Skip to main content
Log in

Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

FRET:

Förster resonance energy transfer

NGF:

Nerve growth factor

AJs:

Adherens junctions

NF-κB:

Nuclear factor-kappa B

AcpA:

Actin–cpstFRET–actin

CSPG:

Chondroitin sulfate proteoglycan

FAK:

Focal adhesion kinase

ERK:

Extracellular regulated protein kinase

ROCK:

Rho-associated coiled-coil containing protein kinase

ZEB1:

Zinc finger E-box binding homeobox 1

SIP1:

Smad-interacting protein1

CFP:

Cyan fluorescent protein

YFP:

Yellow fluorescent protein

ATF:

Activating transcription factor

HIF:

Hypoxia-inducible factor

References

  1. Suter DM, Miller KE (2011) The emerging role of forces in axonal elongation. Prog Neurobiol 94:91–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function

  3. Ayali A (2010) The function of mechanical tension in neuronal and network development. Integr Biol (Camb) 2:178–182

    Article  Google Scholar 

  4. Ji L, Lim J, Danuser G (2008) Fluctuations of intracellular forces during cell protrusion. Nat Cell Biol 10:1393–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Critchley DR (2000) Focal adhesions—the cytoskeletal connection. Curr Opin Cell Biol 12(1):133–139

    Article  CAS  PubMed  Google Scholar 

  6. Balaban NQ, Schwarz US, Riveline D, Goichberg P, Tzur G, Sabanay I, Mahalu D, Safran S et al (2001) Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3:466–472

    Article  CAS  PubMed  Google Scholar 

  7. Hirata H, Tatsumi H, Hayakawa K, Sokabe M (2015) Non-channel mechanosensors working at focal adhesion-stress fiber complex. Pflugers Arch 467:141–155

    Article  CAS  PubMed  Google Scholar 

  8. Yang C, Zhang X, Guo Y, Meng F, Sachs F, Guo J (2015) Mechanical dynamics in live cells and fluorescence-based force/tension sensors. Biochim Biophys Acta 1853:1889–1904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang XH, Guo J (2015) Structural dynamics of live cells. Prog Biochem Biophys 42:540–542

  10. Critchley DR, Holt MR, Barry ST, Priddle H, Hemmings L, Norman J (1999) Integrin-mediated cell adhesion: the cytoskeletal connection. Biochem Soc Symp 65:79–99

    CAS  PubMed  Google Scholar 

  11. Brakebusch C, Fassler R (2003) The integrin-actin connection, an eternal love affair. EMBO J 22(10):2324–2333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Eva R, Fawcett J (2014) Integrin signalling and traffic during axon growth and regeneration. Curr Opin Neurobiol 27:179–185

    Article  CAS  PubMed  Google Scholar 

  13. Hirata H, Tatsumi H, Lim CT, Sokabe M (2014) Force-dependent vinculin binding to talin in live cells: a crucial step in anchoring the actin cytoskeleton to focal adhesions. Am J Physiol Cell Physiol 306:C607–C620

    Article  CAS  PubMed  Google Scholar 

  14. Hytonen VP, Vogel V (2008) How force might activate talin’s vinculin binding sites: SMD reveals a structural mechanism. PLoS Comput Biol 4, e24

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nuckolls GH, Turner CE, Burridge K (1990) Functional studies of the domains of talin. J Cell Biol 110:1635–1644

    Article  CAS  PubMed  Google Scholar 

  16. Izard T, Evans G, Borgon RA, Rush CL, Bricogne G, Bois PR (2004) Vinculin activation by talin through helical bundle conversion. Nature 427:171–175

    Article  CAS  PubMed  Google Scholar 

  17. Nhieu GT, Izard T (2007) Vinculin binding in its closed conformation by a helix addition mechanism. EMBO J 26:4588–4596

    Article  PubMed  Google Scholar 

  18. Tepass U, Godt D (2005) Talin’s second persona. Nat Cell Biol 7:443–444

    Article  CAS  PubMed  Google Scholar 

  19. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL, Nelson WJ, Dunn AR (2012) E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. Proc Natl Acad Sci U S A 109:12568–12573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Troyanovsky RB, Indra I, Chen CS, Hong S, Troyanovsky SM (2015) Cadherin controls nectin recruitment into adherens junctions by remodeling the actin cytoskeleton. J Cell Sci 128:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Buda A, Pignatelli M (2011) E-cadherin and the cytoskeletal network in colorectal cancer development and metastasis. Cell Commun Adhes 18:133–143

    Article  CAS  PubMed  Google Scholar 

  22. Becam IE, Tanentzapf G, Lepesant JA, Brown NH, Huynh JR (2005) Integrin-independent repression of cadherin transcription by talin during axis formation in Drosophila. Nat Cell Biol 7:510–516

    Article  CAS  PubMed  Google Scholar 

  23. Zhang F, Saha S, Kashina A (2012) Arginylation-dependent regulation of a proteolytic product of talin is essential for cell-cell adhesion. J Cell Biol 197:819–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Desiniotis A, Kyprianou N (2011) Significance of talin in cancer progression and metastasis. Int Rev Cell Mol Biol 289:117–147

    Article  CAS  PubMed  Google Scholar 

  25. Eberle KE, Sansing HA, Szaniszlo P, Resto VA, Berrier AL (2011) Carcinoma matrix controls resistance to cisplatin through talin regulation of NF-kB. PLoS ONE 6, e21496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Meng F, Suchyna TM, Sachs F (2008) A fluorescence energy transfer-based mechanical stress sensor for specific proteins in situ. FEBS J 275:3072–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guo J, Wang Y, Sachs F, Meng F (2014) Actin stress in cell reprogramming. Proc Natl Acad Sci U S A 111:E5252–E5261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meng F, Sachs F (2011) Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor. J Cell Sci 124:261–269

    Article  CAS  PubMed  Google Scholar 

  29. Meng F, Suchyna TM, Lazakovitch E, Gronostajski RM, Sachs F (2011) Real time FRET based detection of mechanical stress in cytoskeletal and extracellular matrix proteins. Cell Mol Bioeng 4:148–159

    Article  PubMed  PubMed Central  Google Scholar 

  30. Meng F, Sachs F (2012) Orientation-based FRET sensor for real-time imaging of cellular forces. J Cell Sci 125:743–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Guo J, Sachs F, Meng F (2014) Fluorescence-based force/tension sensors: a novel tool to visualize mechanical forces in structural proteins in live cells. Antioxid Redox Signal 20:986–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M (2007) An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells. J Cell Biol 177:817–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci U S A 73:2424–2428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lee SJ, Kalinski AL, Twiss JL (2014) Awakening the stalled axon—surprises in CSPG gradients. Exp Neurol 254:12–17

    Article  CAS  PubMed  Google Scholar 

  35. Zhou FQ, Walzer M, Wu YH, Zhou J, Dedhar S, Snider WD (2006) Neurotrophins support regenerative axon assembly over CSPGs by an ECM-integrin-independent mechanism. J Cell Sci 119:2787–2796

    Article  CAS  PubMed  Google Scholar 

  36. Sydor AM, Su AL, Wang FS, Xu A, Jay DG (1996) Talin and vinculin play distinct roles in filopodial motility in the neuronal growth cone. J Cell Biol 134:1197–1207

    Article  CAS  PubMed  Google Scholar 

  37. Minase T, Ishima T, Itoh K, Hashimoto K (2010) Potentiation of nerve growth factor-induced neurite outgrowth by the ROCK inhibitor Y-27632: a possible role of IP(3) receptors. Eur J Pharmacol 648:67–73

    Article  CAS  PubMed  Google Scholar 

  38. Monnier PP, Sierra A, Schwab JM, Henke-Fahle S, Mueller BK (2003) The Rho/ROCK pathway mediates neurite growth-inhibitory activity associated with the chondroitin sulfate proteoglycans of the CNS glial scar. Mol Cell Neurosci 22:319–330

    Article  CAS  PubMed  Google Scholar 

  39. Riento K, Ridley AJ (2003) Rocks: multifunctional kinases in cell behaviour. Nat Rev Mol Cell Biol 4(6):446–456

    Article  CAS  PubMed  Google Scholar 

  40. Hur EM, Yang IH, Kim DH, Byun J, Saijilafu XWL, Nicovich PR, Cheong R, Levchenko A et al (2011) Engineering neuronal growth cones to promote axon regeneration over inhibitory molecules. Proc Natl Acad Sci U S A 108:5057–5062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tan CL, Kwok JC, Patani R, Ffrench-Constant C, Chandran S, Fawcett JW (2011) Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. J Neurosci 31:6289–6295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McKeon RJ, Hoke A, Silver J (1995) Injury-induced proteoglycans inhibit the potential for laminin-mediated axon growth on astrocytic scars. Exp Neurol 136:32–43

    Article  CAS  PubMed  Google Scholar 

  43. Oohira A, Matsui F, Katoh-Semba R (1991) Inhibitory effects of brain chondroitin sulfate proteoglycans on neurite outgrowth from PC12D cells. J Neurosci 11:822–827

    CAS  PubMed  Google Scholar 

  44. Ishizaki T, Uehata M, Tamechika I, Keel J, Nonomura K, Maekawa M, Narumiya S (2000) Pharmacological properties of Y-27632, a specific inhibitor of rho-associated kinases. Mol Pharmacol 57:976–983

    CAS  PubMed  Google Scholar 

  45. Li H, Zhu YH, Chi C, Wu HW, Guo J (2014) Role of cytoskeleton in axonal regeneration after neurodegenerative diseases and CNS injury. Rev Neurosci 25:527–542

    Article  CAS  PubMed  Google Scholar 

  46. Schaefer AW, Schoonderwoert VT, Ji L, Mederios N, Danuser G, Forscher P (2008) Coordination of actin filament and microtubule dynamics during neurite outgrowth. Dev Cell 15:146–162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Prokop A, Beaven R, Qu Y, Sanchez-Soriano N (2013) Using fly genetics to dissect the cytoskeletal machinery of neurons during axonal growth and maintenance. J Cell Sci 126:2331–2341

    Article  CAS  PubMed  Google Scholar 

  48. Vaudry D, Stork PJ, Lazarovici P, Eiden LE (2002) Signaling pathways for PC12 cell differentiation: making the right connections. Science 296:1648–1649

    Article  CAS  PubMed  Google Scholar 

  49. Bakolitsa C, Cohen DM, Bankston LA, Bobkov AA, Cadwell GW, Jennings L, Critchley DR, Craig SW et al (2004) Structural basis for vinculin activation at sites of cell adhesion. Nature 430:583–586

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (No. 81170714 and 81573409).

We apologize to all researchers whose relevant contributions were not cited due to space limitations.

Competing Interests

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Jun.

Additional information

Wang Dingyu, Meng Fanjie and Ding Zhengzheng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dingyu, W., Fanjie, M., Zhengzheng, D. et al. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration. Mol Neurobiol 53, 4582–4595 (2016). https://doi.org/10.1007/s12035-015-9394-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-015-9394-9

Keywords

Navigation