Skip to main content

Advertisement

Log in

Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein—Potential Crosstalk Between Sterol and Glycerophospholipid Mediators

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Calcium-independent phospholipase A2 (iPLA2) is an 85-kDa enzyme that releases docosahexaenoic acid (DHA) from glycerophospholipids. DHA can be metabolized to resolvins and neuroprotectins that have anti-inflammatory properties and effects on neural plasticity. Recent studies show an important role of prefrontal cortical iPLA2 in hippocampo-prefrontal cortical LTP and antidepressant-like effect of the norepinephrine reuptake inhibitor (NRI) antidepressant, maprotiline. In this study, we elucidated the cellular mechanisms through which stimulation of adrenergic receptors could lead to increased iPLA2 expression. Treatment of SH-SY5Y neuroblastoma cells with maprotiline, another tricyclic antidepressant with noradrenaline reuptake inhibiting properties, nortriptyline, and the adrenergic receptor agonist, phenylephrine, resulted in increased iPLA2β mRNA expression. This increase was blocked by inhibitors to alpha-1 adrenergic receptor, mitogen-activated protein (MAP) kinase or extracellular signal-regulated kinase (ERK) 1/2, and sterol regulatory element-binding protein (SREBP). Maprotiline and phenylephrine induced binding of SREBP-2 to sterol regulatory element (SRE) region on the iPLA2 promoter, as determined by electrophoretic mobility shift assay (EMSA). Together, results indicate that stimulation of adrenoreceptors causes increased iPLA2 expression via MAP kinase/ERK 1/2 and SREBP, and suggest a possible mechanism for effect of CNS noradrenaline on neural plasticity and crosstalk between sterol and glycerophospholipid mediators, that may play a role in physiological or pathophysiological processes in the brain and other organs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ong WY, Yeo JF, Ling SF, Farooqui AA (2005) Distribution of calcium-independent phospholipase A2 (iPLA 2) in monkey brain. J Neurocytol 34(6):447–458. doi:10.1007/s11068-006-8730-4

    Article  CAS  PubMed  Google Scholar 

  2. Ross BM, Moszczynska A, Erlich J, Kish SJ (1998) Low activity of key phospholipid catabolic and anabolic enzymes in human substantia nigra: possible implications for Parkinson’s disease. Neuroscience 83(3):791–798

    Article  CAS  PubMed  Google Scholar 

  3. McLean LR, Hagaman KA, Davidson WS (1993) Role of lipid structure in the activation of phospholipase A2 by peroxidized phospholipids. Lipids 28(6):505–509

    Article  CAS  PubMed  Google Scholar 

  4. Schaeffer EL, Forlenza OV, Gattaz WF (2009) Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology (Berl) 202(1–3):37–51. doi:10.1007/s00213-008-1351-0

    Article  CAS  Google Scholar 

  5. Lee LH, Tan CH, Shui G, Wenk MR, Ong WY (2012) Role of prefrontal cortical calcium independent phospholipase A(2) in antidepressant-like effect of maprotiline. Int J Neuropsychopharmacol 15(8):1087–1098. doi:10.1017/S1461145711001234

    Article  CAS  PubMed  Google Scholar 

  6. Duman CH, Schlesinger L, Kodama M, Russell DS, Duman RS (2007) A role for MAP kinase signaling in behavioral models of depression and antidepressant treatment. Biol Psychiatry 61(5):661–670. doi:10.1016/j.biopsych.2006.05.047

    Article  CAS  PubMed  Google Scholar 

  7. Gourley SL, Wu FJ, Kiraly DD, Ploski JE, Kedves AT, Duman RS, Taylor JR (2008) Regionally specific regulation of ERK MAP kinase in a model of antidepressant-sensitive chronic depression. Biol Psychiatry 63(4):353–359. doi:10.1016/j.biopsych.2007.07.016

    Article  CAS  PubMed  Google Scholar 

  8. Dowlatshahi D, MacQueen GM, Wang JF, Reiach JS, Young LT (1999) G protein-coupled cyclic AMP signaling in postmortem brain of subjects with mood disorders: effects of diagnosis, suicide, and treatment at the time of death. J Neurochem 73(3):1121–1126

    Article  CAS  PubMed  Google Scholar 

  9. Shelton RC, Mainer DH, Sulser F (1996) cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 153(8):1037–1042

    Article  CAS  PubMed  Google Scholar 

  10. Cowburn RF, Marcusson JO, Eriksson A, Wiehager B, O’Neill C (1994) Adenylyl cyclase activity and G-protein subunit levels in postmortem frontal cortex of suicide victims. Brain Res 633(1–2):297–304

    Article  CAS  PubMed  Google Scholar 

  11. Ozawa H, Rasenick MM (1991) Chronic electroconvulsive treatment augments coupling of the GTP-binding protein Gs to the catalytic moiety of adenylyl cyclase in a manner similar to that seen with chronic antidepressant drugs. J Neurochem 56(1):330–338

    Article  CAS  PubMed  Google Scholar 

  12. Nestler EJ, Terwilliger RZ, Duman RS (1989) Chronic antidepressant administration alters the subcellular distribution of cyclic AMP-dependent protein kinase in rat frontal cortex. J Neurochem 53(5):1644–1647

    Article  CAS  PubMed  Google Scholar 

  13. Jensen JB, Mikkelsen JD, Mork A (2000) Increased adenylyl cyclase type 1 mRNA, but not adenylyl cyclase type 2 in the rat hippocampus following antidepressant treatment. Eur Neuropsychopharmacol : J Eur Coll Neuropsychopharmacol 10(2):105–111

    Article  CAS  Google Scholar 

  14. Perez J, Tinelli D, Brunello N, Racagni G (1989) cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 172(3):305–316

    Article  CAS  PubMed  Google Scholar 

  15. Raeder MB, Ferno J, Vik-Mo AO, Steen VM (2006) SREBP activation by antipsychotic- and antidepressant-drugs in cultured human liver cells: relevance for metabolic side-effects? Mol Cell Biochem 289(1–2):167–173. doi:10.1007/s11010-006-9160-4

    Article  CAS  PubMed  Google Scholar 

  16. Parsley S, Gazi L, Bobirnac I, Loetscher E, Schoeffter P (1999) Functional alpha2C-adrenoceptors in human neuroblastoma SH-SY5Y cells. Eur J Pharmacol 372(1):109–115

    Article  CAS  PubMed  Google Scholar 

  17. Perez DM (2005) The adrenergic receptors: in the 21st century, The receptors. Humana Press, Totowa

    Google Scholar 

  18. Lopes FM, Schroder R, da Frota ML Jr, Zanotto-Filho A, Muller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F (2010) Comparison between proliferative and neuron-like SH-SY5Y cells as an in vitro model for Parkinson disease studies. Brain Res 1337:85–94. doi:10.1016/j.brainres.2010.03.102

    Article  CAS  PubMed  Google Scholar 

  19. Gilany K, Van Elzen R, Mous K, Coen E, Van Dongen W, Vandamme S, Gevaert K, Timmerman E, Vandekerckhove J, Dewilde S, Van Ostade X, Moens L (2008) The proteome of the human neuroblastoma cell line SH-SY5Y: an enlarged proteome. Biochim Biophys Acta 1784(7–8):983–985. doi:10.1016/j.bbapap.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  20. Korecka JA, van Kesteren RE, Blaas E, Spitzer SO, Kamstra JH, Smit AB, Swaab DF, Verhaagen J, Bossers K (2013) Phenotypic characterization of retinoic acid differentiated SH-SY5Y cells by transcriptional profiling. PLoS One 8(5):e63862. doi:10.1371/journal.pone.0063862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathieu G, Denis S, Langelier B, Denis I, Lavialle M, Vancassel S (2010) DHA enhances the noradrenaline release by SH-SY5Y cells. Neurochem Int 56(1):94–100. doi:10.1016/j.neuint.2009.09.006

    Article  PubMed  Google Scholar 

  22. Atcheson R, Lambert DG, Hirst RA, Rowbotham DJ (1994) Studies on the mechanism of [3H]-noradrenaline release from SH-SY5Y cells: the role of Ca2+ and cyclic AMP. Br J Pharmacol 111(3):787–792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ou XM, Partoens PM, Wang JM, Walker JH, Danks K, Vaughan PF, De Potter WP (1998) The storage of noradrenaline, neuropeptide Y and chromogranins in and stoichiometric release from large dense cored vesicles of the undifferentiated human neuroblastoma cell line SH-SY5Y. Int J Mol Med 1(1):105–112

    CAS  PubMed  Google Scholar 

  24. Pahlman S, Ruusala AI, Abrahamsson L, Mattsson ME, Esscher T (1984) Retinoic acid-induced differentiation of cultured human neuroblastoma cells: a comparison with phorbolester-induced differentiation. Cell Differ 14(2):135–144

    Article  CAS  PubMed  Google Scholar 

  25. Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC (2009) Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research. Neurotoxicology 30(1):127–135. doi:10.1016/j.neuro.2008.11.001

    Article  CAS  PubMed  Google Scholar 

  26. Liao WC, Huang CC, Lu YC, Chi CC, Chu ST, Su HH, Kuo CC, Cheng JS, Tseng LL, Ho CM, Jan CR (2010) Maprotiline-induced Ca2+ fluxes and apoptosis in human osteosarcoma cells. Drug Dev Res 71(4):268–274. doi:10.1002/Ddr.20371

    Article  CAS  Google Scholar 

  27. Hisaoka K, Tsuchioka M, Yano R, Maeda N, Kajitani N, Morioka N, Nakata Y, Takebayashi M (2011) Tricyclic antidepressant amitriptyline activates fibroblast growth factor receptor signaling in glial cells: involvement in glial cell line-derived neurotrophic factor production. J Biol Chem 286(24):21118–21128. doi:10.1074/jbc.M111.224683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parra A, Martos A, Monleon S, Carmen Arenas M, Vinader-Caerols C (2000) Effects of acute and chronic maprotiline administration on inhibitory avoidance in male mice. Behav Brain Res 109(1):1–7

    Article  CAS  PubMed  Google Scholar 

  29. Paudel KR, Das BP, Rauniar GP, Sangraula H, Deo S, Bhattacharya SK (2007) Antinociceptive effect of amitriptyline in mice of acute pain models. Indian J Exp Biol 45(6):529–531

    CAS  PubMed  Google Scholar 

  30. Tan CH, He X, Yang J, Ong WY (2006) Changes in AMPA subunit expression in the mouse brain after chronic treatment with the antidepressant maprotiline: a link between noradrenergic and glutamatergic function? Exp Brain Res Exp Hirnforsch Exp Cerebrale 170(4):448–456. doi:10.1007/s00221-005-0228-2

    Article  CAS  Google Scholar 

  31. Miranda HF, Noriega V, Zanetta P, Prieto JC (2013) Isobolographic analysis in mice of the interaction of gabapentin and nortriptyline in relieving orofacial pain. J Orofac Pain 27(4):361–366

    Article  PubMed  Google Scholar 

  32. Segura V, Perez-Aso M, Monto F, Carceller E, Noguera MA, Pediani J, Milligan G, McGrath IC, D’Ocon P (2013) Differences in the signaling pathways of alpha(1A)- and alpha(1B)-adrenoceptors are related to different endosomal targeting. PLoS One 8(5):e64996. doi:10.1371/journal.pone.0064996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hu ZW, Shi XY, Lin RZ, Hoffman BB (1996) Alpha1 adrenergic receptors activate phosphatidylinositol 3-kinase in human vascular smooth muscle cells. Role in mitogenesis. J Biol Chem 271(15):8977–8982

    Article  CAS  PubMed  Google Scholar 

  34. Cawley SM, Kolodziej S, Ichinose F, Brouckaert P, Buys ES, Bloch KD (2011) sGC{alpha}1 mediates the negative inotropic effects of NO in cardiac myocytes independent of changes in calcium handling. Am J Physiol Heart Circ Physiol 301(1):H157–H163. doi:10.1152/ajpheart.01273.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jordan S, Koprivica V, Chen RY, Tottori K, Kikuchi T, Altar CA (2002) The antipsychotic aripiprazole is a potent, partial agonist at the human 5-HT1A receptor. Eur J Pharmacol 441(3):137–140. doi:10.1016/S0014-2999(02)01532-7

    Article  CAS  PubMed  Google Scholar 

  36. Brigino E, Haraguchi S, Koutsonikolis A, Cianciolo GJ, Owens U, Good RA, Day NK (1997) Interleukin 10 is induced by recombinant HIV-1 Nef protein involving the calcium/calmodulin-dependent phosphodiesterase signal transduction pathway. Proc Natl Acad Sci U S A 94(7):3178–3182. doi:10.1073/pnas.94.7.3178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Queen LR, Ji Y, Xu B, Young L, Yao K, Wyatt AW, Rowlands DJ, Siow RC, Mann GE, Ferro A (2006) Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol 576(Pt 2):585–594. doi:10.1113/jphysiol.2006.115998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Harmon EB, Porter JM, Porter JE (2005) Beta-adrenergic receptor activation in immortalized human urothelial cells stimulates inflammatory responses by PKA-independent mechanisms. Cell Commun Signal : CCS 3:10. doi:10.1186/1478-811X-3-10

    Article  PubMed  PubMed Central  Google Scholar 

  39. Collas P, Le Guellec K, Tasken K (1999) The A-kinase-anchoring protein AKAP95 is a multivalent protein with a key role in chromatin condensation at mitosis. J Cell Biol 147(6):1167–1179. doi:10.1083/jcb.147.6.1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Singh K, Deshpande P, Pryshchep S, Colmegna I, Liarski V, Weyand CM, Goronzy JJ (2009) ERK-dependent T cell receptor threshold calibration in rheumatoid arthritis. J Immunol 183(12):8258–8267. doi:10.4049/jimmunol.0901784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Volpi G, Facchinetti F, Moretto N, Civelli M, Patacchini R (2011) Cigarette smoke and alpha,beta-unsaturated aldehydes elicit VEGF release through the p38 MAPK pathway in human airway smooth muscle cells and lung fibroblasts. Br J Pharmacol 163(3):649–661. doi:10.1111/j.1476-5381.2011.01253.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zeng XN, Zhang S, Xu LW, Yang HW, He SH (2013) Activation of protease-activated receptor 2-mediated signaling by mast cell tryptase modulates cytokine production in primary cultured astrocytes. Mediat Inflamm. doi:10.1155/2013/140812

    Google Scholar 

  43. Capogrossi MC, Kachadorian WA, Gambassi G, Spurgeon HA, Lakatta EG (1991) Ca2+ dependence of alpha-adrenergic effects on the contractile properties and Ca2+ homeostasis of cardiac myocytes. Circ Res 69(2):540–550

    Article  CAS  PubMed  Google Scholar 

  44. Endoh M, Blinks JR (1988) Actions of sympathomimetic amines on the Ca2+ transients and contractions of rabbit myocardium: reciprocal changes in myofibrillar responsiveness to Ca2+ mediated through alpha- and beta-adrenoceptors. Circ Res 62(2):247–265

    Article  CAS  PubMed  Google Scholar 

  45. Tang JJ, Li JG, Qi W, Qiu WW, Li PS, Li BL, Song BL (2011) Inhibition of SREBP by a small molecule, betulin, improves hyperlipidemia and insulin resistance and reduces atherosclerotic plaques. Cell Metab 13(1):44–56. doi:10.1016/j.cmet.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  46. Hawkins JL, Robbins MD, Warren LC, Xia D, Petras SF, Valentine JJ, Varghese AH, Wang IK, Subashi TA, Shelly LD, Hay BA, Landschulz KT, Geoghegan KF, Harwood HJ Jr (2008) Pharmacologic inhibition of site 1 protease activity inhibits sterol regulatory element-binding protein processing and reduces lipogenic enzyme gene expression and lipid synthesis in cultured cells and experimental animals. J Pharmacol Exp Ther 326(3):801–808. doi:10.1124/jpet.108.139626

    Article  CAS  PubMed  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  48. Rang HP, Dale MM, Ritter JM, Flower RJ (2007) Drugs used in affective disorders. In: Rang and Dale’s pharmacology. 6th edn. Elsevier Churchill Livingstone, pp 535–549

  49. Starke K, Gothert M, Kilbinger H (1989) Modulation of neurotransmitter release by presynaptic autoreceptors. Physiol Rev 69(3):864–989

    CAS  PubMed  Google Scholar 

  50. Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pilc A (1984) Alpha up-beta down adrenergic regulation: a possible mechanism of action of antidepressant treatments. Pol J Pharmacol Pharm 36(2–3):231–248

    CAS  PubMed  Google Scholar 

  51. Vetulani J (1984) Complex action of antidepressant treatment on central adrenergic system: possible relevance to clinical effects. Pharmacopsychiatry 17(1):16–21. doi:10.1055/s-2007-1017401

    Article  CAS  PubMed  Google Scholar 

  52. Stone EA, Quartermain D (1999) Alpha-1-noradrenergic neurotransmission, corticosterone, and behavioral depression. Biol Psychiatry 46(9):1287–1300

    Article  CAS  PubMed  Google Scholar 

  53. Fletcher A, Forster EA, Bill DJ, Brown G, Cliffe IA, Hartley JE, Jones DE, McLenachan A, Stanhope KJ, Critchley DJ, Childs KJ, Middlefell VC, Lanfumey L, Corradetti R, Laporte AM, Gozlan H, Hamon M, Dourish CT (1996) Electrophysiological, biochemical, neurohormonal and behavioural studies with WAY-100635, a potent, selective and silent 5-HT1A receptor antagonist. Behav Brain Res 73(1–2):337–353

    CAS  PubMed  Google Scholar 

  54. Frazer A (1997) Antidepressants. J Clin Psychiatry 58(Suppl 6):9–25

    CAS  PubMed  Google Scholar 

  55. Garcia-Sainz JA, Vazquez-Prado J, Villalobos-Molina R (1999) Alpha 1-adrenoceptors: subtypes, signaling, and roles in health and disease. Arch Med Res 30(6):449–458

    Article  CAS  PubMed  Google Scholar 

  56. Hague C, Gonzalez-Cabrera PJ, Jeffries WB, Abel PW (2002) Relationship between alpha(1)-adrenergic receptor-induced contraction and extracellular signal-regulated kinase activation in the bovine inferior alveolar artery. J Pharmacol Exp Ther 303(1):403–411. doi:10.1124/jpet.102.037531

    Article  CAS  PubMed  Google Scholar 

  57. Gurdal H, Seasholtz TM, Wang HY, Brown RD, Johnson MD, Friedman E (1997) Role of G alpha q or G alpha o proteins in alpha 1-adrenoceptor subtype-mediated responses in Fischer 344 rat aorta. Mol Pharmacol 52(6):1064–1070

    CAS  PubMed  Google Scholar 

  58. Arthur JF, Matkovich SJ, Mitchell CJ, Biden TJ, Woodcock EA (2001) Evidence for selective coupling of alpha 1-adrenergic receptors to phospholipase C-beta 1 in rat neonatal cardiomyocytes. J Biol Chem 276(40):37341–37346. doi:10.1074/jbc.M106572200

    Article  CAS  PubMed  Google Scholar 

  59. Kang SK, Kim DK, Damron DS, Baek KJ, Im MJ (2002) Modulation of intracellular Ca(2+) via alpha(1B)-adrenoreceptor signaling molecules, G alpha(h) (transglutaminase II) and phospholipase C-delta 1. Biochem Biophys Res Commun 293(1):383–390. doi:10.1016/S0006-291X(02)00197-3

    Article  CAS  PubMed  Google Scholar 

  60. Hu ZW, Shi XY, Lin RZ, Chen J, Hoffman BB (1999) alpha1-Adrenergic receptor stimulation of mitogenesis in human vascular smooth muscle cells: role of tyrosine protein kinases and calcium in activation of mitogen-activated protein kinase. J Pharmacol Exp Ther 290(1):28–37

    CAS  PubMed  Google Scholar 

  61. Rohde S, Sabri A, Kamasamudran R, Steinberg SF (2000) The alpha(1)-adrenoceptor subtype- and protein kinase C isoform-dependence of norepinephrine’s actions in cardiomyocytes. J Mol Cell Cardiol 32(7):1193–1209. doi:10.1006/jmcc.2000.1153

    Article  CAS  PubMed  Google Scholar 

  62. Anfuso CD, Lupo G, Romeo L, Giurdanella G, Motta C, Pascale A, Tirolo C, Marchetti B, Alberghina M (2007) Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCalpha and the MAPK/ERK cascade. J Lipid Res 48(4):782–793. doi:10.1194/jlr. M600489-JLR200

    Article  CAS  PubMed  Google Scholar 

  63. Chijiwa T, Mishima A, Hagiwara M, Sano M, Hayashi K, Inoue T, Naito K, Toshioka T, Hidaka H (1990) Inhibition of forskolin-induced neurite outgrowth and protein phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromocytoma cells. J Biol Chem 265(9):5267–5272

    CAS  PubMed  Google Scholar 

  64. Kotzka J, Muller-Wieland D, Roth G, Kremer L, Munck M, Schurmann S, Knebel B, Krone W (2000) Sterol regulatory element binding proteins (SREBP)-1a and SREBP-2 are linked to the MAP-kinase cascade. J Lipid Res 41(1):99–108

    CAS  PubMed  Google Scholar 

  65. Seashols SJ, del Castillo OA, Gil G, Barbour SE (2004) Regulation of group VIA phospholipase A2 expression by sterol availability. Biochim Biophys Acta 1684(1–3):29–37. doi:10.1016/j.bbalip.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  66. Serhan CN, Gotlinger K, Hong S, Arita M (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their aspirin-triggered endogenous epimers: an overview of their protective roles in catabasis. Prostag Oth Lipid M 73(3–4):155–172. doi:10.1016/j.prostaglandins.2004.03.005

    Article  CAS  Google Scholar 

  67. Cortina MS, He J, Russ T, Bazan NG, Bazan HE (2013) Neuroprotectin D1 restores corneal nerve integrity and function after damage from experimental surgery. Invest Ophthalmol Vis Sci 54(6):4109–4116. doi:10.1167/iovs. 13-12075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Erdinest N, Ovadia H, Kormas R, Solomon A (2014) Anti-inflammatory effects of resolvin-D1 on human corneal epithelial cells: in vitro study. J Inflamm 11(1):6. doi:10.1186/1476-9255-11-6

    Article  Google Scholar 

  69. Sun YP, Oh SF, Uddin J, Yang R, Gotlinger K, Campbell E, Colgan SP, Petasis NA, Serhan CN (2007) Resolvin D1 and its aspirin-triggered 17R epimer. Stereochemical assignments, anti-inflammatory properties, and enzymatic inactivation. J Biol Chem 282(13):9323–9334. doi:10.1074/jbc.M609212200

    Article  CAS  PubMed  Google Scholar 

  70. Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji RR (2010) Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nature medicine 16(5):592–597. doi:10.1038/nm.2123, 591p following 597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hasturk H, Kantarci A, Ohira T, Arita M, Ebrahimi N, Chiang N, Petasis NA, Levy BD, Serhan CN, Van Dyke TE (2006) RvE1 protects from local inflammation and osteoclast-mediated bone destruction in periodontitis. FASEB J 20(2):401–403. doi:10.1096/fj.05-4724fje

    CAS  PubMed  Google Scholar 

  72. Acworth I, Nicholass J, Morgan B, Newsholme EA (1986) Effect of sustained exercise on concentrations of plasma aromatic and branched-chain amino acids and brain amines. Biochem Biophys Res Commun 137(1):149–153

    Article  CAS  PubMed  Google Scholar 

  73. de Castro JM, Duncan G (1985) Operantly conditioned running: effects on brain catecholamine concentrations and receptor densities in the rat. Pharmacol Biochem Behav 23(4):495–500

    Article  PubMed  Google Scholar 

  74. Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188

    Article  CAS  PubMed  Google Scholar 

  75. Lin TW, Kuo YM (2013) Exercise benefits brain function: the monoamine connection. Brain Sci 3(1):39–53. doi:10.3390/brainsci3010039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wong J, Quinn CM, Brown AJ (2006) SREBP-2 positively regulates transcription of the cholesterol efflux gene, ABCA1, by generating oxysterol ligands for LXR. Biochem J 400(3):485–491. doi:10.1042/BJ20060914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vance JE (2012) Dysregulation of cholesterol balance in the brain: contribution to neurodegenerative diseases. Dis Model Mech 5(6):746–755. doi:10.1242/dmm.010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jick H, Zornberg GL, Jick SS, Seshadri S, Drachman DA (2000) Statins and the risk of dementia. Lancet 356(9242):1627–1631

    Article  CAS  PubMed  Google Scholar 

  79. Wolozin B, Kellman W, Ruosseau P, Celesia GG, Siegel G (2000) Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methyglutaryl coenzyme A reductase inhibitors. Arch Neurol 57(10):1439–1443

    Article  CAS  PubMed  Google Scholar 

  80. Ong WY, Kim JH, He X, Chen P, Farooqui AA, Jenner AM (2010) Changes in brain cholesterol metabolome after excitotoxicity. Mol Neurobiol 41(2–3):299–313. doi:10.1007/s12035-010-8099-3

    Article  CAS  PubMed  Google Scholar 

  81. Adams CM, Reitz J, De Brabander JK, Feramisco JD, Li L, Brown MS, Goldstein JL (2004) Cholesterol and 25-hydroxycholesterol inhibit activation of SREBPs by different mechanisms, both involving SCAP and Insigs. J Biol Chem 279(50):52772–52780. doi:10.1074/jbc.M410302200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Medical Research Council of Singapore.

Conflict of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Yi Ong.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 330 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chew, WS., Ong, WY. Regulation of Calcium-Independent Phospholipase A2 Expression by Adrenoceptors and Sterol Regulatory Element Binding Protein—Potential Crosstalk Between Sterol and Glycerophospholipid Mediators. Mol Neurobiol 53, 500–517 (2016). https://doi.org/10.1007/s12035-014-9026-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-9026-9

Keywords

Navigation