Skip to main content

Advertisement

Log in

Inherited Neuropathies

  • Neuromuscular Disorders
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Opinion statement

Inherited peripheral neuropathies are among the most common hereditary diseases of the nervous system. Charcot-Marie-Tooth (CMT) disease, also known from previous classifications as hereditary motor and sensory neuropathy (HMSN), is certainly the most common inherited neuropathy. In the past several years, various treatments for CMT have been proposed, although specific therapies are not yet available. In clinical practice, rehabilitative strategies remain the most helpful therapeutic approach to these patients. There is still a lack of consensus on the best way to rehabilitate patients affected by CMT. Based on our personal experience and on a review of the literature, we first recommend the prescription of ankle-foot orthoses (AFO) for patients affected by CMT; the choice of which patient, which AFO, and when to apply it depends on the individual condition of each patient and on the experience of the physician/therapist. Second, adaptive equipment (eg, button hook, long-handled shoehorn, elastic shoe laces) is available to compensate for hand deformities, sensory loss, and weakness. Third, moderate to intense strength training and aerobic exercise are well tolerated by patients affected by CMT; further studies are needed to establish whether these approaches are effective in improving their motor function and strength. There is not enough evidence to recommend muscle stretching exercises or proprioceptive kinesiotherapy, although in our experience both approaches may be helpful in selected CMT patients to prevent tendon retractions, muscle tightening, and loss of strength, and to improve balance. There is growing knowledge of the underlying genetic defects and molecular pathophysiology in CMT. To date, only a few clinical trials in CMT patients have been performed. A neurotrophic factor, neurotrophin 3, was used in a small sample of CMT1A patients with promising results, but it has not been tested in a larger cohort and there is currently no reason to suggest this therapy for CMT1A neuropathy. Based on positive results in an animal model of CMT1A, three trials with ascorbic acid (AA) were completed in a large number of patients with this neuropathy, with results that were negative overall. Therefore, it is not possible to recommend the use of AA in CMT1A patients at this time, but the results of a larger Italian-UK study and an American trial with higher doses of AA are still awaited. It is important to remember that a superimposed inflammatory/disimmune process may complicate the course of the neuropathy; in this case, severe worsening (especially motor) in a matter of weeks or months is a “red flag” that should suggest immunosuppressive or immunomodulatory treatment such as steroids, intravenous immunoglobulin, or plasma exchange. In fact, steroid-sensitive cases of HMSN were described many years ago, well before the genetic diagnosis was available. Symptomatic treatment to reduce neuropathic and nociceptive pain, both of which have been reported in patients affected by CMT, should be prescribed according to recently published guidelines for the therapy of pain. No evidence suggests any specific surgical intervention or change in diet or lifestyle for patients affected by various types of CMT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: •Of importance ••Of major importance

  1. Reilly MM. Sorting out the inherited neuropathies. Pract Neurol. 2007;7(2):93–105.

    PubMed  Google Scholar 

  2. Dyck PJ, Chance P, Lebo R, Carney AJ. Hereditary motor and sensory neuropathies. In: Dyck PJ, Thomas PK, Grillin JW, Low PA, Poduslo JF, editors. Peripheral neuropathy. 3rd ed. Philadelphia: WB Saunders; 1993. p. 1094–136.

    Google Scholar 

  3. Reilly MM, Shy ME. Diagnosis and new treatments in genetic neuropathies. J Neurol Neurosurg Psychiatry. 2009;80(12):1304–14. This review focuses on the clinical management of hereditary neuropathies, particularly of the Charcot-Marie-Tooth type, and offers helpful, practical suggestions to clinicians.

    PubMed  CAS  Google Scholar 

  4. Suhr OB, Herlenius G, Friman S, Ericzon BG. Liver transplantation for hereditary transthyretin amyloidosis. Liver Transplant. 2000;6(3):263–76.

    CAS  Google Scholar 

  5. Salviati A, Burlina AP, Borsini W. Nervous system and Fabry disease, from symptoms to diagnosis: damage evaluation and follow-up in adult patients, enzyme replacement, and support therapy. Neurol Sci. 2010;31(3):299–306.

    PubMed  Google Scholar 

  6. Yeager AM. Allogeneic hematopoietic cell transplantation for inborn metabolic diseases. Ann Hematol. 2002;81 Suppl 2:S16–19.

    PubMed  CAS  Google Scholar 

  7. Schenone A, Mancardi GL. Molecular basis of inherited neuropathies. Curr Opin Neurol. 1999;12(5):603–16.

    PubMed  CAS  Google Scholar 

  8. Schenone A, Nobbio L, Caponnetto C, Abbruzzese M, Mandich P, Bellone E, et al. Correlation between PMP-22 messenger RNA expression and phenotype in hereditary neuropathy with liability to pressure palsies. Ann Neurol. 1997;42(6):866–72.

    PubMed  CAS  Google Scholar 

  9. Herrmann DN. Experimental therapeutics in hereditary neuropathies: the past, the present, and the future. Neurotherapeutics. 2008;5(4):507–15.

    PubMed  CAS  Google Scholar 

  10. De Vos A, Sermon K, Van de Velde H, Joris H, Vandervorst M, Lissens W, et al. Pregnancy after preimplantation genetic diagnosis for Charcot-Marie-Tooth disease type 1A. Mol Hum Reprod. 1998;4(10):978–84.

    PubMed  Google Scholar 

  11. Lupski JR, Wise CA, Kuwano A, Pentao L, Parke JT, Glaze DG, et al. Gene dosage is a mechanism for Charcot-Marie-Tooth disease type 1A. Nat Genet. 1992;1(1):29–33.

    PubMed  CAS  Google Scholar 

  12. Chance PF, Alderson MK, Leppig KA, Lensch MW, Matsunami N, Smith B, et al. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell. 1993;72(1):143–51.

    PubMed  CAS  Google Scholar 

  13. Sereda M, Griffiths I, Pühlhofer A, Stewart H, Rossner MJ, Zimmerman F, et al. A transgenic rat model of Charcot-Marie-Tooth disease. Neuron. 1996;16(5):1049–60.

    PubMed  CAS  Google Scholar 

  14. Adlkofer K, Martini R, Aguzzi A, Zielasek J, Toyka KV, Suter U. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat Genet. 1995;11(3):274–80.

    PubMed  CAS  Google Scholar 

  15. Roa BB, Dyck PJ, Marks HG, Chance PF, Lupski JR. Dejerine-Sottas syndrome associated with point mutation in the peripheral myelin protein 22 (PMP22) gene. Nat Genet. 1993;5(3):269–73.

    PubMed  CAS  Google Scholar 

  16. Melcangi RC, Cavarretta IT, Ballabio M, Leonelli E, Schenone A, Azcoitia I, et al. Peripheral nerves: a target for the action of neuroactive steroids. Brain Res Brain Res Rev. 2005;48(2):328–38.

    PubMed  CAS  Google Scholar 

  17. Sereda MW. Meyer zu Hörste G, Suter U, Uzma N, Nave KA. Therapeutic administration of progesterone antagonist in a model of Charcot-Marie-Tooth disease (CMT-1A). Nat Med. 2003;9(12):1533–7.

    PubMed  CAS  Google Scholar 

  18. Passage E, Norreel JC, Noack-Fraissignes P, Sanguedolce V, Pizant J, Thirion X, et al. Ascorbic acid treatment corrects the phenotype of a mouse model of Charcot-Marie-Tooth disease. Nat Med. 2004;10(4):396–401.

    PubMed  CAS  Google Scholar 

  19. Kaya F, Belin S, Bourgeois P, Micaleff J, Blin O, Fontés M. Ascorbic acid inhibits PMP22 expression by reducing cAMP levels. Neuromuscul Disord. 2007;17:248–53.

    PubMed  Google Scholar 

  20. Verhamme C, de Haan RJ, Vermeulen M, Baas F, de Visser M, van Schaik IN. Oral high dose ascorbic acid treatment for one year in young CMT1A patients: a randomised, double-blind, placebo-controlled phase II trial. BMC Med. 2009;7:70. This paper was the first to present data on the treatment with ascorbic acid of patients affected by CMT1A. Interestingly, although young patients have been included in the trial, the results are negative.

    PubMed  Google Scholar 

  21. Burns J, Ouvrier RA, Yiu EM, et al. Ascorbic acid for Charcot-Marie-Tooth disease type 1A in children: a randomised, double-blind, placebo-controlled, safety and efficacy trial. Lancet Neurol. 2009;8:537–44. This paper basically replicated the negative results of reference [20], but in this case, children affected by CMT1A were treated with ascorbic acid.

    PubMed  CAS  Google Scholar 

  22. Micallef J, Attarian S, Dubourg O, et al. A One-Year Multicenter, Randomized, Double-Blind, Placebo-Controlled Trial of High Doses of Ascorbic Acid in Charcot-Marie-Tooth Disease Type 1A. Lancet Neurol. 2009;8:1103–10. This paper was the first to present data on the treatment of a large number of adult patients affected by CMT1A with two different dosages of ascorbic acid. Again, the overall results were negative.

    PubMed  CAS  Google Scholar 

  23. Shy ME, Blake J, Krajewski K, et al. Reliability and validity of the CMT neuropathy score as a measure of disability. Neurology. 2005;64:1209–14.

    PubMed  CAS  Google Scholar 

  24. Shy M. Ascorbic acid for treatment of CMT1A: the jury is still out. Lancet Neurol. 2009;8:505–7.

    PubMed  Google Scholar 

  25. Pareyson D, Solari A. Charcot-Marie-Tooth disease type 1A: is ascorbic acid effective? Lancet Neurol. 2009;8:1075–7.

    PubMed  Google Scholar 

  26. Rangaraju S, Madorsky I, Pileggi JG, Kamal A, Notterpek L. Pharmacological induction of the heat shock response improves myelination in a neuropathic model. Neurobiol Dis. 2008;32(1):105–15. This paper underscores the role of stimulating the heat shock proteins (HSP) pathway to reduce negative effects of intracellular accumulation of mutated myelin proteins and promote myelination in experimental models of CMT. This view is particularly interesting, as mutations in the HSP may also cause HMN/CMT2.

    PubMed  CAS  Google Scholar 

  27. Katona I, Wu X, Feely SM, Sottile S, Siskind CE, Miller LJ, et al. PMP22 expression in dermal nerve myelin from patients with CMT1A. Brain. 2009;132(Pt 7):1734–40.

    PubMed  Google Scholar 

  28. D’Urso D, Prior R, Greiner-Petter R, Gabreëls-Festen AA, Müller HW. Overloaded endoplasmic reticulum-Golgi compartments, a possible pathomechanism of peripheral neuropathies caused by mutations of the peripheral myelin protein PMP22. J Neurosci. 1998;18(2):731–40.

    PubMed  Google Scholar 

  29. Shames I, Fraser A, Colby J, Orfali W, Snipes GJ. Phenotypic differences between peripheral myelin protein-22 (PMP22) and myelin protein zero (P0) mutations associated with Charcot-Marie-Tooth-related diseases. J Neuropathol Exp Neurol. 2003;62(7):751–64.

    PubMed  CAS  Google Scholar 

  30. Wrabetz L, D’Antonio M, Pennuto M, Dati G, Tinelli E, Fratta P, et al. Different intracellular pathomechanisms produce diverse Myelin Protein Zero neuropathies in transgenic mice. J Neurosci. 2006;26(8):2358–68.

    PubMed  CAS  Google Scholar 

  31. Grandis M, Vigo T, Passalacqua M, Jain M, Scazzola S, La Padula V, et al. Different cellular and molecular mechanisms for early and late-onset myelin protein zero mutations. Hum Mol Genet. 2008;17(13):1877–89.

    PubMed  CAS  Google Scholar 

  32. Dickinson P, Smith SN, Webb S, Kilanowski FM, Campbell IJ, Taylor MS, et al. The severe G480C cystic fibrosis mutation, when replicated in the mouse, demonstrates mistrafficking, normal survival and organ-specific bioelectrics. Hum Mol Genet. 2002;11(3):243–51.

    PubMed  CAS  Google Scholar 

  33. Zeitlin P. Can curcumin cure cystic fibrosis? N Engl J Med. 2004;351(6):606–8.

    PubMed  CAS  Google Scholar 

  34. Khajavi M, Shiga K, Wiszniewski W, He F, Shaw CA, Yan J, et al. Oral curcumin mitigates the clinical and neuropathologic phenotype of the Trembler-J mouse: a potential therapy for inherited neuropathy. Am J Hum Genet. 2007;81(3):438–53.

    PubMed  CAS  Google Scholar 

  35. Khajavi M, Inoue K, Wiszniewski W, Ohyama T, Snipes GJ, Lupski JR. Curcumin treatment abrogates endoplasmic reticulum retention and aggregation-induced apoptosis associated with neuropathy-causing myelin protein zero-truncating mutants. Am J Hum Genet. 2005;77(5):841–50.

    PubMed  CAS  Google Scholar 

  36. Singh S. From exotic spice to modern drug? Cell. 2007;130(5):765–8.

    PubMed  CAS  Google Scholar 

  37. Madorsky I, Opalach K, Waber A, Verrier JD, Solmo C, Foster T, et al. Intermittent fasting alleviates the neuropathic phenotype in a mouse model of Charcot-Marie-Tooth disease. Neurobiol Dis. 2009;34(1):146–54. This paper is important because it introduces the concept of using a simple method of dietary restriction to treat an animal model of CMT.

    PubMed  CAS  Google Scholar 

  38. Mizushima N. Autophagy: process and function. Genes Dev. 2007;21(22):2861–73.

    PubMed  CAS  Google Scholar 

  39. Celsi F, Pizzo P, Brini M, Leo S, Fotino C, Pinton P, et al. Mitochondria, calcium and cell death: a deadly triad in neurodegeneration. Biochim Biophys Acta. 2009;1787(5):335–44.

    PubMed  CAS  Google Scholar 

  40. Swerdlow RH, Burns JM, Khan SM. The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzheimers Dis. 2010;20 Suppl 2:S265–79.

    PubMed  Google Scholar 

  41. Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep. 2009;9(5):411–17.

    PubMed  CAS  Google Scholar 

  42. Loiseau D, Chevrollier A, Verny C, Guillet V, Gueguen N. Pou de Crescenzo MA, Ferré M, Malinge MC, Guichet A, Nicolas G, Amati-Bonneau P, Malthièry Y, Bonneau D, Reynier P. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neurol. 2007;61(4):315–23.

    PubMed  CAS  Google Scholar 

  43. Tradewell ML, Durham HD, Mushynski WE, Gentil BJ. Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of Charcot-Marie-Tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol. 2009;68(6):642–52.

    PubMed  CAS  Google Scholar 

  44. Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci. 2010;30(19):6658–66.

    PubMed  CAS  Google Scholar 

  45. Wang X, Su B, Zheng L, Perry G, Smith MA, Zhu X. The role of abnormal mitochondrial dynamics in the pathogenesis of Alzheimer’s disease. J Neurochem. 2009;109 Suppl 1:153–9.

    PubMed  CAS  Google Scholar 

  46. Chang DT, Rintoul GL, Pandipati S, Reynolds IJ. Mutant huntingtin aggregates impair mitochondrial movement and trafficking in cortical neurons. Neurobiol Dis. 2006;22:388–400.

    PubMed  CAS  Google Scholar 

  47. Züchner S, Mersiyanova IV, Muglia M, Bissar-Tadmouri N, Rochelle J, Dadali EL, et al. Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet. 2004;36(5):449–51.

    PubMed  Google Scholar 

  48. Chen H, Chan DC. Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet. 2005;14(Spec No. 2):R283–9.

    PubMed  CAS  Google Scholar 

  49. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH. Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci. 2010;30(12):4232–40.

    PubMed  CAS  Google Scholar 

  50. Loiseau D, Chevrollier A, Verny C, Guillet V, Gueguen N. Pou de Crescenzo MA, Ferré M, Malinge MC, Guichet A, Nicolas G, Amati-Bonneau P, Malthièry Y, Bonneau D, Reynier P. Mitochondrial coupling defect in Charcot-Marie-Tooth type 2A disease. Ann Neurol. 2007;61(4):315–23.

    PubMed  CAS  Google Scholar 

  51. Detmer SA. Vande Velde C, Cleveland DW, Chan DC. Hindlimb gait defects due to motor axon loss and reduced distal muscles in a transgenic mouse model of Charcot-Marie-Tooth type 2A. Hum Mol Genet. 2008;17(3):367–75.

    PubMed  CAS  Google Scholar 

  52. Niemann A, Ruegg M, La Padula V, Schenone A, Suter U. Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol. 2005;170(7):1067–78.

    PubMed  CAS  Google Scholar 

  53. Niemann A, Wagner KM, Ruegg M, Suter U. GDAP1 mutations differ in their effects on mitochondrial dynamics and apoptosis depending on the mode of inheritance. Neurobiol Dis. 2009;36(3):509–20.

    PubMed  CAS  Google Scholar 

  54. Tradewell ML, Durham HD, Mushynski WE, Gentil BJ. Mitochondrial and axonal abnormalities precede disruption of the neurofilament network in a model of Charcot-Marie-tooth disease type 2E and are prevented by heat shock proteins in a mutant-specific fashion. J Neuropathol Exp Neurol. 2009;68(6):642–52. This paper suggests, with convincing results, that HSP inducers have therapeutic potential for CMT2E and may be of help in planning future therapeutic strategies for axonal CMT.

    PubMed  CAS  Google Scholar 

  55. Corfas G, Velardez MO, Ko CP, Ratner N, Peles E. Mechanisms and roles of axon-Schwann cell interactions. J Neurosci. 2004;24(42):9250–60.

    PubMed  CAS  Google Scholar 

  56. Taveggia C, Feltri ML, Wrabetz L. Signals to promote myelin formation and repair. Nat Rev Neurol. 2010;6(5):276–87. This is an exhaustive review of the mechanisms underlying the crosstalk between the Schwann cells and the axons and vice versa.

    PubMed  Google Scholar 

  57. De Waegh S, Brady ST. Altered slow axonal transport and regeneration in a myelin-deficient mutant mouse: the trembler as an in vivo model for Schwann cell-axon interactions. J Neurosci. 1990;10(6):1855–65.

    PubMed  Google Scholar 

  58. Krajewski KM, Lewis RA, Fuerst DR, Turansky C, Hinderer SR, Garbern J, et al. Neurological dysfunction and axonal degeneration in Charcot-Marie-Tooth disease type 1A. Brain. 2000;123(Pt 7):1516–27.

    PubMed  Google Scholar 

  59. Sahenk Z, Nagaraja HN, McCracken BS, King WM, Freimer ML, Cedarbaum JM, et al. NT-3 promotes nerve regeneration and sensory improvement in CMT1A mouse models and in patients. Neurology. 2005;65(5):681–9.

    PubMed  CAS  Google Scholar 

  60. Nobbio L, Fiorese F, Vigo T, Cilli M, Gherardi G, Grandis M, et al. Impaired expression of ciliary neurotrophic factor in Charcot-Marie-Tooth type 1A neuropathy. J Neuropathol Exp Neurol. 2009;68(5):441–55.

    PubMed  CAS  Google Scholar 

  61. Mancini MC, Halpern A. Investigational therapies in the treatment of obesity. Expert Opin Investig Drugs. 2006;15(8):897–915.

    PubMed  CAS  Google Scholar 

  62. Keswani SC, Buldanlioglu U, Fischer A, Reed N, Polley M, Liang H, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol. 2004;56(6):815–26.

    PubMed  CAS  Google Scholar 

  63. Bianchi R, Buyukakilli B, Brines M, Savino C, Cavaletti G, Oggioni N, et al. Erythropoietin both protects from and reverses experimental diabetic neuropathy. Proc Natl Acad Sci USA. 2004;101(3):823–8.

    PubMed  CAS  Google Scholar 

  64. Wu Z, Mata M, Fink DJ. Prevention of diabetic neuropathy by regulatable expression of HSV-mediated erythropoietin. Mol Ther. 2010 Oct 5, (Epub ahead of print).This paper provides convincing proof-of-principle preclinical evidence for the development of regulatable vectors for clinical trials in peripheral neuropathies. In fact, it demonstrates that expression of EPO in DRG achieved from a regulatable vector efficiently protects against the progression of neuropathy in diabetic animals.

  65. Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science. 2004;305(5681):239–42.

    PubMed  CAS  Google Scholar 

  66. Nobbio L, Sturla L, Fiorese F, Usai C, Basile G, Moreschi I, et al. P2X7-mediated increased intracellular calcium causes functional derangement in Schwann cells from rats with CMT1A neuropathy. J Biol Chem. 2009;284(34):23146–58. This paper identifies a possible new mechanism of Schwann cell damage in CMT1A neuropathy, mediated by an excessive influx of calcium in the cells due to opening of the P2X7 receptor. This is a putative target for pharmacologic therapy in CMT1A.

    PubMed  CAS  Google Scholar 

  67. Su KG, Banker G, Bourdette D, Forte M. Axonal degeneration in multiple sclerosis: the mitochondrial hypothesis. Curr Neurol Neurosci Rep. 2009;9(5):411–17.

    PubMed  CAS  Google Scholar 

  68. Ravera S, Panfoli I, Aluigi MG, Calzia D, Morelli A. Characterization of myelin sheath FoF1-ATP synthase and its regulation by IF1. Cell Biochem Biophys. 2010 Aug 31 (Epub ahead of print).

  69. Ravera S, Panfoli I, Calzia D, Aluigi MG, Bianchini P, Diaspro A, et al. Evidence for aerobic ATP synthesis in isolated myelin vesicles. Int J Biochem Cell Biol. 2009;41(7):1581–91. This paper provides preliminary data suggesting an energetic role of the myelin sheath and may shed light on the relationship between demyelination and axonal degeneration. The authors found that isolated myelin vesicles (IMV) are able to consume O 2 and produce ATP and, by immunocytochemistry at the confocal microscope, that ATP synthase and myelin basic protein colocalize on both IMV and optic nerves.

    PubMed  CAS  Google Scholar 

  70. Werner HB, Kuhlmann K, Shen S, Uecker M, Schardt A, Dimova K, et al. Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. J Neurosci. 2007;27(29):7717–30.

    PubMed  CAS  Google Scholar 

  71. Ishii A, Dutta R, Wark GM, Hwang SI, Han DK, Trapp BD, et al. Human myelin proteome and comparative analysis with mouse myelin. Proc Natl Acad Sci USA. 2009;106(34):14605–10.

    PubMed  CAS  Google Scholar 

  72. Aguayo AJ, Charron L, Bray GM. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol. 1976;5(8):565–73.

    PubMed  CAS  Google Scholar 

  73. Friede RL, Samorajski T. Relation between the number of myelin lamellae and axon circumference in fibers of vagus and sciatic nerves of mice. J Comp Neurol. 1967;130(3):223–31.

    PubMed  CAS  Google Scholar 

  74. Demerens C, Stankoff B, Logak M, Anglade P, Allinquant B, Couraud F, et al. Induction of myelination in the central nervous system by electrical activity. Proc Natl Acad Sci USA. 1996;93(18):9887–92.

    PubMed  CAS  Google Scholar 

  75. Michailov GV, Sereda MW, Brinkmann BG, Fischer TM, Haug B, Birchmeier C, et al. Axonal neuregulin-1 regulates myelin sheath thickness. Science. 2004;304(5671):700–3.

    PubMed  CAS  Google Scholar 

  76. Taveggia C, Zanazzi G, Petrylak A, Yano H, Rosenbluth J, Einheber S, et al. Neuregulin-1 type III determines the ensheathment fate of axons. Neuron. 2005;47(5):681–94.

    PubMed  CAS  Google Scholar 

  77. Hu X, Hicks CW, He W, Wong P, Macklin WB, Trapp BD, et al. Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci. 2006;9(12):1520–5.

    PubMed  CAS  Google Scholar 

  78. Salzer JL, Brophy PJ, Peles E. Molecular domains of myelinated axons in the peripheral nervous system. Glia. 2008;56(14):1532–40.

    PubMed  Google Scholar 

  79. Wang IpC, Kroner A, Fischer S, Berghoff M, Kobsar I, Mäurer M, et al. Role of immune cells in animal models for inherited peripheral neuropathies. Neuromolecular Med. 2006;8(1-2):175–90.

    Google Scholar 

  80. Schmid CD, Stienekemeier M, Oehen S, Bootz F, Zielasek J, Gold R, et al. Immune deficiency in mouse models for inherited peripheral neuropathies leads to improved myelin maintenance. J Neurosci. 2000;20(2):729–35.

    PubMed  CAS  Google Scholar 

  81. Kohl B, Groh J, Wessig C, Wiendl H, Kroner A, Martini R. Lack of evidence for a pathogenic role of T-lymphocytes in an animal model for Charcot-Marie-Tooth disease 1A. Neurobiol Dis. 2010;38(1):78–84.

    PubMed  CAS  Google Scholar 

  82. Vital A, Vital C, Julien J, Fontan D. Occurrence of active demyelinating lesions in children with hereditary motor and sensory neuropathy (HMSN) type I. Acta Neuropathol. 1992;84(4):433–6.

    PubMed  CAS  Google Scholar 

  83. Mancardi GL, Cadoni A, Zicca A, Schenone A, Tabaton M, De Martini I, et al. HLA-DR Schwann cell reactivity in peripheral neuropathies of different origins. Neurology. 1988;38(6):848–51.

    PubMed  CAS  Google Scholar 

  84. White CM, Pritchard J, Turner-Stokes L. Exercise for people with peripheral neuropathy. Cochrane Database Syst Rev. 2004;(4):CD003904.

  85. Young P, De Conghe P, Stagbauer F, Butterfass-Bahloul T. Treatment for Charcot Marie Tooth disease. Cochrane Database Syst Rev. 2008 (1):CD006052

  86. Lindeman E, Leffers P, Spaans F, Drukker J, Reulen J, Kerckhoffs M, et al. Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: a randomized clinical trial. Arch Phys Med Rehabil. 1995;76(7):612–20.

    PubMed  CAS  Google Scholar 

  87. Aitkens SG, McCrory MA, Kilmer DD, Bernauer EM. Moderate resistance exercise program: its effect in slowly progressive neuromuscular disease. Arch Phys Med Rehabil. 1993;74(7):711–15.

    PubMed  CAS  Google Scholar 

  88. Kilmer DD, McCrory MA, Wright NC, Aitkens SG, Bernauer EM. The effect of a high resistance exercise program in slowly progressive neuromuscular disease. Arch Phys Med Rehabil. 1994;75(5):560–3.

    PubMed  CAS  Google Scholar 

  89. El Mhandi L, Millet GY, Calmels P, Richard A, Oullion R, Gautheron V, et al. Benefits of interval − training on fatigue and functional capacities in Charcot − Marie − Tooth disease. Muscle Nerve. 2008;37(5):601–10.

    PubMed  Google Scholar 

  90. Chetlin RD, Gutmann L, Tarnopolsky M, Ullrich IH, Yeater RA. Resistance training effectiveness in patients with Charcot-Marie-Tooth disease: recommendations for exercise prescription. Arch Phys Med Rehabil. 2004;85(8):1217–23.

    PubMed  Google Scholar 

  91. Vinci P, Esposito C, Perelli SL, Antenor JA, Thomas FP. Overwork weakness in Charcot Marie Tooth. Arch Phys Med Rehabil. 2003;6:825–7.

    Google Scholar 

  92. van Pomeren M, Selles RW, Berbke TJ, et al. The hypothesis of overwork weakness in Charcot-Marie-Tooth: a critical evaluation. J Rehabil Med. 2009;41:32–4.

    PubMed  Google Scholar 

  93. Videler A, Beelen A, Nollet F. Verifying the hypotesis of overwork weakness in Charcot-Marie-Tooth. J Rehabil Med. 2010;42:380–1.

    PubMed  Google Scholar 

  94. Rose KJ, Raymond J, Refshauge K, North KN, Burns J. Serial night casting increases ankle dorsiflexion range in children and young adults with Charcot-Marie-Tooth disease: a randomised trial. J Physiother. 2010;56(2):113–19.

    PubMed  Google Scholar 

  95. Refshauge KM, Raymond J, Nicholson G, van den Dolder PA. Night splinting does not increase ankle range of motion in people with Charcot-Marie-Tooth disease: a randomised, cross-over trial. Aust J Physiother. 2006;52:193–9.

    PubMed  Google Scholar 

  96. Vinci P. Persistence of range of motion in dorsiflexion, when the triceps surae muscles weaken, worsens stance and gait in Charcot-Marie-Tooth disease. A case report. Eura Medicophys. 2006;42(3):219–22.

    PubMed  CAS  Google Scholar 

  97. Kilmer DD. Response to aerobic exercise training in humans with neuromuscular disease. Am J Phys Med Rehabil. 2002;81:S148–50.

    PubMed  Google Scholar 

  98. Bean J, Walsh A, Frontera W. Brace modification improves aerobic performance in Charcot-Marie-Tooth disease: a single subject design. Am J Phys Med Rehabil. 2001;80(8):578–82.

    PubMed  CAS  Google Scholar 

  99. Vinci P, Perelli SL, Esposito C. Charcot-Marie-Tooth disease: poor balance and rehabilitation [abstract]. J Peripher Nerv Syst. 2001;6(1):58.

    Google Scholar 

  100. Burns J, Scheinberg A, Ryan M, Rose K, Ouvrier R. Randomized trial of botulinum toxin to prevent pes cavus progression in pediatric Charcot-Marie-Tooth disease type 1A. Muscle Nerve. 2010;42(2):262–7.

    PubMed  Google Scholar 

  101. Videler AJ, Beelen A, Van Schaik IN, Verhamme C, Van Den Berg LH, De Visser M. Nollet F Tripod pinch strength and thumb opposition are the major determinants of manual dexterity in Charcot-Marie-Tooth disease type 1A. J Neurol Neurosurg Psychiatry. 2010;81(8):828–33.

    PubMed  Google Scholar 

  102. Zancolli EA. Claw-hand caused by paralysis of the intrinsic muscles: a simple surgical procedure for its correction. J Bone Joint Surg Am. 1957;39(5):1076–80.

    PubMed  Google Scholar 

  103. Mikhail IK. Bone block operation for clawhand. Surg Gynecol Obstet. 1964;118:1077–9.

    PubMed  CAS  Google Scholar 

  104. Parkes A. Paralytic claw fingers--a graft tenodesis operation. Hand. 1973;5(3):192–9.

    PubMed  CAS  Google Scholar 

  105. Bradley WG, Badger GJ, Tandan R, Fillyaw MJ, Young J, Fries TJ, et al. Double-blind controlled trials of Cronassial in chronic neuromuscular diseases and ataxia. Neurology. 1988;38(11):1731–9.

    PubMed  CAS  Google Scholar 

  106. Williams LL, O’Dougherty MM, Wright FS, Bobulski RJ, Horrocks LA. Dietary essential fatty acids, vitamin E, and Charcot-Marie-Tooth disease. Neurology. 1986;36(9):1200–5.

    PubMed  CAS  Google Scholar 

  107. Folkers K, Simonsen R. Two successful double-blind trials with coenzyme Q10 (vitamin Q10) on muscular dystrophies and neurogenic atrophies. Biochim Biophys Acta. 1995;1271(1):281–6.

    PubMed  CAS  Google Scholar 

  108. Dietz HC. New therapeutic approaches to mendelian disorders. N Engl J Med. 2010;363(9):852–63.

    PubMed  CAS  Google Scholar 

  109. Sibley CR, Seow Y, Wood MJ. Novel RNA-based strategies for therapeutic gene silencing. Mol Ther. 2010;18(3):466–76.

    PubMed  CAS  Google Scholar 

  110. Wood M, Yin H, McClorey G. Modulating the expression of disease genes with RNA-based therapy. PLoS Genet. 2007;3(6):e109.

    PubMed  Google Scholar 

  111. Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol. 2007;8(1):23–36.

    PubMed  CAS  Google Scholar 

  112. Andl T, Murchison EP, Liu F, Zhang Y, Yunta-Gonzalez M, Tobias JW, et al. The miRNA-processing enzyme dicer is essential for the morphogenesis and maintenance of hair follicles. Curr Biol. 2006;16(10):1041–9.

    PubMed  CAS  Google Scholar 

  113. Yun B, Anderegg A, Menichella D, Wrabetz L, Feltri ML. Awatramani R. MicroRNA-deficient Schwann cells display congenital hypomyelination. J Neurosci. 2010;30(22):7722–8. This paper, along with references [114] and [115], demonstrates for the first time that microRNAs regulate Schwann cells gene expression and are required for myelination of peripheral nerves.

    PubMed  CAS  Google Scholar 

  114. Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L. Reduction of Dicer impairs Schwann cell differentiation and myelination. J Neurosci Res. 2010;88(12):2558–68. This paper, along with references [113] and [115], demonstrates for the first time that microRNAs regulate Schwann cells gene expression and are required for myelination of peripheral nerves.

    PubMed  CAS  Google Scholar 

  115. Pereira JA, Baumann R, Norrmén C, Somandin C, Miehe M, Jacob C, et al. Dicer in Schwann cells is required for myelination and axonal integrity. J Neurosci. 2010;30(19):6763–75. This paper, along with references [113] and [114], demonstrates for the first time that microRNAs regulate Schwann cells gene expression and are required for myelination of peripheral nerves.

    PubMed  CAS  Google Scholar 

  116. Shy ME. Therapeutic strategies for the inherited neuropathies. Neuromolecular Med. 2006;8:255–78.

    PubMed  CAS  Google Scholar 

  117. Padua L, Cavallaro T, Pareyson D, Quattrone A, Vita G. QoL Study Group. Charcot-Marie-Tooth and pain: correlations with neurophysiological, clinical, and disability findings. Neurol Sci. 2008;29(3):193–4.

    PubMed  Google Scholar 

  118. Attal N, Cruccu G, Baron R, Haanpää M, Hansson P, Jensen TS, et al. EFNS guidelines on the pharmacological treatment of neuropathic pain: 2010 revision. Eur J Neurol. 2010;17(9):1113–e88.

    PubMed  CAS  Google Scholar 

  119. Carter GT, Han JJ, Mayadev A, Weiss MD. Modafinil Reduces Fatigue in Charcot-Marie-Tooth Disease Type 1A: A Case Series. Am J Hosp Palliat Care. 2006;23:412.

    PubMed  Google Scholar 

Download references

Acknowledgments

This research was financially supported by TELETHON GGP02169 and GUP04002 (to A.S.), and by RF041 Italian Ministry of Health.

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelo Schenone MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schenone, A., Nobbio, L., Monti Bragadin, M. et al. Inherited Neuropathies. Curr Treat Options Neurol 13, 160–179 (2011). https://doi.org/10.1007/s11940-011-0115-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11940-011-0115-z

Keywords

Navigation