Skip to main content
Log in

Effects of lipoic acid supplementation on age- and iron-induced memory impairment, mitochondrial DNA damage and antioxidant responses

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effects of lipoic acid (LA) supplementation during adulthood combined with supplementation later in life or LA administration only at old age on age-induced cognitive dysfunction, mitochondrial DNA deletions, caspase 3 and antioxidant response enzymes expression in iron-treated rats.

Methods

Male rats were submitted to iron treatment (30 mg/kg body wt of Carbonyl iron) from 12 to 14th post-natal days. Iron-treated rats received LA supplementation (50 mg/kg, daily) in adulthood and old age or at old age only for 21 days. Memory, mitochondrial DNA (mtDNA) complex I deletions, caspase 3 mRNA expression and antioxidant response enzymes mRNA expression were analyzed in the hippocampus.

Results

LA administration in adulthood combined with treatment later in life was able to reverse age-induced effects on object recognition and inhibitory avoidance memory, as well as on mtDNA deletions, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) expression, and antioxidant enzymes disruption induced by iron in aged rats. LA treatment only at old age reversed iron-induced effects to a lesser extent when compared to the combined treatment.

Conclusion

The present findings support the view that LA supplementation may be considered as an adjuvant against mitochondrial damage and cognitive decline related to aging and neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Franco R, Vargas MR (2018) Redox biology in neurological function, dysfunction, and aging. Antioxid Redox Signal 28:1583–1586. https://doi.org/10.1089/ars.2018.7509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Simona D, Giacomelli C, Martini C (2018) Brain ageing and neurodegenerative disease: the role of cellular waste management. Biochem Pharmacol 158:207–216. https://doi.org/10.1016/j.bcp.2018.10.030

    Article  CAS  Google Scholar 

  4. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060. https://doi.org/10.1016/S1474-4422(14)70117-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li K, Reichmann H (2016) Role of iron in neurodegenerative diseases. J Neural Transm 123:389–399. https://doi.org/10.1007/s00702-016-1508-7

    Article  CAS  PubMed  Google Scholar 

  6. de Lima MN, Polydoro M, Laranja DC et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21:2521–2528. https://doi.org/10.1111/j.1460-9568.2005.04083.x

    Article  PubMed  Google Scholar 

  7. de Lima MN, Presti-Torres J, Garcia VA et al (2008) Amelioration of recognition memory impairment associated with iron loading or aging by the type 4-specific phosphodiesterase inhibitor rolipram in rats. Neuropharmacology 55:788–792. https://doi.org/10.1016/j.neuropharm.2008.06.025

    Article  CAS  PubMed  Google Scholar 

  8. Schröder N, Figueiredo LS, de Lima MN (2013) Role of brain iron accumulation in cognitive dysfunction: evidence from animal models and human studies. J Alzheimers Dis 34:797–812. https://doi.org/10.3233/JAD-121996

    Article  CAS  PubMed  Google Scholar 

  9. Schröder N, Fredriksson A, Vianna MR et al (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124:77–85. https://doi.org/10.1016/S0166-4328(01)00236-4

    Article  PubMed  Google Scholar 

  10. Agrawal S, Berggren KL, Marks E, Fox JH (2017) Impact of high iron intake on cognition and neurodegeneration in humans and in animal models: a systematic review. Nutr Rev 75:456–470. https://doi.org/10.1093/nutrit/nux015

    Article  PubMed  PubMed Central  Google Scholar 

  11. da Silva VK, de Freitas BS, da Silva DA et al (2014) Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Mol Neurobiol 49:222–233. https://doi.org/10.1007/s12035-013-8514-7

    Article  CAS  PubMed  Google Scholar 

  12. Lavich IC, de Freitas BS, Kist LW et al (2015) Sulforaphane rescues memory dysfunction and synaptic and mitochondrial alterations induced by brain iron accumulation. Neuroscience 301:542–552. https://doi.org/10.1016/j.neuroscience.2015.06.025

    Article  CAS  PubMed  Google Scholar 

  13. da Silva VK, de Freitas BS, Dornelles VC et al (2018) Novel insights into mitochondrial molecular targets of iron-induced neurodegeneration: reversal by cannabidiol. Brain Res Bull 139:1–8. https://doi.org/10.1016/j.brainresbull.2018.01.014

    Article  CAS  PubMed  Google Scholar 

  14. da Silva VK, de Freitas BS, Garcia RCL et al (2018) Antiapoptotic effects of cannabidiol in an experimental model of cognitive decline induced by brain iron overload. Transl Psychiatry 8:176. https://doi.org/10.1038/s41398-018-0232-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. de Domenico S, Giudetti AM (2017) Nutraceutical intervention in ageing brain. J Gerontol Geriatr 65:79–92

    Google Scholar 

  16. Silvestri S, Orlando P, Armeni T et al (2015) Coenzyme Q10 and α-lipoic acid: antioxidant and pro-oxidant effects in plasma and peripheral blood lymphocytes of supplemented subjects. J Clin Biochem Nutr 57:21–26. https://doi.org/10.3164/jcbn.14-130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Venigalla M, Sonego S, Gyengesi E, Sharman MJ, Münch G (2016) Novel promising therapeutics against chronic neuroinflammation and neurodegeneration in Alzheimer’s disease. Neurochem Int 95:63–74. https://doi.org/10.1016/j.neuint.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Rochette L, Ghibu S, Richard C et al (2013) Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 57:114–125. https://doi.org/10.1002/mnfr.201200608

    Article  CAS  PubMed  Google Scholar 

  19. Farr SA, Price TO, Banks WA et al (2012) Effect of alpha-lipoic acid on memory, oxidation, and lifespan in SAMP8 mice. J Alzheimers Dis 32:447–455. https://doi.org/10.3233/JAD-2012-120130

    Article  CAS  PubMed  Google Scholar 

  20. Tzvetanova ER, Georgieva AP, Alexandrova AV et al (2018) Antioxidant mechanisms in neuroprotective action of lipoic acid on learning and memory of rats with experimental dementia. Bulg Chem Commun 50:52–57

    Google Scholar 

  21. Molz P, Schröder N (2017) Potential therapeutic effects of lipoic acid on memory deficits related to aging and neurodegeneration. Front Pharmacol 8:849. https://doi.org/10.3389/fphar.2017.00849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Satoh S, Shindoh M, Min JZ et al (2008) Selective and sensitive determination of lipoyllysine (protein-bound α-lipoic acid) in biological specimens by high-performance liquid chromatography with fluorescence detection. Anal Chim Acta 618:210–217. https://doi.org/10.1016/j.aca.2008.05.001

    Article  CAS  PubMed  Google Scholar 

  23. Shay KP, Moreau RF, Smith EJ et al (2009) Alpha-lipoic acid as a dietary supplement: molecular mechanisms and therapeutic potential. Biochim Biophys Acta 1790:1149–1160. https://doi.org/10.1016/j.bbagen.2009.07.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Fredriksson A, Schröder N, Eriksson P et al (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159:25–30. https://doi.org/10.1006/taap.1999.8711

    Article  CAS  PubMed  Google Scholar 

  25. Mehrotra A, Kanwal A, Banerjee SK, Sandhir R (2015) Mitochondrial modulators in experimental Huntington’s disease: reversal of mitochondrial dysfunctions and cognitive deficits. Neurobiol Aging 36:2186–2200. https://doi.org/10.1016/j.neurobiolaging.2015.02.004

    Article  CAS  PubMed  Google Scholar 

  26. Dwivedi N, Flora G, Kushwaha P, Flora SJ (2014) Alpha-lipoic acid protects oxidative stress, changes in cholinergic system and tissue histopathology during co-exposure to arsenic-dichlorvos in rats. Environ Toxicol Pharmacol 37:7–23. https://doi.org/10.1016/j.etap.2013.10.010

    Article  CAS  PubMed  Google Scholar 

  27. de Lima MN, Dias CP, Torres JP et al (2008) Reversion of age-related recognition memory impairment by iron chelation in rats. Neurobiol Aging 29:1052–1059. https://doi.org/10.1016/j.neurobiolaging.2007.02.006

    Article  CAS  PubMed  Google Scholar 

  28. Uberti VH, de Freitas BS, Molz P et al (2020) Iron overload impairs autophagy: effects of rapamycin in ameliorating iron-related memory deficits. Mol Neurobiol 57:1044–1054. https://doi.org/10.1007/s12035-019-01794-4

    Article  CAS  PubMed  Google Scholar 

  29. Quiles JL, Pamplona R, Ramirez-Tortosa MC et al (2010) Coenzyme Q addition to an n-6 PUFA-rich diet resembles benefits on age-related mitochondrial DNA deletion and oxidative stress of a MUFA-rich diet in rat heart. Mech Ageing Dev 131(1):38–47. https://doi.org/10.1016/j.mad.2009.11.004

    Article  CAS  PubMed  Google Scholar 

  30. Ochoa JJ, Pamplona R, Ramirez-Tortosa MC et al (2011) Age-related changes in brain mitochondrial DNA deletion and oxidative stress are differentially modulated by dietary fat type and coenzyme Q10. Free Radic Biol Med 50(9):1053–1064. https://doi.org/10.1016/j.freeradbiomed.2011.02.004

    Article  CAS  PubMed  Google Scholar 

  31. Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. https://doi.org/10.1373/clinchem.2008.112797

    Article  CAS  PubMed  Google Scholar 

  32. Bustin SA, Benes V, Garson J et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. https://doi.org/10.1038/nmeth.2697

    Article  CAS  PubMed  Google Scholar 

  33. Valdés Hernández MC, Ritchie S, Glatz A et al (2015) Brain iron deposits and lifespan cognitive ability. Age 37:100. https://doi.org/10.1007/s11357-015-9837-2

    Article  CAS  Google Scholar 

  34. Kalpouzos G, Garzón B, Sitnikov R et al (2017) Higher striatal iron concentration is linked to frontostriatal underactivation and poorer memory in normal aging. Cereb Cortex 27:3427–3436. https://doi.org/10.1093/cercor/bhx045

    Article  PubMed  Google Scholar 

  35. Luo Z, Zhuang X, Kumar D et al (2013) The correlation of hippocampal T2-mapping with neuropsychology test in patients with Alzheimer’s disease. PLoS ONE 8:e76203. https://doi.org/10.1371/journal.pone.0076203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ayton S, Fazlollahi A, Bourgeat P et al (2017) Cerebral quantitative susceptibility mapping predicts amyloid-β-related cognitive decline. Brain 140:2112–2119. https://doi.org/10.1093/brain/awx137

    Article  PubMed  Google Scholar 

  37. Ayton S, Wang Y, Diouf I et al (2020) Brain iron is associated with accelerated cognitive decline in people with Alzheimer pathology. Mol Psychiatry 25(11):2932–2941. https://doi.org/10.1038/s41380-019-0375-7

    Article  CAS  PubMed  Google Scholar 

  38. Hare DJ, Arora M, Jenkins NL et al (2015) Is early-life iron exposure critical in neurodegeneration? Nat Rev Neurol 11:536–544. https://doi.org/10.1038/nrneurol.2015.100

    Article  CAS  PubMed  Google Scholar 

  39. Aguilar-Hernández L, Vázquez-Hernández AJ, de-Lima-Mar DF et al (2020) Memory and dendritic spines loss, and dynamic dendritic spines changes are age-dependent in the rat. J Chem Neuroanat 110:101858. https://doi.org/10.1016/j.jchemneu.2020.101858

    Article  CAS  PubMed  Google Scholar 

  40. Birch AM, Kelly ÁM (2019) Lifelong environmental enrichment in the absence of exercise protects the brain from age-related cognitive decline. Neuropharmacology 145(Pt A):59–74. https://doi.org/10.1016/j.neuropharm.2018.03.042

    Article  CAS  PubMed  Google Scholar 

  41. Rech RL, de Lima MN, Dornelles A et al (2010) Reversal of age-associated memory impairment by rosuvastatin in rats. Exp Gerontol 45:351–356. https://doi.org/10.1016/j.exger.2010.02.001

    Article  CAS  PubMed  Google Scholar 

  42. Quinn JF, Bussiere JR, Hammond RS et al (2007) Chronic dietary α-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice. Neurobiol Aging 28:213–225. https://doi.org/10.1016/j.neurobiolaging.2005.12.014

    Article  CAS  PubMed  Google Scholar 

  43. Liu J, Head E, Gharib AM et al (2002) Memory loss in old rats is associated with brain mitochondrial decay and RNA/DNA oxidation: partial reversal by feeding acetyl-l-carnitine and/or R-α-lipoic acid. Proc Natl Acad Sci 99:2356–2361. https://doi.org/10.1073/pnas.261709299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cui X, Zuo P, Zhang Q et al (2006) Chronic systemic D-galactose exposure induces memory loss, neurodegeneration, and oxidative damage in mice: protective effects of R-α-lipoic acid. J Neurosci Res 84:647–654. https://doi.org/10.1002/jnr.20899

    Article  CAS  PubMed  Google Scholar 

  45. Liu J (2008) The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203. https://doi.org/10.1007/s11064-007-9403-0

    Article  CAS  PubMed  Google Scholar 

  46. Chakrabarti S, Munshi S, Banerjee K et al (2011) Mitochondrial dysfunction during brain aging: role of oxidative stress and modulation by antioxidant supplementation. Aging Dis 2:242–256

    PubMed  PubMed Central  Google Scholar 

  47. di Domenico F, Barone E, Perluigi M, Butterfield DA (2015) Strategy to reduce free radical species in Alzheimer’s disease: an update of selected antioxidants. Expert Rev Neurother 15:19–40. https://doi.org/10.1586/14737175.2015.955853

    Article  CAS  PubMed  Google Scholar 

  48. Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL et al (2015) α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochim Biophys Acta 1851(3):273–281. https://doi.org/10.1016/j.bbalip.2014.12.013

    Article  CAS  PubMed  Google Scholar 

  49. Cc H, Sun J, Ji H et al (2020) Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. Fish Physiol Biochem 46:1631–1644. https://doi.org/10.1007/s10695-020-00795-8

    Article  CAS  Google Scholar 

  50. Glushakova OY, Glushakov AA, Wijesinghe DS et al (2017) Prospective clinical biomarkers of caspase-mediated apoptosis associated with neuronal and neurovascular damage following stroke and other severe brain injuries: Implications for chronic neurodegeneration. Brain Circ 3:87–108. https://doi.org/10.4103/bc.bc_27_16

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yu F, Tong LJ, Cai DS (2020) Sevoflurane inhibits neuronal apoptosis and expressions of HIF-1 and HSP70 in brain tissues of rats with cerebral ischemia/reperfusion injury. Eur Rev Med Pharmacol Sci 24(9):5082–5090. https://doi.org/10.26355/eurrev_202005_21201

    Article  CAS  PubMed  Google Scholar 

  52. Chen J, Tan L, Liao Y et al (2020) Chemokine CCL2 impairs spatial memory and cognition in rats via influencing inflammation, glutamate metabolism and apoptosis-associated genes expression—a potential mechanism for HIV-associated neurocognitive disorder. Life Sci 255:117828. https://doi.org/10.1016/j.lfs.2020.117828

    Article  CAS  PubMed  Google Scholar 

  53. Zhao H, Bu M, Li B, Zhang Y (2018) Lipoic acid inhibited desflurane-induced hippocampal neuronal apoptosis through Caspase3 and NF-KappaB dependent pathway. Tissue Cell 50:37–42. https://doi.org/10.1016/j.tice.2017.12.001

    Article  CAS  PubMed  Google Scholar 

  54. Molinari C, Morsanuto V, Ghirlanda S et al (2019) Role of combined lipoic acid and vitamin D3 on astrocytes as a way to prevent brain ageing by induced oxidative stress and iron accumulation. Oxid Med Cell Longev 2019:2843121. https://doi.org/10.1155/2019/2843121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Cui Z, Zhong Z, Yang Y et al (2016) Ferrous iron induces Nrf2 expression in mouse brain astrocytes to prevent neurotoxicity. J Biochem Mol Toxicol 30:396–403. https://doi.org/10.1002/jbt.21803

    Article  CAS  PubMed  Google Scholar 

  56. Kwak M-K, Itoh K, Yamamoto M, Kensler TW (2002) Enhanced expression of the transcription factor Nrf2 by cancer chemopreventive agents: role of antioxidant response element-like sequences in the nrf2 promoter. Mol Cell Biol 22(9):2883–2892. https://doi.org/10.1128/mcb.22.9.2883-2892.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. He F, Ru X, Wen T (2020) NRF2, a transcription factor for stress response and beyond. Int J Mol Sci 21(13):4777. https://doi.org/10.3390/ijms21134777

    Article  CAS  PubMed Central  Google Scholar 

  58. Saleh HM, El-Sayed YS, Naser SM et al (2017) Efficacy of α-lipoic acid against cadmium toxicity on metal ion and oxidative imbalance, and expression of metallothionein and antioxidant genes in rabbit brain. Environ Sci Pollut Res 24:24593–24601. https://doi.org/10.1007/s11356-017-0158-0

    Article  CAS  Google Scholar 

  59. Moraes TB, Jacques CED, Rosa AP et al (2013) Role of catalase and superoxide dismutase activities on oxidative stress in the brain of a phenylketonuria animal model and the effect of lipoic acid. Cell Mol Neurobiol 33:253–260. https://doi.org/10.1007/s10571-012-9892-5

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Council for Scientific and Technological Development [CNPq; grant numbers 305656/2019-8 and 421643/2016-1 to N.S.]; the National Institute of Science and Technology for Translational Medicine [INCT-TM – grant number 465458/2014-9]; National Institute of Science and Technology for Brain Diseases, Excitotoxicity and Neuroprotection [INCT-EN—Grant number 465671/2014-4]; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. M.R.B and N.S are Research Career Awardees of the CNPq. The funding sources had no involvement in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Contributions

PM: conceptualization, methodology, investigation, writing—original draft. BSdF: investigation, resources, project administration. VHU: investigation. KMdC: investigation. LWK: investigation, validation. MRB: conceptualization, methodology, validation, writing—review and editing, funding acquisition. NS: conceptualization, methodology, validation, formal analysis, writing—original draft, writing—review and editing, supervision, project administration, funding acquisition.

Corresponding author

Correspondence to Nadja Schröder.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

This study was approved by the Institutional Ethics Committee for the Use of Animals of the Pontifical Catholic University (CEUA SIPESQ #7510) and all experimental procedures were performed in accordance with the Brazilian Guidelines for the Care and Use of Animals in Research and Teaching (DBCA, published by CONCEA, MCTI, Brazil).

Consent for publication

All listed authors have approved the manuscript before submission, including the names and order of authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molz, P., de Freitas, B.S., Uberti, V.H. et al. Effects of lipoic acid supplementation on age- and iron-induced memory impairment, mitochondrial DNA damage and antioxidant responses. Eur J Nutr 60, 3679–3690 (2021). https://doi.org/10.1007/s00394-021-02541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02541-z

Keywords

Navigation