Skip to main content
Log in

Proteomic Analyses for the Global S-Nitrosylated Proteins in the Brain Tissues of Different Human Prion Diseases

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Human prion diseases are fatal neurodegenerative disorders characterized by neuronal damage in brain. Protein S-nitrosylation, the covalent adduction of a NO to cysteine, plays a role in human brain biology, and brain dysfunction is a prominent feature of prion disease, yet the direct brain targets of S-nitrosylation are largely unknown. We described the first proteomic analysis of global S-nitrosylation in brain tissues of sporadic Creutzfeldt–Jakob disease (sCJD), fatal familial insomnia (FFI), and genetic CJD with a substitution of valine for glycine at codon 114 of the prion protein gene (G114V gCJD) accompanying with normal control with isobaric tags for relative and absolute quantitation (iTRAQ) combined with a nano-HPLC/Q-Exactive mass spectrometry platform. In parallel, we used several approaches to provide quality control for the experimentally defined S-nitrosylated proteins. A total of 1509 S-nitrosylated proteins (SNO-proteins) were identified, and data are available via ProteomeXchange with identifier PXD002813. The cerebellum tissues appeared to contain more commonly differentially expressed SNO-proteins (DESPs) than cortex of sCJD, FFI, and gCJD. Three selected SNO-proteins were verified by Western blots, consistent with proteomics assays. Gene ontology analysis showed that more up-regulated DESPs were involved in metabolism, cell cytoskeleton/structure, and immune system both in the cortex and cerebellum, while more down-regulated ones in both regions were involved in cell cytoskeleton/structure, cell-cell communication, and miscellaneous function protein. Pathway analysis suggested that systemic lupus erythematosus, pathogenic Escherichia coli infection, and extracellular matrix-receptor interaction were the most commonly affected pathways, which were identified from at least two different diseases. Using STRING database, the network of immune system and cell cytoskeleton and structure were commonly identified in the context of the up-regulated and down-regulated DESPs, respectively, both in the cortex and cerebellum. Our study thus have implications for understanding the molecular mechanisms of human prion diseases related to abnormal protein S-nitrosylation and pave the way for future studies focused on potential biomarkers for the diagnosis and therapy of human prion diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Medori R, Tritschler HJ, LeBlanc A, Villare F, Manetto V, Chen HY, Xue R, Leal S et al (1992) Fatal familial insomnia, a prion disease with a mutation at codon 178 of the prion protein gene. N Engl J Med 326(7):444–449. doi:10.1056/NEJM199202133260704

    Article  CAS  PubMed  Google Scholar 

  2. Prusiner SB, Hsiao KK (1994) Human prion diseases. Ann Neurol 35(4):385–395. doi:10.1002/ana.410350404

    Article  CAS  PubMed  Google Scholar 

  3. Hsiao K, Baker HF, Crow TJ, Poulter M, Owen F, Terwilliger JD, Westaway D, Ott J et al (1989) Linkage of a prion protein missense variant to Gerstmann-Straussler syndrome. Nature 338(6213):342–345. doi:10.1038/338342a0

    Article  CAS  PubMed  Google Scholar 

  4. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prusiner SB (1982) Novel proteinaceous infectious particles cause scrapie. Science 216(4542):136–144

    Article  CAS  PubMed  Google Scholar 

  6. Basler K, Oesch B, Scott M, Westaway D, Walchli M, Groth DF, McKinley MP, Prusiner SB et al (1986) Scrapie and cellular PrP isoforms are encoded by the same chromosomal gene. Cell 46(3):417–428

    Article  CAS  PubMed  Google Scholar 

  7. Brandel JP (1999) Clinical aspects of human spongiform encephalopathies, with the exception of iatrogenic forms. Biomed Pharmacother 53(1):14–18

    Article  CAS  PubMed  Google Scholar 

  8. Budka H, Aguzzi A, Brown P, Brucher JM, Bugiani O, Gullotta F, Haltia M, Hauw JJ et al (1995) Neuropathological diagnostic criteria for Creutzfeldt-Jakob disease (CJD) and other human spongiform encephalopathies (prion diseases). Brain Pathol 5(4):459–466

    Article  CAS  PubMed  Google Scholar 

  9. Beal MF (1995) Aging, energy, and oxidative stress in neurodegenerative diseases. Ann Neurol 38(3):357–366. doi:10.1002/ana.410380304

    Article  CAS  PubMed  Google Scholar 

  10. Milhavet O, McMahon HE, Rachidi W, Nishida N, Katamine S, Mange A, Arlotto M, Casanova D et al (2000) Prion infection impairs the cellular response to oxidative stress. Proc Natl Acad Sci USA 97(25):13937–13942. doi:10.1073/pnas.250289197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ju WK, Park KJ, Choi EK, Kim J, Carp RI, Wisniewski HM, Kim YS (1998) Expression of inducible nitric oxide synthase in the brains of scrapie-infected mice. J Neurovirol 4(4):445–450

    Article  CAS  PubMed  Google Scholar 

  12. Barnham KJ, Cappai R, Beyreuther K, Masters CL, Hill AF (2006) Delineating common molecular mechanisms in Alzheimer’s and prion diseases. Trends Biochem Sci 31(8):465–472. doi:10.1016/j.tibs.2006.06.006

    Article  CAS  PubMed  Google Scholar 

  13. Butterfield DA, Howard BJ, LaFontaine MA (2001) Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer’s disease and Huntington’s disease. Curr Med Chem 8(7):815–828

    Article  CAS  PubMed  Google Scholar 

  14. Stamler JS, Lamas S, Fang FC (2001) Nitrosylation: the prototypic redox-based signaling mechanism. Cell 106(6):675–683

    Article  CAS  PubMed  Google Scholar 

  15. Hess DT, Matsumoto A, Kim SO, Marshall HE, Stamler JS (2005) Protein S-nitrosylation: purview and parameters. Nat Rev Mol Cell Biol 6(2):150–166. doi:10.1038/nrm1569

    Article  CAS  PubMed  Google Scholar 

  16. Nakamura T, Tu S, Akhtar MW, Sunico CR, Okamoto S, Lipton SA (2013) Aberrant protein s-nitrosylation in neurodegenerative diseases. Neuron 78(4):596–614. doi:10.1016/j.neuron.2013.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cho DH, Nakamura T, Fang J, Cieplak P, Godzik A, Gu Z, Lipton SA (2009) S-Nitrosylation of Drp1 mediates beta-amyloid-related mitochondrial fission and neuronal injury. Science 324(5923):102–105. doi:10.1126/science.1171091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chung KK, Dawson TM, Dawson VL (2005) Nitric oxide, S-nitrosylation and neurodegeneration. Cell Mol Biol 51(3):247–254 (Noisy-le-grand)

    CAS  PubMed  Google Scholar 

  19. Tsang AH, Lee YI, Ko HS, Savitt JM, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM et al (2009) S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci USA 106(12):4900–4905. doi:10.1073/pnas.0810595106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nakamura T, Cieplak P, Cho DH, Godzik A, Lipton SA (2010) S-Nitrosylation of Drp1 links excessive mitochondrial fission to neuronal injury in neurodegeneration. Mitochondrion 10(5):573–578. doi:10.1016/j.mito.2010.04.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang SB, Shi Q, Xu Y, Xie WL, Zhang J, Tian C, Guo Y, Wang K et al (2012) Protein disulfide isomerase regulates endoplasmic reticulum stress and the apoptotic process during prion infection and PrP mutant-induced cytotoxicity. PLoS One 7(6), e38221. doi:10.1371/journal.pone.0038221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tian C, Liu D, Xiang W, Kretzschmar HA, Sun QL, Gao C, Xu Y, Wang H et al (2014) Analyses of the similarity and difference of global gene expression profiles in cortex regions of three neurodegenerative diseases: sporadic Creutzfeldt-Jakob disease (sCJD), fatal familial insomnia (FFI), and Alzheimer’s disease (AD). Mol Neurobiol. doi:10.1007/s12035-014-8758-x

    PubMed Central  Google Scholar 

  23. Tian C, Liu D, Sun QL, Chen C, Xu Y, Wang H, Xiang W, Kretzschmar HA et al (2013) Comparative analysis of gene expression profiles between cortex and thalamus in Chinese fatal familial insomnia patients. Mol Neurobiol 48(1):36–48. doi:10.1007/s12035-013-8426-6

    Article  CAS  PubMed  Google Scholar 

  24. Tian C, Liu D, Chen C, Xu Y, Gong HS, Chen C, Shi Q, Zhang BY et al (2013) Global transcriptional profiling of the postmortem brain of a patient with G114V genetic Creutzfeldt-Jakob disease. Int J Mol Med 31(3):676–688. doi:10.3892/ijmm.2013.1239

    CAS  PubMed  Google Scholar 

  25. Escott-Price V, Bellenguez C, Wang LS et al (2014) Gene-wide analysis detects two new susceptibility genes for Alzheimer’s disease. PLoS One 9(6):e94661. doi:10.1371/journal.pone.0094661

    Article  PubMed  PubMed Central  Google Scholar 

  26. Chen C, Xiao D, Zhou W, Shi Q, Zhang HF, Zhang J, Tian C, Zhang JZ et al (2014) Global protein differential expression profiling of cerebrospinal fluid samples pooled from Chinese sporadic CJD and non-CJD patients. Mol Neurobiol 49(1):290–302. doi:10.1007/s12035-013-8519-2

    Article  CAS  PubMed  Google Scholar 

  27. Shi Q, Chen LN, Zhang BY, Xiao K, Zhou W, Chen C, Zhang XM, Tian C et al (2015) Proteomics analyses for the global proteins in the brain tissues of different human prion diseases. Mol Cell Proteomics. doi:10.1074/mcp.M114.038018

    Google Scholar 

  28. Chen X, Walker AK, Strahler JR, Simon ES, Tomanicek-Volk SL, Nelson BB, Hurley MC, Ernst SA et al (2006) Organellar proteomics: analysis of pancreatic zymogen granule membranes. Mol Cell Proteomics 5(2):306–312. doi:10.1074/mcp.M500172-MCP200

    Article  CAS  PubMed  Google Scholar 

  29. Shi QZB, Gao C, Han J, Wang GR et al (2012) The diversities of PrP(Sc) distributions and pathologic changes in various brain regions from a Chinese patient with G114V genetic CJD. Neuropathology 32:51–59

    Article  PubMed  Google Scholar 

  30. Shi XH, Han J, Zhang J, Shi Q, Chen JM, Xia SL, Xie ZQ, Shen XJ et al (2010) Clinical, histopathological and genetic studies in a family with fatal familial insomnia. Infect Genet Evol 10(2):292–297. doi:10.1016/j.meegid.2010.01.007

    Article  CAS  PubMed  Google Scholar 

  31. Shi Q, Chen C, Gao C, Tian C, Zhou W et al (2012) Clinical and familial characteristics of ten Chinese patients with fatal family insomnia. Biomed Environ Sci 25:471–475

    PubMed  Google Scholar 

  32. Yao D, Gu Z, Nakamura T, Shi ZQ, Ma Y, Gaston B, Palmer LA, Rockenstein EM et al (2004) Nitrosative stress linked to sporadic Parkinson’s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc Natl Acad Sci USA 101(29):10810–10814. doi:10.1073/pnas.0404161101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen LN, Shi Q, Zhang XM, Zhang BY, Lv Y, Chen C, Zhang J, Xiao K et al (2015) Optimization of the isolation and enrichment of S-nitrosylated proteins from brain tissues of rodents and humans with various prion diseases for iTRAQ-based proteomics. Int J Mol Med 35(1):125–134. doi:10.3892/ijmm.2014.1975

    CAS  PubMed  Google Scholar 

  34. Vizcaino JA, Deutsch EW, Wang R, Csordas A, Reisinger F, Rios D, Dianes JA, Sun Z et al (2014) ProteomeXchange provides globally coordinated proteomics data submission and dissemination. Nat Biotechnol 32(3):223–226. doi:10.1038/nbt.2839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M, Kawashima S, Katayama T, Araki M et al (2006) From genomics to chemical genomics: new developments in KEGG. Nucleic Acids Res 34(Database issue):D354–357. doi:10.1093/nar/gkj102

    Article  CAS  PubMed  Google Scholar 

  36. Mao X, Cai T, Olyarchuk JG, Wei L (2005) Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 21(19):3787–3793. doi:10.1093/bioinformatics/bti430

    Article  CAS  PubMed  Google Scholar 

  37. Wu J, Mao X, Cai T, Luo J, Wei L (2006) KOBAS server: a web-based platform for automated annotation and pathway identification. Nucleic Acids Res 34(Web Server issue):W720–724. doi:10.1093/nar/gkl167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P et al (2013) STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 41(Database issue):D808–815. doi:10.1093/nar/gks1094

    Article  CAS  PubMed  Google Scholar 

  39. Uberti D, Cenini G, Bonini SA, Barcikowska M, Styczynska M, Szybinska A, Memo M (2010) Increased CD44 gene expression in lymphocytes derived from Alzheimer disease patients. Neurodegener Dis 7(1–3):143–147. doi:10.1159/000289225

    Article  CAS  PubMed  Google Scholar 

  40. Rodriguez A, Perez-Gracia E, Espinosa JC, Pumarola M, Torres JM, Ferrer I (2006) Increased expression of water channel aquaporin 1 and aquaporin 4 in Creutzfeldt-Jakob disease and in bovine spongiform encephalopathy-infected bovine-PrP transgenic mice. Acta Neuropathol 112(5):573–585. doi:10.1007/s00401-006-0117-1

    Article  CAS  PubMed  Google Scholar 

  41. Hoyaux D, Alao J, Fuchs J, Kiss R, Keller B, Heizmann CW, Pochet R, Frermann D (2000) S100A6, a calcium- and zinc-binding protein, is overexpressed in SOD1 mutant mice, a model for amyotrophic lateral sclerosis. Biochim Biophys Acta 1498(2–3):264–272

    Article  CAS  PubMed  Google Scholar 

  42. Song F, Poljak A, Crawford J, Kochan NA, Wen W, Cameron B, Lux O, Brodaty H et al (2012) Plasma apolipoprotein levels are associated with cognitive status and decline in a community cohort of older individuals. PLoS One 7(6):e34078. doi:10.1371/journal.pone.0034078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lv Y, Chen C, Zhang BY, Xiao K, Wang J, Chen LN, Sun J, Gao C et al (2014) Remarkable activation of the complement system and aberrant neuronal localization of the membrane attack complex in the brain tissues of scrapie-infected rodents. Mol Neurobiol. doi:10.1007/s12035-014-8915-2

    Google Scholar 

  44. Aiyaz M, Lupton MK, Proitsi P, Powell JF, Lovestone S (2012) Complement activation as a biomarker for Alzheimer’s disease. Immunobiology 217(2):204–215. doi:10.1016/j.imbio.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  45. Sjolander J, Westermark GT, Renstrom E, Blom AM (2012) Islet amyloid polypeptide triggers limited complement activation and binds complement inhibitor C4b-binding protein, which enhances fibril formation. J Biol Chem 287(14):10824–10833. doi:10.1074/jbc.M111.244285

    Article  PubMed  PubMed Central  Google Scholar 

  46. Depboylu C, Schafer MK, Arias-Carrion O, Oertel WH, Weihe E, Hoglinger GU (2011) Possible involvement of complement factor C1q in the clearance of extracellular neuromelanin from the substantia nigra in Parkinson disease. J Neuropathol Exp Neurol 70(2):125–132. doi:10.1097/NEN.0b013e31820805b9

    Article  CAS  PubMed  Google Scholar 

  47. Bonifati DM, Kishore U (2007) Role of complement in neurodegeneration and neuroinflammation. Mol Immunol 44(5):999–1010. doi:10.1016/j.molimm.2006.03.007

    Article  CAS  PubMed  Google Scholar 

  48. Mabbott NA (2004) The complement system in prion diseases. Curr Opin Immunol 16(5):587–593. doi:10.1016/j.coi.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  49. Fang J, Nakamura T, Cho DH, Gu Z, Lipton SA (2007) S-Nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson’s disease. Proc Natl Acad Sci U S A 104(47):18742–18747. doi:10.1073/pnas.0705904104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Milhavet O, Lehmann S (2002) Oxidative stress and the prion protein in transmissible spongiform encephalopathies. Brain Res Brain Res Rev 38(3):328–339

    Article  CAS  PubMed  Google Scholar 

  51. Camins A, Verdaguer E, Folch J, Pallas M (2006) Involvement of calpain activation in neurodegenerative processes. CNS Drug Rev 12(2):135–148. doi:10.1111/j.1527-3458.2006.00135.x

    Article  CAS  PubMed  Google Scholar 

  52. McMurray CT (2000) Neurodegeneration: diseases of the cytoskeleton? Cell Death Differ 7(10):861–865. doi:10.1038/sj.cdd.4400764

    Article  CAS  PubMed  Google Scholar 

  53. Moloney EB, de Winter F, Verhaagen J (2014) ALS as a distal axonopathy: molecular mechanisms affecting neuromuscular junction stability in the presymptomatic stages of the disease. Front Neurosci 8:252. doi:10.3389/fnins.2014.00252

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation Grants (81301429), China Mega-Project for Infectious Disease (2011ZX10004-101, 2012ZX10004215), and SKLID Development Grant (2012SKLID102).

Conflicts of Interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ping Dong.

Additional information

Li-Na Chen and Qi Shi contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

a PrP-specific Western blots of the cortical and cerebella tissues of sCJD, FFI, G114V gCJD, and normal control. The individual β-actin are shown below. PK+ with treatment of PK; PK− without treatment of PK. b Biotin-specific dot blots. In total, 2 μl of the final elution products was separately spotted on the membrane and immunoblotted with anti-biotin antibody. c Biotin-specific Western blots. In total, 2 μl of the final elution products and streptavidin-coated magnetic beads after elution was separated in 12 % SDS-PAGE. The immunoblots were incubated with HRP-labeled streptavidin and visualized using an ECL kit. (PPTX 523 kb)

Supplementary Figure 2

a Determination of the elution products from the brain extracts of human prion diseases and normal control with 12 % SDS-PAGE with Coomassie blue staining. M represents protein markers. b The distribution of the digested peptides in the length of amino acid after searching in the Swiss-Prot database. The peptide’s length in amino acid is shown in x-axis and the frequency of the peptides is shown in y-axis. (PPTX 1601 kb)

Supplementary Figure 3

The complete blots from which the graphs in Fig. 3a were derived. a Total-AQP1 and SNO-AQP1. b Total-Neurogranin and SNO-Neurogranin. c Total-Opalin and SNO-Opalin. Arrows indicate the individual blots. (PPTX 498 kb)

ESM 4

(XLSX 47 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LN., Shi, Q., Zhang, BY. et al. Proteomic Analyses for the Global S-Nitrosylated Proteins in the Brain Tissues of Different Human Prion Diseases. Mol Neurobiol 53, 5079–5096 (2016). https://doi.org/10.1007/s12035-015-9440-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9440-7

Keywords

Navigation