Skip to main content
Log in

Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Alterations of brain iron levels have been observed in a number of neurodegenerative disorders. We have previously demonstrated that iron overload in the neonatal period results in severe and persistent memory deficits in the adulthood. Protein degradation mediated by the ubiquitin-proteasome system (UPS) plays a central regulatory role in several cellular processes. Impairment of the UPS has been implicated in the pathogenesis of neurodegenerative disorders. Here, we examined the effects of iron exposure in the neonatal period (12th–14th day of postnatal life) on the expression of proteasome β-1, β-2, and β-5 subunits, and ubiquitinated proteins in brains of 15-day-old rats, to evaluate the immediate effect of the treatment, and in adulthood to assess long-lasting effects. Two different memory types, emotionally motivated conditioning and object recognition were assessed in adult animals. We found that iron administered in the neonatal period impairs both emotionally motivated and recognition memory. Polyubiquitinated protein levels were increased in the hippocampus, but not in the cortex, of adult animals treated with iron. Gene expression of subunits β1 and β5 was affected by age, being higher in the early stages of development in the hippocampus, accompanied by an age-related increase in polyubiquitinated protein levels in adults. In the cortex, gene expression of the three proteasome subunits was significantly higher in adulthood than in the neonatal period. These findings suggest that expression of proteasome subunits and activity are age-dependently regulated. Iron exposure in the neonatal period produces long-lasting harmful effects on the UPS functioning, which may be related with iron-induced memory impairment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wong E, Cuervo AM (2011) Integration of clearance mechanisms: the proteasome and autophagy. Cold Spring Harb Perspect Biol 2:a006734

    Google Scholar 

  2. Ciechanover A, Brundin P (2003) The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron 40:427–446

    Article  CAS  PubMed  Google Scholar 

  3. Heinemeyer W, Fischer M, Krimmer T, Stachon U, Wolf DH (1997) The active sites of the eukaryotic 20 S proteasome and their involvement in subunit precursor processing. J Biol Chem 272:25200–25209

    Article  CAS  PubMed  Google Scholar 

  4. Voges D, Zwickl P, Baumeister W (1999) The 26 S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  5. Bochtler M, Ditzel L, Groll M, Hartmann C, Huber R (1999) The proteasome. Annu Rev Biophys Biomol Struct 28:295–317

    Article  CAS  PubMed  Google Scholar 

  6. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  7. Yao X, Liu J, McCabe JT (2008) Alterations of cerebral cortex and hippocampal proteasome subunit expression and function in a traumatic brain injury rat model. J Neurochem 104:353–363

    CAS  PubMed  Google Scholar 

  8. Jadhav T, Wooten MW (2009) Defining an embedded code for protein ubiquitination. J Proteomics Bioinform 2:316–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hegde AN, Upadhya SC (2011) Role of ubiquitin-proteasome-mediated proteolysis in nervous system disease. Biochim Biophys Acta 1809:128–140

    Article  CAS  PubMed  Google Scholar 

  10. Keck S, Nitsch R, Grune T, Ullrich O (2003) Proteasome inhibition by paired helical filament-tau in brains of patients with Alzheimer’s disease. J Neurochem 85:115–122

    Article  CAS  PubMed  Google Scholar 

  11. Keller JN, Hanni KB, Markesbery WR (2000) Impaired proteasome function in Alzheimer’s disease. J Neurochem 75:436–439

    Article  CAS  PubMed  Google Scholar 

  12. Lopez-Salon M, Morelli L, Castano EM, Soto EF, Pasquini JM (2000) Defective ubiquitination of cerebral proteins in Alzheimer’s disease. J Neurosci Res 62:302–310

    Article  CAS  PubMed  Google Scholar 

  13. Gavilán MP, Vela J, Castaño A, Ramos B, del Río JC, Vitorica J, Ruano D (2006) Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging 27:973–982

    Article  Google Scholar 

  14. Keller JN, Hanni KB, Markesbery WR (2000) Possible involvement of proteasome inhibition in aging: implications for oxidative stress. Mech Ageing Dev 113:61–70

    Article  CAS  PubMed  Google Scholar 

  15. Bedford L, Hay D, Devoy A et al (2008) Depletion of 26S proteasomes in mouse brain neurons causes neurodegeneration and Lewy-like inclusions resembling human pale bodies. J Neurosci 28:8189–8198

    Article  CAS  PubMed  Google Scholar 

  16. Betarbet R, Canet-Aviles RM, Sherer TB et al (2006) Intersecting pathways to neurodegeneration in Parkinson’s disease: Effects of the pesticide rotenone on DJ-1, α-synuclein, and the ubiquitin-proteasome system. Neurobiol of Dis 22:404–420

    Article  CAS  Google Scholar 

  17. Seo H, Sonntag KC, Kim W, Cattaneo E, Isacson O (2007) Proteasome activator enhances survival of Huntington’s disease neuronal model cells. PloS ONE 2(2), e238

    Article  PubMed  PubMed Central  Google Scholar 

  18. Schipper HM (2012) Neurodegeneration with brain iron accumulation—clinical syndromes and neuroimaging. Biochim Biophys Acta 1822:350–360

    Article  CAS  PubMed  Google Scholar 

  19. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  Google Scholar 

  20. Zecca L, Youdim MB, Riederer P, Connor JR, Crichton RR (2004) Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci 5(11):863–873

    Article  CAS  PubMed  Google Scholar 

  21. Kell DB (2010) Towards a unifying, systems biology understanding of large-scale cellular death and destruction caused by poorly liganded iron: Parkinson’s, Huntington’s, prions, bactericides, chemical toxicology and others as examples. Arch Toxicol 84:825–889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schröder N, Figueiredo L, de Lima MN (2013) Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis 34:797–812

    PubMed  Google Scholar 

  23. Schröder N, Fredriksson A, Vianna MR, Roesler R, Izquierdo I, Archer T (2001) Memory deficits in adult rats following post natal iron administration. Behav Brain Res 124(1):77–85

    Article  PubMed  Google Scholar 

  24. De Lima MN, Polydoro M, Laranja DC, Bonatto F, Bromberg E, Moreira JC, Dal-Pizzol F, Schröder N (2005) Recognition memory impairment and brain oxidative stress by postnatal iron administration. Eur J Neurosci 21:2521–2528

    Article  PubMed  Google Scholar 

  25. Da Silva VK, De Freitas BS, Da Silva AD et al (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49:222–233

    Article  PubMed  Google Scholar 

  26. Budni P, de Lima MN, Polydoro M, Moreira JC, Schröder N, Dal-Pizzol F (2007) Antioxidant effects of selegiline in oxidative stress induced by iron neonatal treatment in rats. Neurochem Res 32:965–972

    Article  CAS  PubMed  Google Scholar 

  27. Dal-Pizzol F, Klamt F, Frota ML et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev 130:109–114

    Article  CAS  Google Scholar 

  28. Miwa CP, de Lima MN, Scalco F et al (2011) Neonatal iron treatment increases apoptotic markers in hippocampal and cortical areas of adult rats. Neurotox Res 19:527–535

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez LL, de Lima MN, Scalco F, Vedana G, Miwa C, Hilbig A, Vianna MR, Schröder N (2011) Early post-natal iron administration induces astroglial response in the brain of adult and aged rats. Neurotox Res 20:193–199

    Article  CAS  PubMed  Google Scholar 

  30. Fagherazzi EV, Garcia VA, Maurmann N et al (2011) Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders. Psychopharmacology 219(4):1133–1140

    Article  PubMed  Google Scholar 

  31. Silva PF, Garcia VA, Da Dornelles AS et al (2012) Memory impairment induced by brain iron overload is accompanied by reduced H3K9 acetylation and ameliorated by sodium butyrate. Neuroscience 200:42–49

    Article  PubMed  Google Scholar 

  32. Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res 55:35–42

    Article  CAS  PubMed  Google Scholar 

  33. Taylor EM, Crowe A, Morgan EH (1991) Transferrin and iron uptake by the brain: effects of altered iron status. J Neurochem 57:1584–1592

    Article  CAS  PubMed  Google Scholar 

  34. Izquierdo I, Medina JH (1997) Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiol Learn Mem 68:285–316

    Article  CAS  PubMed  Google Scholar 

  35. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  36. Pilchova I, Klacanova K, Chomova M, Tatarkova Z, Dobrota D, Racay P (2015) Possible contribution of proteins of Bcl-2 family in neuronal death following transient global brain ischemia. Cell Mol Neurobiol 35:23–31

    Article  CAS  PubMed  Google Scholar 

  37. Bhat KP, Yan S, Wang CE, Li S, Li XJ (2014) Differential ubiquitination and degradation of huntingtin fragments modulated by ubiquitin-protein ligase E3A. Proc Natl Acad Sci U S A 111:5706–5711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bonefeld BE, Elfving B, Wegener G (2008) Reference genes for normalization: a study of rat brain tissue. Synapse 62:302–309

    Article  CAS  PubMed  Google Scholar 

  39. Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067

    Article  CAS  PubMed  Google Scholar 

  40. Rodrigue KM, Daugherty AM, Haacke EM, Raz N (2013) The role of hippocampal volume in age-related differences in memory. Cereb Cortex 23(7):1533–1541

    Article  PubMed  Google Scholar 

  41. Figueiredo LS, Dornelles AS, Petry FS et al (2015) Two waves of proteasome-dependent protein degradation in the hippocampus are required for recognition memory consolidation. Neurobiol Learn Mem 120:1–6

    Article  CAS  PubMed  Google Scholar 

  42. Hegde AN, Inokuchi K, Pei W et al (1997) Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in aplysia. Cell 89:115–126

    Article  CAS  PubMed  Google Scholar 

  43. Jarome TJ, Werner CT, Kwapis JL, Helmstetter FJ (2011) Activity dependent protein degradation is critical for the formation and stability of fear memory in the amygdale. PLoS ONE 6:e24349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Reis DS, Jarome TJ, Helmstetter FJ (2013) Memory formation for trace fear conditioning requires ubiquitin-proteasome mediated degradation in the prefrontal cortex. Front Behav Neurosci 7:1–7

    Article  Google Scholar 

  45. Lopez-Salon M, Alonso M, Vianna MR, Viola H, Mello e Souza T, Izquierdo I, Pasquini JM, Medina JH (2001) The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci 14:1820–1826

    Article  CAS  PubMed  Google Scholar 

  46. Zhu W, Li X, Xie W, Luo F, Kaur D, Andersen JK, Jankovic J, Le W (2010) Genetic iron chelation protects against proteosome inhibition-induced dopamine neuron degeneration. Neurobiol Dis 37:307–313

    Article  PubMed  Google Scholar 

  47. Gavilán MP, Pintado C, Gavilán E, Jiménez S, Ríos RM, Vitorica J, Castaño A, Ruano D (2009) Dysfunction of the unfolded protein response increases neurodegeneration in aged rat hippocampus following proteasome inhibition. Aging Cell 8:654–665

    Article  PubMed  Google Scholar 

  48. Pintado C, Gavilán M, Gavilán E et al (2012) Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation 9:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nunziante M, Ackermann K, Dietrich K et al (2011) Proteasomal dysfunction and endoplasmic reticulum stress enhance trafficking of prion protein aggregates through the secretory pathway and increase accumulation of pathologic prion protein. J Biol Chem 286:33942–33953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hare DJ, Arora M, Jenkins NL, Finkelstein DI, Doble PA, Bush AI (2015) Is early-life iron exposure critical in neurodegeneration? Nat Rev Neurol 11:536–544

    Article  CAS  PubMed  Google Scholar 

  51. Keller JN, Dimayuga E, Chen Q, Thorpe J, Gee J, Ding Q (2004) Autophagy, proteasomes, lipofuscin, and oxidative stress in the aging brain. Int J Biochem Cell Biol 36:2376–2391

    Article  CAS  PubMed  Google Scholar 

  52. Zhu W, Xie W, Pan T et al (2007) Prevention and restoration of lactacystin-induced nigrostriatal dopamine neuron degeneration by novel brain-permeable iron chelators. FASEB J 21:3835–3844

    Article  CAS  PubMed  Google Scholar 

  53. Martinez-Vicente M, Sovak G, Cuervo AN (2005) Protein degradation and aging. Exp Gerontol 40:622–633

    Article  CAS  PubMed  Google Scholar 

  54. Giannini C, Kloβ A, Gohlke S, Mishto M, Nicholson TP, Sheppard PW, Kloetzel PM, Dahlmann B (2013) Poly-Ub-substrate-degradative activity of 26S proteasome is not impairment in the aging rat brain. Plos One 8(5):e64042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Council for Scientific and Technological Development (CNPq). L.S.F. is supported by a CAPES/MEC fellowship. V.A.D. is supported by a CNPq/PIBIC scholarship and L.M.K. is supported by a BPA/PUCRS scholarship. L.W.K. is recipient of fellowship CAPES/PNPD Program. M.R.B. and N.S. are Research Career Awardees of the CNPq.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadja Schröder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Figueiredo, L.S., de Freitas, B.S., Garcia, V.A. et al. Iron Loading Selectively Increases Hippocampal Levels of Ubiquitinated Proteins and Impairs Hippocampus-Dependent Memory. Mol Neurobiol 53, 6228–6239 (2016). https://doi.org/10.1007/s12035-015-9514-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9514-6

Keywords

Navigation