Skip to main content

Advertisement

Log in

Levetiracetam Prevents Perforin Mediated Neuronal Injury Induced by Acute Cerebral Ischemia Reperfusion

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The purpose of this study is to explore the neuroprotection mechanism of levetiracetam (LEV) with acute focal cerebral ischemia-reperfusion (I/P) mouse. The cerebral artery I/P animal model was prepared with a middle artery cerebral occlusion method. For drug intervention, mice were intraperitoneally injected with LEV with a dose of either 15 or 150 mg/kg. Neuronal injury was evaluated by measuring the infarct area, apoptosis ratio, and observation of blood–brain barrier ultrastructure with transmission electron microscope. CD8+ antibody and perforin antibody were used to make cross-reference screen through flow cytometry to determine a perforin-positive rate in CD8+ T lymphocytes (PFN + %). Injection of LEV can reduce infarct area, apoptosis ratio, and blood–brain barrier damage 24 h later after acute I/P in WT mice. In vitro, perforin can lower hippocampal neuron viability. In vivo, removing perforin can relieve neuronal injury. High dose injection of LEV (150 mg/kg) can inhibit perforin secreting from CD8+T lymphocytes. In addition, LEV can still protect neurons with perforin knockout mice. Therefore, our results suggested that LEV may contribute to neuron protection after cerebral ischemia reperfusion. The possible mechanism may be related with perforin release. However, we cannot roll out other mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kriz J, Lalancette-Hébert M (2009) Inflammation, plasticity and real-time imaging after cerebral ischemia. Acta Neuropathol 117(5):497–509. doi:10.1007/s00401-009-0496-1

    Article  CAS  PubMed  Google Scholar 

  2. Frieler RA, Meng H, Duan SZ, Berger S, Schütz G, He Y, Xi G, Wang MM et al (2011) Myeloid-specific deletion of the mineralocorticoid receptor reduces infarct volume and alters inflammation during cerebral ischemia. Stroke 42(1):179–185. doi:10.1161/strokeaha.110.598441

    Article  PubMed  Google Scholar 

  3. Shichita T, Sugiyama Y, Ooboshi H, Sugimori H, Nakagawa R, Takada I, Iwaki T, Okada Y et al (2009) Pivotal role of cerebral interleukin-17-producing gammadeltaT cells in the delayed phase of ischemic brain injury. Nat Med 15(8):946–950. doi:10.1038/nm.1999

    Article  CAS  PubMed  Google Scholar 

  4. Subramanian S, Zhang B, Kosaka Y, Burrows GG, Grafe MR, Vandenbark AA, Hurn PD, Offner H (2009) Recombinant T cell receptor ligand treats experimental stroke. Stroke 40(7):2539–2545. doi:10.1161/strokeaha.108.543991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chaitanya GV, Schwaninger M, Alexander JS, Babu PP (2010) Granzyme-b is involved in mediating post-ischemic neuronal death during focal cerebral ischemia in rat model. Neuroscience 165(4):1203–1216. doi:10.1016/j.neuroscience.2009.10.067

    Article  CAS  PubMed  Google Scholar 

  6. Gelderblom M, Leypoldt F, Steinbach K, Behrens D, Choe CU, Siler DA, Arumugam TV, Orthey E et al (2009) Temporal and spatial dynamics of cerebral immune cell accumulation in stroke. Stroke 40(5):1849–1857. doi:10.1161/strokeaha.108.534503

    Article  PubMed  Google Scholar 

  7. Chaitanya GV, Babu PP (2008) Multiple apoptogenic proteins are involved in the nuclear translocation of Apoptosis Inducing Factor during transient focal cerebral ischemia in rat. Brain Res 1246:178–190. doi:10.1016/j.brainres.2008.09.075

    Article  CAS  PubMed  Google Scholar 

  8. Kleinschnitz C, Schwab N, Kraft P, Hagedorn I, Dreykluft A, Schwarz T, Austinat M, Nieswandt B et al (2010) Early detrimental T-cell effects in experimental cerebral ischemia are neither related to adaptive immunity nor thrombus formation. Blood 115(18):3835–3842. doi:10.1182/blood-2009-10-249078

    Article  CAS  PubMed  Google Scholar 

  9. Liesz A, Suri-Payer E, Veltkamp C, Doerr H, Sommer C, Rivest S, Giese T, Veltkamp R (2009) Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat Med 15(2):192–199. doi:10.1038/nm.1927

    Article  CAS  PubMed  Google Scholar 

  10. Waterhouse NJ, Sutton VR, Sedelies KA, Ciccone A, Jenkins M, Turner SJ, Bird PI, Trapani JA (2006) Cytotoxic T lymphocyte-induced killing in the absence of granzymes A and B is unique and distinct from both apoptosis and perforin-dependent lysis. J Cell Biol 173(1):133–144. doi:10.1083/jcb.200510072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liesz A, Zhou W, Mracskó É, Karcher S, Bauer H, Schwarting S, Sun L, Bruder D et al (2011) Inhibition of lymphocyte trafficking shields the brain against deleterious neuroinflammation after stroke. Brain 134(Pt 3):704–720. doi:10.1093/brain/awr008

    Article  PubMed  Google Scholar 

  12. Peterfalvi A, Molnar T, Banati M, Pusch G, Miko E, Bogar L, Pal J, Szereday L et al (2009) Impaired function of innate T lymphocytes and NK cells in the acute phase of ischemic stroke. Cerebrovasc Dis 28(5):490–498. doi:10.1159/000236527

    Article  CAS  PubMed  Google Scholar 

  13. Deb C, Lafrance-Corey RG, Zoecklein L, Papke L, Rodriguez M, Howe CL (2009) Demyelinated axons and motor function are protected by genetic deletion of perforin in a mouse model of multiple sclerosis. J Neuropathol Exp Neurol 68(9):1037–1048. doi:10.1097/NEN.0b013e3181b5417e

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lowin B, Mattman C, Hahne M, Tschopp J (1996) Comparison of Fas(Apo-1/CD95)- and perforin-mediated cytotoxicity in primary T lymphocytes. Int Immunol 8(1):57–63

    Article  CAS  PubMed  Google Scholar 

  15. Meiraz A, Garber OG, Harari S, Hassin D, Berke G (2009) Switch from perforin-expressing to perforin-deficient CD8(+) T cells accounts for two distinct types of effector cytotoxic T lymphocytes in vivo. Immunology 128(1):69–82. doi:10.1111/j.1365-2567.2009.03072.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pipkin ME, Lieberman J (2007) Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol 19(3):301–308. doi:10.1016/j.coi.2007.04.011

    Article  CAS  PubMed  Google Scholar 

  17. Wang T, Lee MH, Choi E, Pardo-Villamizar CA, Lee SB, Yang IH, Calabresi PA, Nath A (2012) Granzyme B-induced neurotoxicity is mediated via activation of PAR-1 receptor and Kv1.3 channel. PLoS One 7(8), e43950. doi:10.1371/journal.pone.0043950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Voskoboinik I, Smyth MJ, Trapani JA (2006) Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 6(12):940–952. doi:10.1038/nri1983

    Article  CAS  PubMed  Google Scholar 

  19. Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA (2010) Perforin: structure, function, and role in human immunopathology. Immunol Rev 235(1):35–54. doi:10.1111/j.0105-2896.2010.00896.x

    Article  CAS  PubMed  Google Scholar 

  20. Hanon E, Klitgaard H (2001) Neuroprotective properties of the novel antiepileptic drug levetiracetam in the rat middle cerebral artery occlusion model of focal cerebral ischemia. Seizure 10(4):287–293. doi:10.1053/seiz.2000.0511

    Article  CAS  PubMed  Google Scholar 

  21. Ben-Menachem E, Falter U (2000) Efficacy and tolerability of levetiracetam 3000 mg/d in patients with refractory partial seizures: a multicenter, double-blind, responder-selected study evaluating monotherapy. European Levetiracetam Study Group. Epilepsia 41(10):1276–1283

    Article  CAS  PubMed  Google Scholar 

  22. Betts T, Waegemans T, Crawford P (2000) A multicentre, double-blind, randomized, parallel group study to evaluate the tolerability and efficacy of two oral doses of levetiracetam, 2000 mg daily and 4000 mg daily, without titration in patients with refractory epilepsy. Seizure 9(2):80–87. doi:10.1053/seiz.2000.0380

    Article  CAS  PubMed  Google Scholar 

  23. Cereghino JJ, Biton V, Abou-Khalil B, Dreifuss F, Gauer LJ, Leppik I (2000) Levetiracetam for partial seizures: results of a double-blind, randomized clinical trial. Neurology 55(2):236–242

    Article  CAS  PubMed  Google Scholar 

  24. Shorvon SD, Löwenthal A, Janz D, Bielen E, Loiseau P (2000) Multicenter double-blind, randomized, placebo-controlled trial of levetiracetam as add-on therapy in patients with refractory partial seizures. European Levetiracetam Study Group. Epilepsia 41(9):1179–1186

    Article  CAS  PubMed  Google Scholar 

  25. Peltola J, Coetzee C, Jiménez F, Litovchenko T, Ramaratnam S, Zaslavaskiy L, Lu ZS, Sykes DM et al (2009) Once-daily extended-release levetiracetam as adjunctive treatment of partial-onset seizures in patients with epilepsy: a double-blind, randomized, placebo-controlled trial. Epilepsia 50(3):406–414. doi:10.1111/j.1528-1167.2008.01817.x

    Article  CAS  PubMed  Google Scholar 

  26. Crowder KM, Gunther JM, Jones TA, Hale BD, Zhang HZ, Peterson MR et al (1999) Abnormal neurotransmission in mice lacking synaptic vesicle protein 2A (SV2A). PNAS 96:15268–15273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li G, Nowak M, Bauer S, Schlegel K, Stei S, Allenhöfer L, Waschbisch A, Tackenberg B et al (2013) Levetiracetam but not valproate inhibits function of CD8+ T lymphocytes. Seizure 22(6):462–466. doi:10.1016/j.seizure.2013.03.006

    Article  PubMed  Google Scholar 

  28. Ornella C et al (2013) The antiepileptic drug levetiracetam suppresses non-convulsive seizure activity and reduces ischemic brain damage in rats subjected to permanent middle cerebral artery occlusion. PLOS ONE, www.plosone.org. November,Volume 8, Issue 11, e80852

  29. Shetty AK (2013) Prospects of levetiracetam as a neuroprotective drug against status epilepticus, traumatic brain injury, and stroke. Front Neurol 4:172. doi:10.3389/fneur.2013.00172

    Article  PubMed  PubMed Central  Google Scholar 

  30. Belcastro V, Costa C, Galletti F, Autuori A, Pierguidi L, Pisani F, Calabresi P, Parnetti L (2008) Levetiracetam in newly diagnosed late-onset post-stroke seizures: a prospective observational study. Epilepsy Res 82(2–3):223–226. doi:10.1016/j.eplepsyres.2008.08.008

    Article  CAS  PubMed  Google Scholar 

  31. Kutlu G, Gomceli YB, Unal Y, Inan LE (2008) Levetiracetam monotherapy for late poststroke seizures in the elderly. Epilepsy Behav 13(3):542–544. doi:10.1016/j.yebeh.2008.04.025

    Article  PubMed  Google Scholar 

  32. Leker RR, Neufeld MY (2003) Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia. Brain Res Brain Res Rev 42(3):187–203

    Article  CAS  PubMed  Google Scholar 

  33. Costa C, Martella G, Picconi B, Prosperetti C, Pisani A, Di Filippo M, Pisani F, Bernardi G et al (2006) Multiple mechanisms underlying the neuroprotective effects of antiepileptic drugs against in vitro ischemia. Stroke 37(5):1319–1326. doi:10.1161/01.str.0000217303.22856.38

    Article  CAS  PubMed  Google Scholar 

  34. Buckley K, Kelly RB (1985) Identification of a transmembrane glycoprotein specific for secretory vesicles of neural and endocrine cells. J Cell Biol 100(4):1284–1294

    Article  CAS  PubMed  Google Scholar 

  35. Lukyanetz EA, Shkryl VM, Kostyuk PG (2002) Selective blockade of N-type calcium channels by levetiracetam. Epilepsia 43(1):9–18

    Article  CAS  PubMed  Google Scholar 

  36. Angehagen M, Margineanu DG, Ben-Menachem E, Rönnbäck L, Hansson E, Klitgaard H (2003) Levetiracetam reduces caffeine-induced Ca2+ transients and epileptiform potentials in hippocampal neurons. Neuroreport 14(3):471–475. doi:10.1097/01.wnr.0000059774.23521.b7

    Article  PubMed  Google Scholar 

  37. Pisani A, Bonsi P, Martella G, De Persis C, Costa C, Pisani F, Bernardi G, Calabresi P (2004) Intracellular calcium increase in epileptiform activity: modulation by levetiracetam and lamotrigine. Epilepsia 45(7):719–728. doi:10.1111/j.0013-9580.2004.02204.x

    Article  CAS  PubMed  Google Scholar 

  38. Zona C, Pieri M, Carunchio I, Curcio L, Klitgaard H, Margineanu DG (2010) Brivaracetam (ucb 34714) inhibits Na(+) current in rat cortical neurons in culture. Epilepsy Res 88(1):46–54. doi:10.1016/j.eplepsyres.2009.09.024

    Article  CAS  PubMed  Google Scholar 

  39. Madeja M, Margineanu DG, Gorji A, Siep E, Boerrigter P, Klitgaard H, Speckmann EJ (2003) Reduction of voltage-operated potassium currents by levetiracetam: a novel antiepileptic mechanism of action? Neuropharmacology 45(5):661–671

    Article  CAS  PubMed  Google Scholar 

  40. Green AR, Hainsworth AH, Jackson DM (2000) GABA potentiation: a logical pharmacological approach for the treatment of acute ischaemic stroke. Neuropharmacology 39(9):1483–1494

    Article  CAS  PubMed  Google Scholar 

  41. Margineanu DG, Klitgaard H (2003) Levetiracetam has no significant gamma-aminobutyric acid-related effect on paired-pulse interaction in the dentate gyrus of rats. Eur J Pharmacol 466(3):255–261

    Article  CAS  PubMed  Google Scholar 

  42. Poulain P, Margineanu DG (2002) Levetiracetam opposes the action of GABAA antagonists in hypothalamic neurones. Neuropharmacology 42(3):346–352

    Article  CAS  PubMed  Google Scholar 

  43. 34714). UIsBfBU Reference RXCE08A1101, Version 8 Final of 21 Feb 2008

  44. Martella G, Bonsi P, Sciamanna G, Platania P, Madeo G, Tassone A, Cuomo D, Pisani A (2009) Seletracetam (ucb 44212) inhibits high-voltage-activated Ca2+ currents and intracellular Ca2+ increase in rat cortical neurons in vitro. Epilepsia 50(4):702–710. doi:10.1111/j.1528-1167.2008.01915.x

    Article  CAS  PubMed  Google Scholar 

  45. Zona C, Niespodziany S, Pieri M, Klitgaard H, Margineanu D (2005) Seletracetam (ucb 44212), a new pyrrolidone derivative, lacks effect on Na + currents in rat brain neurons in vitro. In: Epilepsia. BLACKWELL PUBLISHING 9600 GARSINGTON RD, OXFORD OX4 2DQ, OXON, ENGLAND, pp 116–116

  46. RIGO J-M, Nguyen L, Hans G, Belachew S, Moonen G, Matagne A, Klitgaard H (2005) Seletracetam (ucb 44212): effect on inhibitory and excitatory neurotransmission

  47. Trapani JA, Smyth MJ (2002) Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2(10):735–747. doi:10.1038/nri911

    Article  CAS  PubMed  Google Scholar 

  48. Yilmaz G, Arumugam TV, Stokes KY, Granger DN (2006) Role of T lymphocytes and interferon-gamma in ischemic stroke. Circulation 113(17):2105–2112. doi:10.1161/circulationaha.105.593046

    Article  PubMed  Google Scholar 

  49. Medana IM, Gallimore A, Oxenius A, Martinic MM, Wekerle H, Neumann H (2000) MHC class I-restricted killing of neurons by virus-specific CD8+ T lymphocytes is effected through the Fas/FasL, but not the perforin pathway. Eur J Immunol 30(12):3623–3633. doi:10.1002/1521-4141(200012)30:12<3623::aid-immu3623>3.0.co;2-f

    Article  CAS  PubMed  Google Scholar 

  50. Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B (2003) Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. J Immunol 170(4):2221–2228

    Article  CAS  PubMed  Google Scholar 

  51. Hersperger AR, Makedonas G, Betts MR (2008) Flow cytometric detection of perforin upregulation in human CD8 T cells. Cytometry A 73(11):1050–1057. doi:10.1002/cyto.a.20596

    Article  PubMed  Google Scholar 

  52. La Manna G, Conte D, Cappuccilli ML, Nardo B, D’Addio F, Puviani L, Comai G, Bianchi F et al (2009) An in vivo autotransplant model of renal preservation: cold storage versus machine perfusion in the prevention of ischemia/reperfusion injury. Artif Organs 33(7):565–570. doi:10.1111/j.1525-1594.2009.00743.x

    Article  PubMed  Google Scholar 

  53. Laskarin G, Persic V, Ruzic A, Miletic B, Rakic M, Samsa DT, Raljevic D, Pejcinovic VP et al (2011) Perforin-mediated cytotoxicity in non-ST elevation myocardial infarction. Scand J Immunol 74(2):195–204. doi:10.1111/j.1365-3083.2011.02554.x

    Article  CAS  PubMed  Google Scholar 

  54. Eyal S, Yagen B, Sobol E, Altschuler Y, Shmuel M, Bialer M (2004) The activity of antiepileptic drugs as histone deacetylase inhibitors. Epilepsia 45(7):737–744. doi:10.1111/j.0013-9580.2004.00104.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (81271289), Shanghai Science and Technology Commission (No. 11JC1410700), the Fundamental Research Funds for the Central Universities (No. 1507-219-022) and Academic leader Training Program of Pudong Health Bureau of Shanghai, China (grant number PWRd2012-06)

Author Contributions

Conceived and designed the experiments: GL, XW, YZ and YL. Performed the experiments: GL, YZ, YL, LZ, HB, XHX, JJH and XW. Analyzed the data: XW and YZ. Contributed reagents/materials/analysis tools: YZ, YL, LZ, HB, XHX and JJH. Wrote the paper: XW, YZ. Contributed to study conception and design: GL, XW, YZ and YL. Critically revised the manuscript: GL and XW.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Wang or Gang Li.

Ethics declarations

Conflict of Interest

The authors have declared that no competing interests exist.

Additional information

Yue Zhang and Ying Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Zuo, L. et al. Levetiracetam Prevents Perforin Mediated Neuronal Injury Induced by Acute Cerebral Ischemia Reperfusion. Mol Neurobiol 53, 5480–5491 (2016). https://doi.org/10.1007/s12035-015-9467-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9467-9

Keyword

Navigation