Skip to main content
Log in

GABAergic Regulation of Adult Hippocampal Neurogenesis

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Adult hippocampal neurogenesis has been implicated in several brain functions, including learning and memory processes. It also plays an important role in the aetiology of anxiety disorders, depression and age-related deficits. The endogenous stem cell pool is also known to hold great potential for ameliorating the diseased or aged brain. It has been shown that certain brain activities lead to an adjustment of adult neurogenesis, which can further be controlled by the interplay between inhibitory and excitatory processes. The roles of the inhibitory neurotransmitter γ-aminobutyric acid (GABA) in the proliferation and differentiation of stem cells and progenitor cells, as well as in the control of network activity of hippocampal stem cells, have been extensively investigated in recent decades. This review highlights the general functions of GABAergic signalling and provides an exciting insight into the diverse functions of GABA in adult hippocampal stem cell biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124:319–335

    Article  CAS  PubMed  Google Scholar 

  2. Kaplan MS, Hinds JW (1977) Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science 197:1092–1094

    Article  CAS  PubMed  Google Scholar 

  3. Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27:447–452

    Article  CAS  PubMed  Google Scholar 

  4. Kitamura T, Saitoh Y, Takashima N, Murayama A, Niibori Y, Ageta H, Sekiguchi M, Sugiyama H, Inokuchi K (2009) Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell 139:814–827

    Article  CAS  PubMed  Google Scholar 

  5. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S, Weisstaub N, Lee J, Duman R, Arancio O, Belzung C, Hen R (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809

    Article  CAS  PubMed  Google Scholar 

  7. Snyder JS, Soumier A, Brewer M, Pickel J, Cameron HA (2011) Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature 476:458–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ouchi Y, Banno Y, Shimizu Y, Ando S, Hasegawa H, Adachi K, Iwamoto T (2013) Reduced adult hippocampal neurogenesis and working memory deficits in the Dgcr8-deficient mouse model of 22q11.2 deletion-associated schizophrenia can be rescued by IGF2. J Neurosci 33:9408–9419

    Article  CAS  PubMed  Google Scholar 

  10. Miranda CJ, Braun L, Jiang Y, Hester ME, Zhang L, Riolo M, Wang H, Rao M, Altura RA, Kaspar BK (2012) Aging brain microenvironment decreases hippocampal neurogenesis through Wnt-mediated survivin signaling. Aging Cell 11:542–552

    Article  PubMed  PubMed Central  Google Scholar 

  11. Clelland CD, Choi M, Romberg C, Clemenson GD Jr, Fragniere A, Tyers P, Jessberger S, Saksida LM, Barker RA, Gage FH, Bussey TJ (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Malberg JE, Duman RS (2003) Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28:1562–1571

    Article  CAS  PubMed  Google Scholar 

  13. Machold R, Hayashi S, Rutlin M, Muzumdar MD, Nery S, Corbin JG, Gritli-Linde A, Dellovade T, Porter JA, Rubin LL, Dudek H, McMahon AP, Fishell G (2003) Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 39:937–950

    Article  CAS  PubMed  Google Scholar 

  14. Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San EJ, Hortiguela R, Marques-Torrejon MA, Nakashima K, Colak D, Gotz M, Farinas I, Gage FH (2010) Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7:78–89

    Article  CAS  PubMed  Google Scholar 

  15. Oliveira SL, Pillat MM, Cheffer A, Lameu C, Schwindt TT, Ulrich H (2013) Functions of neurotrophins and growth factors in neurogenesis and brain repair. Cytometry A 83:76–89

    Article  PubMed  CAS  Google Scholar 

  16. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A 104:20558–20563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ehm O, Goritz C, Covic M, Schaffner I, Schwarz TJ, Karaca E, Kempkes B, Kremmer E, Pfrieger FW, Espinosa L, Bigas A, Giachino C, Taylor V, Frisen J, Lie DC (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30:13794–13807

    Article  CAS  PubMed  Google Scholar 

  18. Paulsen O, Moser EI (1998) A model of hippocampal memory encoding and retrieval: GABAergic control of synaptic plasticity. Trends Neurosci 21:273–278

    Article  CAS  PubMed  Google Scholar 

  19. Doetsch F (2003) A niche for adult neural stem cells. Curr Opin Genet Dev 13:543–550

    Article  CAS  PubMed  Google Scholar 

  20. Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA, Kempermann G, Taylor V, Giachino C (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6:445–456

    Article  CAS  PubMed  Google Scholar 

  21. Malatesta P, Hartfuss E, Gotz M (2000) Isolation of radial glial cells by fluorescent-activated cell sorting reveals a neuronal lineage. Development 127:5253–5263

    CAS  PubMed  Google Scholar 

  22. Filippov V, Kronenberg G, Pivneva T, Reuter K, Steiner B, Wang LP, Yamaguchi M, Kettenmann H, Kempermann G (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    Article  CAS  PubMed  Google Scholar 

  23. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A (2001) Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci 21:7153–7160

    CAS  PubMed  Google Scholar 

  24. DeCarolis NA, Mechanic M, Petrik D, Carlton A, Ables JL, Malhotra S, Bachoo R, Gotz M, Lagace DC, Eisch AJ (2013) In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus 23:708–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicoll RA, Alger BE (1979) Presynaptic inhibition: transmitter and ionic mechanisms. Int Rev Neurobiol 21:217–258

    Article  CAS  PubMed  Google Scholar 

  26. Ruiz A, Fabian-Fine R, Scott R, Walker MC, Rusakov DA, Kullmann DM (2003) GABAA receptors at hippocampal mossy fibers. Neuron 39:961–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Farrant M, Nusser Z (2005) Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 6:215–229

    Article  CAS  PubMed  Google Scholar 

  28. Kasugai Y, Swinny JD, Roberts JD, Dalezios Y, Fukazawa Y, Sieghart W, Shigemoto R, Somogyi P (2010) Quantitative localisation of synaptic and extrasynaptic GABAA receptor subunits on hippocampal pyramidal cells by freeze-fracture replica immunolabelling. Eur J Neurosci 32:1868–1888

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cobb SR, Buhl EH, Halasy K, Paulsen O, Somogyi P (1995) Synchronization of neuronal activity in hippocampus by individual GABAergic interneurons. Nature 378:75–78

    Article  CAS  PubMed  Google Scholar 

  30. Jonas P, Bischofberger J, Fricker D, Miles R (2004) Interneuron diversity series: fast in, fast out—temporal and spatial signal processing in hippocampal interneurons. Trends Neurosci 27:30–40

    Article  CAS  PubMed  Google Scholar 

  31. Mann EO, Mody I (2010) Control of hippocampal gamma oscillation frequency by tonic inhibition and excitation of interneurons. Nat Neurosci 13:205–212

    Article  CAS  PubMed  Google Scholar 

  32. Chadderton P, Margrie TW, Hausser M (2004) Integration of quanta in cerebellar granule cells during sensory processing. Nature 428:856–860

    Article  CAS  PubMed  Google Scholar 

  33. Verdoorn TA, Draguhn A, Ymer S, Seeburg PH, Sakmann B (1990) Functional properties of recombinant rat GABAA receptors depend upon subunit composition. Neuron 4:919–928

    Article  CAS  PubMed  Google Scholar 

  34. Farrant M, Kaila K (2007) The cellular, molecular and ionic basis of GABA(A) receptor signalling. Prog Brain Res 160:59–87

    Article  CAS  PubMed  Google Scholar 

  35. Glykys J, Mann EO, Mody I (2008) Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus? J Neurosci 28:1421–1426

    Article  CAS  PubMed  Google Scholar 

  36. Rozzo A, Armellin M, Franzot J, Chiaruttini C, Nistri A, Tongiorgi E (2002) Expression and dendritic mRNA localization of GABAC receptor rho1 and rho2 subunits in developing rat brain and spinal cord. Eur J Neurosci 15:1747–1758

    Article  PubMed  Google Scholar 

  37. Johnston GA (1996) GABAc receptors: relatively simple transmitter-gated ion channels? Trends Pharmacol Sci 17:319–323

    Article  CAS  PubMed  Google Scholar 

  38. Lüscher B, Keller CA (2004) Regulation of GABAA receptor trafficking, channel activity, and functional plasticity of inhibitory synapses. Pharmacol Ther 102:195–221

    Article  PubMed  CAS  Google Scholar 

  39. Winsky-Sommerer R (2009) Role of GABAA receptors in the physiology and pharmacology of sleep. Eur J Neurosci 29:1779–1794

    Article  PubMed  Google Scholar 

  40. Chapouthier G, Venault P (2002) GABA-A receptor complex and memory processes. Curr Top Med Chem 2:841–851

    Article  CAS  PubMed  Google Scholar 

  41. Breier A, Paul SM (1990) The GABAA/benzodiazepine receptor: implications for the molecular basis of anxiety. J Psychiatr Res 24(Suppl 2):91–104

    Article  PubMed  Google Scholar 

  42. Smith KS, Rudolph U (2012) Anxiety and depression: mouse genetics and pharmacological approaches to the role of GABA(A) receptor subtypes. Neuropharmacology 62:54–62

    Article  CAS  PubMed  Google Scholar 

  43. Luscher B, Shen Q, Sahir N (2011) The GABAergic deficit hypothesis of major depressive disorder. Mol Psychiatry 16:383–406

    Article  CAS  PubMed  Google Scholar 

  44. Luscher B, Fuchs T (2015) GABAergic control of depression-related brain states. Adv Pharmacol 73:97–144

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vollenweider I, Smith KS, Keist R, Rudolph U (2011) Antidepressant-like properties of alpha2-containing GABA(A) receptors. Behav Brain Res 217:77–80

    Article  CAS  PubMed  Google Scholar 

  46. Smith KS, Engin E, Meloni EG, Rudolph U (2012) Benzodiazepine-induced anxiolysis and reduction of conditioned fear are mediated by distinct GABAA receptor subtypes in mice. Neuropharmacology 63:250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Misgeld U, Bijak M, Jarolimek W (1995) A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system. Prog Neurobiol 46:423–462

    Article  CAS  PubMed  Google Scholar 

  48. Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B (1998) GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    Article  CAS  PubMed  Google Scholar 

  49. Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K, Seddik R, Tiao JY, Rajalu M, Trojanova J, Rohde V, Gassmann M, Schulte U, Fakler B, Bettler B (2010) Native GABA(B) receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235

    Article  CAS  PubMed  Google Scholar 

  50. Schwenk J, Perez-Garci E, Schneider A, Kollewe A, Gauthier-Kemper A, Fritzius T, Raveh A, Dinamarca MC, Hanuschkin A, Bildl W, Klingauf J, Gassmann M, Schulte U, Bettler B, Fakler B (2016) Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 19:233–242

    Article  CAS  PubMed  Google Scholar 

  51. Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    Article  CAS  PubMed  Google Scholar 

  52. Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM, Vacher CM, Muller M, Sansig G, Guetg N, Cryan JF, Kaupmann K, Gassmann M, Oertner TG, Bettler B (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guetg N, Seddik R, Vigot R, Turecek R, Gassmann M, Vogt KE, Brauner-Osborne H, Shigemoto R, Kretz O, Frotscher M, Kulik A, Bettler B (2009) The GABAB1a isoform mediates heterosynaptic depression at hippocampal mossy fiber synapses. J Neurosci 29:1414–1423

    Article  CAS  PubMed  Google Scholar 

  54. Shaban H, Humeau Y, Herry C, Cassasus G, Shigemoto R, Ciocchi S, Barbieri S, van der Putten H, Kaupmann K, Bettler B, Luthi A (2006) Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition. Nat Neurosci 9:1028–1035

    Article  CAS  PubMed  Google Scholar 

  55. Gassmann M, Bettler B (2012) Regulation of neuronal GABA(B) receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    Article  CAS  PubMed  Google Scholar 

  56. Bowery NG, Hudson AL, Price GW (1987) GABAA and GABAB receptor site distribution in the rat central nervous system. Neuroscience 20:365–383

    Article  CAS  PubMed  Google Scholar 

  57. Kulik A, Vida I, Fukazawa Y, Guetg N, Kasugai Y, Marker CL, Rigato F, Bettler B, Wickman K, Frotscher M, Shigemoto R (2006) Compartment-dependent colocalization of Kir3.2-containing K+ channels and GABAB receptors in hippocampal pyramidal cells. J Neurosci 26:4289–4297

    Article  CAS  PubMed  Google Scholar 

  58. Booker SA, Gross A, Althof D, Shigemoto R, Bettler B, Frotscher M, Hearing M, Wickman K, Watanabe M, Kulik A, Vida I (2013) Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J Neurosci 33:7961–7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kaupmann K, Schuler V, Mosbacher J, Bischoff S, Bittiger H, Heid J, Froestl W, Leonhard S, Pfaff T, Karschin A, Bettler B (1998) Human gamma-aminobutyric acid type B receptors are differentially expressed and regulate inwardly rectifying K+ channels. Proc Natl Acad Sci U S A 95:14991–14996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Holthoff K, Kovalchuk Y, Konnerth A (2006) Dendritic spikes and activity-dependent synaptic plasticity. Cell Tissue Res 326:369–377

    Article  PubMed  Google Scholar 

  61. Brucato FH, Levin ED, Mott DD, Lewis DV, Wilson WA, Swartzwelder HS (1996) Hippocampal long-term potentiation and spatial learning in the rat: effects of GABAB receptor blockade. Neuroscience 74:331–339

    Article  CAS  PubMed  Google Scholar 

  62. Kleschevnikov AM, Belichenko PV, Faizi M, Jacobs LF, Htun K, Shamloo M, Mobley WC (2012) Deficits in cognition and synaptic plasticity in a mouse model of Down syndrome ameliorated by GABAB receptor antagonists. J Neurosci 32:9217–9227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Partyka A, Klodzinska A, Szewczyk B, Wieronska JM, Chojnacka-Wojcik E, Librowski T, Filipek B, Nowak G, Pilc A (2007) Effects of GABAB receptor ligands in rodent tests of anxiety-like behavior. Pharmacol Rep 59:757–762

    CAS  PubMed  Google Scholar 

  64. Pilc A, Nowak G (2005) GABAergic hypotheses of anxiety and depression: focus on GABA-B receptors. Drugs Today (Barc ) 41:755–766

    Article  CAS  Google Scholar 

  65. Nowak G, Partyka A, Palucha A, Szewczyk B, Wieronska JM, Dybala M, Metz M, Librowski T, Froestl W, Papp M, Pilc A (2006) Antidepressant-like activity of CGP 36742 and CGP 51176, selective GABAB receptor antagonists, in rodents. Br J Pharmacol 149:581–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. O’Leary OF, Felice D, Galimberti S, Savignac HM, Bravo JA, Crowley T, El YM, Vaugeois JM, Gassmann M, Bettler B, Dinan TG, Cryan JF (2014) GABAB(1) receptor subunit isoforms differentially regulate stress resilience. Proc Natl Acad Sci U S A 111:15232–15237

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang DD, Kriegstein AR (2009) Defining the role of GABA in cortical development. J Physiol 587:1873–1879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Araki T, Kiyama H, Tohyama M (1992) GABAA receptor subunit messenger RNAs show differential expression during cortical development in the rat brain. Neuroscience 51:583–591

    Article  CAS  PubMed  Google Scholar 

  69. Laurie DJ, Wisden W, Seeburg PH (1992) The distribution of thirteen GABAA receptor subunit mRNAs in the rat brain. III. Embryonic and postnatal development. J Neurosci 12:4151–4172

    CAS  PubMed  Google Scholar 

  70. Ma W, Barker JL (1995) Complementary expressions of transcripts encoding GAD67 and GABAA receptor alpha 4, beta 1, and gamma 1 subunits in the proliferative zone of the embryonic rat central nervous system. J Neurosci 15:2547–2560

    CAS  PubMed  Google Scholar 

  71. Araki T, Sato M, Kiyama H, Manabe Y, Tohyama M (1992) Localization of GABAA-receptor gamma 2-subunit mRNA-containing neurons in the rat central nervous system. Neuroscience 47:45–61

    Article  CAS  PubMed  Google Scholar 

  72. Poulter MO, Barker JL, O’Carroll AM, Lolait SJ, Mahan LC (1992) Differential and transient expression of GABAA receptor alpha-subunit mRNAs in the developing rat CNS. J Neurosci 12:2888–2900

    CAS  PubMed  Google Scholar 

  73. Poulter MO, Barker JL, O’Carroll AM, Lolait SJ, Mahan LC (1993) Co-existent expression of GABAA receptor beta 2, beta 3 and gamma 2 subunit messenger RNAs during embryogenesis and early postnatal development of the rat central nervous system. Neuroscience 53:1019–1033

    Article  CAS  PubMed  Google Scholar 

  74. Stewart RR, Hoge GJ, Zigova T, Luskin MB (2002) Neural progenitor cells of the neonatal rat anterior subventricular zone express functional GABA(a) receptors. J Neurobiol 50:305–322

    Article  CAS  PubMed  Google Scholar 

  75. Kettenmann H, Blankenfeld GV, Trotter J (1991) Physiological properties of oligodendrocytes during development. Ann N Y Acad Sci 633:64–77

    Article  CAS  PubMed  Google Scholar 

  76. Loturco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  CAS  PubMed  Google Scholar 

  77. Liu X, Wang Q, Haydar TF, Bordey A (2005) Nonsynaptic GABA signaling in postnatal subventricular zone controls proliferation of GFAP-expressing progenitors. Nat Neurosci 8:1179–1187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Owens DF, Kriegstein AR (2002) Is there more to GABA than synaptic inhibition? Nat Rev Neurosci 3:715–727

    Article  CAS  PubMed  Google Scholar 

  79. Behar TN, Schaffner AE, Colton CA, Somogyi R, Olah Z, Lehel C, Barker JL (1994) GABA-induced chemokinesis and NGF-induced chemotaxis of embryonic spinal cord neurons. J Neurosci 14:29–38

    CAS  PubMed  Google Scholar 

  80. Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16:1808–1818

    CAS  PubMed  Google Scholar 

  81. Behar TN, Schaffner AE, Scott CA, Greene CL, Barker JL (2000) GABA receptor antagonists modulate postmitotic cell migration in slice cultures of embryonic rat cortex. Cereb Cortex 10:899–909

    Article  CAS  PubMed  Google Scholar 

  82. Haydar TF, Wang F, Schwartz ML, Rakic P (2000) Differential modulation of proliferation in the neocortical ventricular and subventricular zones. J Neurosci 20:5764–5774

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cuzon VC, Yeh PW, Cheng Q, Yeh HH (2006) Ambient GABA promotes cortical entry of tangentially migrating cells derived from the medial ganglionic eminence. Cereb Cortex 16:1377–1388

    Article  PubMed  Google Scholar 

  84. Inada H, Watanabe M, Uchida T, Ishibashi H, Wake H, Nemoto T, Yanagawa Y, Fukuda A, Nabekura J (2011) GABA regulates the multidirectional tangential migration of GABAergic interneurons in living neonatal mice. PLoS One 6:e27048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Barbin G, Pollard H, Gaiarsa JL, Ben-Ari Y (1993) Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neurosci Lett 152:150–154

    Article  CAS  PubMed  Google Scholar 

  86. Maric D, Liu QY, Maric I, Chaudry S, Chang YH, Smith SV, Sieghart W, Fritschy JM, Barker JL (2001) GABA expression dominates neuronal lineage progression in the embryonic rat neocortex and facilitates neurite outgrowth via GABA(A) autoreceptor/Cl- channels. J Neurosci 21:2343–2360

    CAS  PubMed  Google Scholar 

  87. Sernagor E, Chabrol F, Bony G, Cancedda L (2010) GABAergic control of neurite outgrowth and remodeling during development and adult neurogenesis: general rules and differences in diverse systems. Front Cell Neurosci 4:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Essrich C, Lorez M, Benson JA, Fritschy JM, Luscher B (1998) Postsynaptic clustering of major GABAA receptor subtypes requires the gamma 2 subunit and gephyrin. Nat Neurosci 1:563–571

    Article  CAS  PubMed  Google Scholar 

  89. Yamashita M, Fukuda Y (1993) Calcium channels and GABA receptors in the early embryonic chick retina. J Neurobiol 24:1600–1614

    Article  CAS  PubMed  Google Scholar 

  90. Obrietan K, van Den Pol AN (1999) GABAB receptor-mediated regulation of glutamate-activated calcium transients in hypothalamic and cortical neuron development. J Neurophysiol 82:94–102

    CAS  PubMed  Google Scholar 

  91. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344

    Article  CAS  PubMed  Google Scholar 

  92. Leinekugel X, Medina I, Khalilov I, Ben-Ari Y, Khazipov R (1997) Ca2+ oscillations mediated by the synergistic excitatory actions of GABA(A) and NMDA receptors in the neonatal hippocampus. Neuron 18:243–255

    Article  CAS  PubMed  Google Scholar 

  93. Lopez-Bendito G, Shigemoto R, Kulik A, Paulsen O, Fairen A, Lujan R (2002) Expression and distribution of metabotropic GABA receptor subtypes GABABR1 and GABABR2 during rat neocortical development. Eur J Neurosci 15:1766–1778

    Article  CAS  PubMed  Google Scholar 

  94. Lopez-Bendito G, Lujan R, Shigemoto R, Ganter P, Paulsen O, Molnar Z (2003) Blockade of GABA(B) receptors alters the tangential migration of cortical neurons. Cereb Cortex 13:932–942

    Article  PubMed  Google Scholar 

  95. Lopez-Bendito G, Shigemoto R, Kulik A, Vida I, Fairen A, Lujan R (2004) Distribution of metabotropic GABA receptor subunits GABAB1a/b and GABAB2 in the rat hippocampus during prenatal and postnatal development. Hippocampus 14:836–848

    Article  CAS  PubMed  Google Scholar 

  96. Luyt K, Slade TP, Dorward JJ, Durant CF, Wu Y, Shigemoto R, Mundell SJ, Varadi A, Molnar E (2007) Developing oligodendrocytes express functional GABA(B) receptors that stimulate cell proliferation and migration. J Neurochem 100:822–840

    Article  CAS  PubMed  Google Scholar 

  97. Fukui M, Nakamichi N, Yoneyama M, Ozawa S, Fujimori S, Takahata Y, Nakamura N, Taniura H, Yoneda Y (2008) Modulation of cellular proliferation and differentiation through GABA(B) receptors expressed by undifferentiated neural progenitor cells isolated from fetal mouse brain. J Cell Physiol 216:507–519

    Article  CAS  PubMed  Google Scholar 

  98. Fu Y, Wu X, Lu J, Huang ZJ (2012) Presynaptic GABA(B) receptor regulates activity-dependent maturation and patterning of inhibitory synapses through dynamic allocation of synaptic vesicles. Front Cell Neurosci 6:57

    Article  PubMed  PubMed Central  Google Scholar 

  99. Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M (2002) Glial cells generate neurons: the role of the transcription factor Pax6. Nat Neurosci 5:308–315

    Article  CAS  PubMed  Google Scholar 

  100. Albrecht J, Pearce B, Murphy S (1986) Evidence for an interaction between GABAB and glutamate receptors in astrocytes as revealed by changes in Ca2+ flux. Eur J Pharmacol 125:463–464

    Article  CAS  PubMed  Google Scholar 

  101. Hoppe D, Kettenmann H (1989) GABA triggers a Cl- efflux from cultured mouse oligodendrocytes. Neurosci Lett 97:334–339

    Article  CAS  PubMed  Google Scholar 

  102. MacVicar BA, Tse FW, Crichton SA, Kettenmann H (1989) GABA-activated Cl- channels in astrocytes of hippocampal slices. J Neurosci 9:3577–3583

    CAS  PubMed  Google Scholar 

  103. Steinhäuser C, Jabs R, Kettenmann H (1994) Properties of GABA and glutamate responses in identified glial cells of the mouse hippocampal slice. Hippocampus 4:19–35

    Article  PubMed  Google Scholar 

  104. Nilsson M, Eriksson PS, Ronnback L, Hansson E (1993) GABA induces Ca2+ transients in astrocytes. Neuroscience 54:605–614

    Article  CAS  PubMed  Google Scholar 

  105. Fraser DD, Duffy S, Angelides KJ, Perez-Velazquez JL, Kettenmann H, MacVicar BA (1995) GABAA/benzodiazepine receptors in acutely isolated hippocampal astrocytes. J Neurosci 15:2720–2732

    CAS  PubMed  Google Scholar 

  106. Patte C, Gandolfo P, Leprince J, Thoumas JL, Fontaine M, Vaudry H, Tonon MC (1999) GABA inhibits endozepine release from cultured rat astrocytes. Glia 25:404–411

    Article  CAS  PubMed  Google Scholar 

  107. Rosier A, Arckens L, Orban GA, Vandesande F (1993) Immunocytochemical detection of astrocyte GABAA receptors in cat visual cortex. J Histochem Cytochem 41:685–692

    Article  CAS  PubMed  Google Scholar 

  108. Riquelme R, Miralles CP, de Blas AL (2002) Bergmann glia GABA(A) receptors concentrate on the glial processes that wrap inhibitory synapses. J Neurosci 22:10720–10730

    CAS  PubMed  Google Scholar 

  109. Müller T, Fritschy JM, Grosche J, Pratt GD, Mohler H, Kettenmann H (1994) Developmental regulation of voltage-gated K+ channel and GABAA receptor expression in Bergmann glial cells. J Neurosci 14:2503–2514

    PubMed  Google Scholar 

  110. Charles KJ, Deuchars J, Davies CH, Pangalos MN (2003) GABA B receptor subunit expression in glia. Mol Cell Neurosci 24:214–223

    Article  CAS  PubMed  Google Scholar 

  111. McDonald AJ, Mascagni F, Muller JF (2004) Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala. Brain Res 1018:147–158

    Article  CAS  PubMed  Google Scholar 

  112. Oka M, Wada M, Wu Q, Yamamoto A, Fujita T (2006) Functional expression of metabotropic GABAB receptors in primary cultures of astrocytes from rat cerebral cortex. Biochem Biophys Res Commun 341:874–881

    Article  CAS  PubMed  Google Scholar 

  113. Meier SD, Kafitz KW, Rose CR (2008) Developmental profile and mechanisms of GABA-induced calcium signaling in hippocampal astrocytes. Glia 56:1127–1137

    Article  PubMed  Google Scholar 

  114. Giachino C, Barz M, Tchorz JS, Tome M, Gassmann M, Bischofberger J, Bettler B, Taylor V (2014) GABA suppresses neurogenesis in the adult hippocampus through GABAB receptors. Development 141:83–90

    Article  CAS  PubMed  Google Scholar 

  115. Perea G, Navarrete M, Araque A (2009) Tripartite synapses: astrocytes process and control synaptic information. Trends Neurosci 32:421–431

    Article  CAS  PubMed  Google Scholar 

  116. MacVicar BA (1984) Voltage-dependent calcium channels in glial cells. Science 226:1345–1347

    Article  CAS  PubMed  Google Scholar 

  117. Yoon BE, Woo J, Lee CJ (2012) Astrocytes as GABA-ergic and GABA-ceptive cells. Neurochem Res 37:2474–2479

    Article  CAS  PubMed  Google Scholar 

  118. Matsutani S, Yamamoto N (1998) GABAergic neuron-to-astrocyte signaling regulates dendritic branching in coculture. J Neurobiol 37:251–264

    Article  CAS  PubMed  Google Scholar 

  119. Bekar LK, Jabs R, Walz W (1999) GABAA receptor agonists modulate K+ currents in adult hippocampal glial cells in situ. Glia 26:129–138

    Article  CAS  PubMed  Google Scholar 

  120. Ma BF, Xie MJ, Zhou M (2012) Bicarbonate efflux via GABA(A) receptors depolarizes membrane potential and inhibits two-pore domain potassium channels of astrocytes in rat hippocampal slices. Glia 60:1761–1772

    Article  PubMed  PubMed Central  Google Scholar 

  121. Mong JA, Nunez JL, McCarthy MM (2002) GABA mediates steroid-induced astrocyte differentiation in the neonatal rat hypothalamus. J Neuroendocrinol 14:45–55

    Article  CAS  PubMed  Google Scholar 

  122. Yoneyama M, Fukui M, Nakamichi N, Kitayama T, Taniura H, Yoneda Y (2007) Activation of GABA(A) receptors facilitates astroglial differentiation induced by ciliary neurotrophic factor in neural progenitors isolated from fetal rat brain. J Neurochem 100:1667–1679

    CAS  PubMed  Google Scholar 

  123. Runquist M, Alonso G (2003) Gabaergic signaling mediates the morphological organization of astrocytes in the adult rat forebrain. Glia 41:137–151

    Article  PubMed  Google Scholar 

  124. Matsutani S, Yamamoto N (1997) Neuronal regulation of astrocyte morphology in vitro is mediated by GABAergic signaling. Glia 20:1–9

    Article  CAS  PubMed  Google Scholar 

  125. Deisseroth K, Singla S, Toda H, Monje M, Palmer TD, Malenka RC (2004) Excitation-neurogenesis coupling in adult neural stem/progenitor cells. Neuron 42:535–552

    Article  CAS  PubMed  Google Scholar 

  126. Nguyen L, Malgrange B, Breuskin I, Bettendorff L, Moonen G, Belachew S, Rigo JM (2003) Autocrine/paracrine activation of the GABA(a) receptor inhibits the proliferation of neurogenic polysialylated neural cell adhesion molecule-positive (PSA-NCAM+) precursor cells from postnatal striatum. J Neurosci 23:3278–3294

    CAS  PubMed  Google Scholar 

  127. Earnheart JC, Schweizer C, Crestani F, Iwasato T, Itohara S, Mohler H, Luscher B (2007) GABAergic control of adult hippocampal neurogenesis in relation to behavior indicative of trait anxiety and depression states. J Neurosci 27:3845–3854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Duveau V, Laustela S, Barth L, Gianolini F, Vogt KE, Keist R, Chandra D, Homanics GE, Rudolph U, Fritschy JM (2011) Spatiotemporal specificity of GABAA receptor-mediated regulation of adult hippocampal neurogenesis. Eur J Neurosci 34:362–373

    Article  PubMed  PubMed Central  Google Scholar 

  129. Ren Z, Sahir N, Murakami S, Luellen BA, Earnheart JC, Lal R, Kim JY, Song H, Luscher B (2015) Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice. Neuropharmacology 88:171–179

    Article  CAS  PubMed  Google Scholar 

  130. Crestani F, Lorez M, Baer K, Essrich C, Benke D, Laurent JP, Belzung C, Fritschy JM, Luscher B, Mohler H (1999) Decreased GABAA-receptor clustering results in enhanced anxiety and a bias for threat cues. Nat Neurosci 2:833–839

    Article  CAS  PubMed  Google Scholar 

  131. Tozuka Y, Fukuda S, Namba T, Seki T, Hisatsune T (2005) GABAergic excitation promotes neuronal differentiation in adult hippocampal progenitor cells. Neuron 47:803–815

    Article  CAS  PubMed  Google Scholar 

  132. Ge S, Goh EL, Sailor KA, Kitabatake Y, Ming GL, Song H (2006) GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439:589–593

    Article  CAS  PubMed  Google Scholar 

  133. Song J, Sun J, Moss J, Wen Z, Sun GJ, Hsu D, Zhong C, Davoudi H, Christian KM, Toni N, Ming GL, Song H (2013) Parvalbumin interneurons mediate neuronal circuitry-neurogenesis coupling in the adult hippocampus. Nat Neurosci 16:1728–1730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Song J, Zhong C, Bonaguidi MA, Sun GJ, Hsu D, Gu Y, Meletis K, Huang ZJ, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian KM, Ming GL, Song H (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489:150–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Felice D, O’Leary OF, Pizzo RC, Cryan JF (2012) Blockade of the GABA(B) receptor increases neurogenesis in the ventral but not dorsal adult hippocampus: relevance to antidepressant action. Neuropharmacology 63:1380–1388

    Article  CAS  PubMed  Google Scholar 

  136. Wang LP, Kempermann G, Kettenmann H (2005) A subpopulation of precursor cells in the mouse dentate gyrus receives synaptic GABAergic input. Mol Cell Neurosci 29:181–189

    Article  CAS  PubMed  Google Scholar 

  137. Dieni CV, Chancey JH, Overstreet-Wadiche LS (2012) Dynamic functions of GABA signaling during granule cell maturation. Front Neural Circuits 6:113

    PubMed  Google Scholar 

  138. Kneisler TB, Dingledine R (1995) Spontaneous and synaptic input from granule cells and the perforant path to dentate basket cells in the rat hippocampus. Hippocampus 5:151–164

    Article  CAS  PubMed  Google Scholar 

  139. Buhl EH, Han ZS, Lorinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71:1289–1307

    CAS  PubMed  Google Scholar 

  140. Markwardt SJ, Dieni CV, Wadiche JI, Overstreet-Wadiche L (2011) Ivy/neurogliaform interneurons coordinate activity in the neurogenic niche. Nat Neurosci 14:1407–1409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH (2013) Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci U S A 110:9106–9111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Absil P, Pinxten R, Balthazart J, Eens M (2003) Effects of testosterone on Reelin expression in the brain of male European starlings. Cell Tissue Res 312:81–93

    CAS  PubMed  Google Scholar 

  143. Jhaveri DJ, O’Keeffe I, Robinson GJ, Zhao QY, Zhang ZH, Nink V, Narayanan RK, Osborne GW, Wray NR, Bartlett PF (2015) Purification of neural precursor cells reveals the presence of distinct, stimulus-specific subpopulations of quiescent precursors in the adult mouse hippocampus. J Neurosci 35:8132–8144

    Article  CAS  PubMed  Google Scholar 

  144. Olah S, Fule M, Komlosi G, Varga C, Baldi R, Barzo P, Tamas G (2009) Regulation of cortical microcircuits by unitary GABA-mediated volume transmission. Nature 461:1278–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Somogyi P, Klausberger T (2005) Defined types of cortical interneuron structure space and spike timing in the hippocampus. J Physiol 562:9–26

    Article  CAS  PubMed  Google Scholar 

  146. Lee S, Yoon BE, Berglund K, SJ O, Park H, Shin HS, Augustine GJ, Lee CJ (2010) Channel-mediated tonic GABA release from glia. Science 330:790–796

    Article  CAS  PubMed  Google Scholar 

  147. Fritschy JM, Meskenaite V, Weinmann O, Honer M, Benke D, Mohler H (1999) GABAB-receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization. Eur J Neurosci 11:761–768

    Article  CAS  PubMed  Google Scholar 

  148. Mott DD, Lewis DV (1991) Facilitation of the induction of long-term potentiation by GABAB receptors. Science 252:1718–1720

    Article  CAS  PubMed  Google Scholar 

  149. Bruel-Jungerman E, Davis S, Rampon C, Laroche S (2006) Long-term potentiation enhances neurogenesis in the adult dentate gyrus. J Neurosci 26:5888–5893

    Article  CAS  PubMed  Google Scholar 

  150. Chun SK, Sun W, Park JJ, Jung MW (2006) Enhanced proliferation of progenitor cells following long-term potentiation induction in the rat dentate gyrus. Neurobiol Learn Mem 86:322–329

    Article  PubMed  Google Scholar 

  151. Schuler V, Luscher C, Blanchet C, Klix N, Sansig G, Klebs K, Schmutz M, Heid J, Gentry C, Urban L, Fox A, Spooren W, Jaton AL, Vigouret J, Pozza M, Kelly PH, Mosbacher J, Froestl W, Kaslin E, Korn R, Bischoff S, Kaupmann K, Van d PH, Bettler B (2001) Epilepsy, hyperalgesia, impaired memory, and loss of pre- and postsynaptic GABA(B) responses in mice lacking GABA(B(1)). Neuron 31:47–58

    Article  CAS  PubMed  Google Scholar 

  152. Ma DK, Ponnusamy K, Song MR, Ming GL, Song H (2009) Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self-renewal of adult neural stem cells. Mol Brain 2:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Manning EE, Ransome MI, Burrows EL, Hannan AJ (2012) Increased adult hippocampal neurogenesis and abnormal migration of adult-born granule neurons is associated with hippocampal-specific cognitive deficits in phospholipase C-beta1 knockout mice. Hippocampus 22:309–319

    Article  PubMed  Google Scholar 

  154. Luo J, Chen X, Pan YW, Lu S, Xia Z, Storm DR (2015) The type 3 adenylyl cyclase is required for the survival and maturation of newly generated granule cells in the olfactory bulb. PLoS One 10:e0122057

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. Teh DB, Ishizuka T, Yawo H (2014) Regulation of later neurogenic stages of adult-derived neural stem/progenitor cells by L-type Ca2+ channels. Develop Growth Differ 56:583–594

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjam Sibbe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibbe, M., Kulik, A. GABAergic Regulation of Adult Hippocampal Neurogenesis. Mol Neurobiol 54, 5497–5510 (2017). https://doi.org/10.1007/s12035-016-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-016-0072-3

Keywords

Navigation