Scholar 

  49. Lyons MA, Shukla R, Zhang K, et al. Increase of metabolic activity and disruption of normal contractile protein distribution by bilirubin oxidation products in vascular smooth-muscle cells. J Neurosurg. 2004;100:505–11.

    Article  CAS  PubMed  Google Scholar 

  50. Kasuya H, Weir BK, White DM, Stefansson K. Mechanism of oxyhemoglobin-induced release of endothelin-1 from cultured vascular endothelial cells and smooth-muscle cells. J Neurosurg. 1993;79:892–8.

    Article  CAS  PubMed  Google Scholar 

  51. Ansar S, Larsen C, Maddahi A, Edvinsson L. Subarachnoid hemorrhage induces enhanced expression of thromboxane A2 receptors in rat cerebral arteries. Brain Res. 2010;1316:163–72.

    Article  CAS  PubMed  Google Scholar 

  52. De CF, Janssen PA. 5-Hydroxytryptamine and thromboxane A2 in ischaemic heart disease. Blood Coagul Fibrinolysis. 1990;1:201–9.

    Google Scholar 

  53. Tsurutani H, Ohkuma H, Suzuki S. Effects of thrombin inhibitor on thrombin-related signal transduction and cerebral vasospasm in the rabbit subarachnoid hemorrhage model. Stroke. 2003;34:1497–500.

    Article  CAS  PubMed  Google Scholar 

  54. Hedin U, Daum G, Clowes AW. Heparin inhibits thrombin-induced mitogen-activated protein kinase signaling in arterial smooth muscle cells. J Vasc Surg. 1998;27:512–20.

    Article  CAS  PubMed  Google Scholar 

  55. Mishra-Gorur K, Castellot Jr JJ. Heparin rapidly and selectively regulates protein tyrosine phosphorylation in vascular smooth muscle cells. J Cell Physiol. 1999;178:205–15.

    Article  CAS  PubMed  Google Scholar 

  56. Simard JM, Schreibman D, Aldrich EF, et al. Unfractionated heparin: multitargeted therapy for delayed neurological deficits induced by subarachnoid hemorrhage. Neurocrit Care. 2010;13:439–49.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Conway LW, McDonald LW. Structural changes of the intradural arteries following subarachnoid hemorrhage. J Neurosurg. 1972;37:715–23.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang ZD, Macdonald RL. Contribution of the remodeling response to cerebral vasospasm. Neurol Res. 2006;28:713–20.

    Article  PubMed  Google Scholar 

  59. Ohkuma H, Tsurutani H, Suzuki S. Changes of beta-actin mRNA expression in canine vasospastic basilar artery after experimental subarachnoid hemorrhage. Neurosci Lett. 2001;311:9–12.

    Article  CAS  PubMed  Google Scholar 

  60. Borel CO, McKee A, Parra A, et al. Possible role for vascular cell proliferation in cerebral vasospasm after subarachnoid hemorrhage. Stroke. 2003;34:427–33.

    Article  CAS  PubMed  Google Scholar 

  61. Hubbell MC, Semotiuk AJ, Thorpe RB, et al. Chronic hypoxia and VEGF differentially modulate abundance and organization of myosin heavy chain isoforms in fetal and adult ovine arteries. Am J Physiol Cell Physiol. 2012;303:C1090–103.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Ohkuma H, Suzuki S, Ogane K. Phenotypic modulation of smooth muscle cells and vascular remodeling in intraparenchymal small cerebral arteries after canine experimental subarachnoid hemorrhage. Neurosci Lett. 2003;344:193–6.

    Article  CAS  PubMed  Google Scholar 

  63. Yamaguchi-Okada M, Nishizawa S, Koide M, Nonaka Y. Biomechanical and phenotypic changes in the vasospastic canine basilar artery after subarachnoid hemorrhage. J Appl Physiol. 2005;99:2045–52.

    Article  PubMed  Google Scholar 

  64. Macdonald RL, Zhang ZD, Takahashi M, et al. Calcium sensitivity of vasospastic basilar artery after experimental subarachnoid hemorrhage. Am J Physiol Heart Circ Physiol. 2006;290:H2329–36.

    Article  CAS  PubMed  Google Scholar 

  65. Aihara Y, Jahromi BS, Yassari R, Nikitina E, gbaje-Williams M, Macdonald RL. Molecular profile of vascular ion channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2004;24:75–83.

    Article  CAS  PubMed  Google Scholar 

  66. Weyer GW, Jahromi BS, Aihara Y, et al. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:382–91.

    Article  CAS  PubMed  Google Scholar 

  67. Takahashi Y, Watanabe H, Murakami M, et al. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II-induced vascular smooth muscle cell hypertrophy. Atherosclerosis. 2007;195:287–96.

    Article  CAS  PubMed  Google Scholar 

  68. Takahashi Y, Watanabe H, Murakami M, et al. Functional role of stromal interaction molecule 1 (STIM1) in vascular smooth muscle cells. Biochem Biophys Res Commun. 2007;361:934–40.

    Article  CAS  PubMed  Google Scholar 

  69. Kumar B, Dreja K, Shah SS, et al. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res. 2006;98:557–63.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Li J, Sukumar P, Milligan CJ, et al. Interactions, functions, and independence of plasma membrane STIM1 and TRPC1 in vascular smooth muscle cells. Circ Res. 2008;103:e97–104.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Song JN, Yan WT, An JY, et al. Potential contribution of SOCC to cerebral vasospasm after experimental subarachnoid hemorrhage in rats. Brain Res. 2013;1517:93–103.

    Article  CAS  PubMed  Google Scholar 

  72. Xie A, Aihara Y, Bouryi VA, et al. Novel mechanism of endothelin-1-induced vasospasm after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2007;27:1692–701.

    Article  CAS  PubMed  Google Scholar 

  73. McGirt MJ, Lynch JR, Parra A, et al. Simvastatin increases endothelial nitric oxide synthase and ameliorates cerebral vasospasm resulting from subarachnoid hemorrhage. Stroke. 2002;33:2950–6.

    Article  CAS  PubMed  Google Scholar 

  74. Chou SH, Smith EE, Badjatia N, et al. A randomized, double-blind, placebo-controlled pilot study of simvastatin in aneurysmal subarachnoid hemorrhage. Stroke. 2008;39:2891–3.

    Article  CAS  PubMed  Google Scholar 

  75. Vergouwen MD, de Haan RJ, Vermeulen M, Roos YB. Effect of statin treatment on vasospasm, delayed cerebral ischemia, and functional outcome in patients with aneurysmal subarachnoid hemorrhage: a systematic review and meta-analysis update. Stroke. 2010;41:e47–52.

    Article  CAS  PubMed  Google Scholar 

  76. Shibuya M, Suzuki Y, Sugita K, et al. Effect of AT877 on cerebral vasospasm after aneurysmal subarachnoid hemorrhage. Results of a prospective placebo-controlled double-blind trial. J Neurosurg. 1992;76:571–7.

    Article  CAS  PubMed  Google Scholar 

  77. Furuyama T, Komori K, Shimokawa H, et al. Long-term inhibition of Rho kinase suppresses intimal thickening in autologous vein grafts in rabbits. J Vasc Surg. 2006;43:1249–56.

    Article  PubMed  Google Scholar 

  78. Naraoka M, Munakata A, Matsuda N, Shimamura N, Ohkuma H. Suppression of the Rho/Rho-Kinase pathway and prevention of cerebral vasospasm by combination treatment with statin and fasudil after subarachnoid hemorrhage in rabbit. Transl Stroke Res. 2013;4:368–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Macdonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol. 2011;10:618–25.

    Article  CAS  PubMed  Google Scholar 

  80. Kawanabe Y, Takahashi M, Jin X, et al. Cilostazol prevents endothelin-induced smooth muscle constriction and proliferation. PLoS One. 2012;7:e44476.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mark Inglin (University of Basel) for his editorial assistance. This work was supported by JSPS KAKENHI grant number 40312491 for NS.

Conflict of interest

We have no conflict of interest. This article does not contain any studies with human or animal subjects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihito Shimamura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimamura, N., Ohkuma, H. Phenotypic Transformation of Smooth Muscle in Vasospasm after Aneurysmal Subarachnoid Hemorrhage. Transl. Stroke Res. 5, 357–364 (2014). https://doi.org/10.1007/s12975-013-0310-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12975-013-0310-1

Keywords

Navigation