Skip to main content

Advertisement

Log in

Axonal Transport Defects in Alzheimer’s Disease

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

A large body of evidences indicates that axonal transport (AT) defects play an important role in the pathogenesis of Alzheimer’ disease (AD). AT, a critical cellular process for the maintenance and function of a neuron, requires components of the cytoskeletons as “tracks”, motor proteins and ATP as “driving force”, adaptor proteins to ensure the specific connection of the transported cargoes and motor proteins as well as active regulation. In AD pathology, AD-linked pathologic factors respectively perturb the four basic components of AT through different signaling pathways to cause AT defects. Mitochondrial transport, which is different from other transport cargoes, is also impaired via special pathways in AD. In this paper, we review the inhibitory effects of those factors on AT and their possible pathways, indicating these factors act in overlapping, synergistic, and circulating ways. Given the contributions of AT defects to AD, recent therapeutic studies focus on microtubule-stabilizing (MT-stabilizing) agents and alteration in phosphotransferase activities, and we propose more therapeutic strategies targeting AT defects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2

Similar content being viewed by others

References

  1. Cai Y, Zhang XM, Macklin LN, Cai H, Luo XG, Oddo S, Laferla FM, Struble RG, Rose GM, Patrylo PR, Yan XX (2012) BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer’s disease: differential Abeta antibody labeling of early-onset axon terminal pathology. Neurotox Res 21(2):160–174. doi:10.1007/s12640-011-9256-9

    Article  PubMed Central  PubMed  Google Scholar 

  2. Ihara M, Polvikoski TM, Hall R, Slade JY, Perry RH, Oakley AE, Englund E, O’Brien JT, Ince PG, Kalaria RN (2010) Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease, and dementia with Lewy bodies. Acta Neuropathol 119(5):579–589. doi:10.1007/s00401-009-0635-8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Hirokawa N, Niwa S, Tanaka Y (2010) Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68(4):610–638. doi:10.1016/j.neuron.2010.09.039

    Article  CAS  PubMed  Google Scholar 

  4. Verhey KJ, Meyer D, Deehan R, Blenis J, Schnapp BJ, Rapoport TA, Margolis B (2001) Cargo of kinesin identified as JIP scaffolding proteins and associated signaling molecules. J Cell Biol 152(5):959–970

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Jordens I, Fernandez-Borja M, Marsman M, Dusseljee S, Janssen L, Calafat J, Janssen H, Wubbolts R, Neefjes J (2001) The Rab7 effector protein RILP controls lysosomal transport by inducing the recruitment of dynein–dynactin motors. Curr Biol 11(21):1680–1685

    Article  CAS  PubMed  Google Scholar 

  6. Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23(11):2235–2245. doi:10.1038/sj.emboj.7600237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Morfini G, Szebenyi G, Elluru R, Ratner N, Brady ST (2002) Glycogen synthase kinase 3 phosphorylates kinesin light chains and negatively regulates kinesin-based motility. EMBO J 21(3):281–293. doi:10.1093/emboj/21.3.281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Morfini G, Szebenyi G, Richards B, Brady ST (2001) Regulation of kinesin: implications for neuronal development. Dev Neurosci 23(4–5):364–376

    Article  CAS  PubMed  Google Scholar 

  9. Morfini GA, You YM, Pollema SL, Kaminska A, Liu K, Yoshioka K, Bjorkblom B, Coffey ET, Bagnato C, Han D, Huang CF, Banker G, Pigino G, Brady ST (2009) Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin. Nat Neurosci 12(7):864–871. doi:10.1038/nn.2346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Morfini G, Pigino G, Szebenyi G, You Y, Pollema S, Brady ST (2006) JNK mediates pathogenic effects of polyglutamine-expanded androgen receptor on fast axonal transport. Nat Neurosci 9(7):907–916. doi:10.1038/nn1717

    Article  CAS  PubMed  Google Scholar 

  11. Cross DA, Watt PW, Shaw M, van der Kaay J, Downes CP, Holder JC, Cohen P (1997) Insulin activates protein kinase B, inhibits glycogen synthase kinase-3 and activates glycogen synthase by rapamycin-insensitive pathways in skeletal muscle and adipose tissue. FEBS Lett 406(1–2):211–215

    Article  CAS  PubMed  Google Scholar 

  12. Cook D, Fry MJ, Hughes K, Sumathipala R, Woodgett JR, Dale TC (1996) Wingless inactivates glycogen synthase kinase-3 via an intracellular signalling pathway which involves a protein kinase C. EMBO J 15(17):4526–4536

    PubMed Central  CAS  PubMed  Google Scholar 

  13. Ratner N, Bloom GS, Brady ST (1998) A role for cyclin-dependent kinase(s) in the modulation of fast anterograde axonal transport: effects defined by olomoucine and the APC tumor suppressor protein. J Neurosci Off J Soc Neurosci 18(19):7717–7726

    CAS  Google Scholar 

  14. Stagi M, Gorlovoy P, Larionov S, Takahashi K, Neumann H (2006) Unloading kinesin transported cargoes from the tubulin track via the inflammatory c-Jun N-terminal kinase pathway. FASEB J Off Publ Fed Am Soc Exp Biol 20(14):2573–2575. doi:10.1096/fj.06-6679fje

    CAS  Google Scholar 

  15. Wang J, Yu JT, Tan MS, Jiang T, Tan L (2013) Epigenetic mechanisms in Alzheimer’s disease: Implications for pathogenesis and therapy. Ageing Res Rev 12(4):1024–1041. doi:10.1016/j.arr.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  16. Muller U, Cristina N, Li ZW, Wolfer DP, Lipp HP, Rulicke T, Brandner S, Aguzzi A, Weissmann C (1994) Behavioral and anatomical deficits in mice homozygous for a modified beta-amyloid precursor protein gene. Cell 79(5):755–765

    Article  CAS  PubMed  Google Scholar 

  17. Stokin GB, Lillo C, Falzone TL, Brusch RG, Rockenstein E, Mount SL, Raman R, Davies P, Masliah E, Williams DS, Goldstein LS (2005) Axonopathy and transport deficits early in the pathogenesis of Alzheimer’s disease. Science 307(5713):1282–1288. doi:10.1126/science.1105681

    Article  CAS  PubMed  Google Scholar 

  18. Wirths O, Weis J, Szczygielski J, Multhaup G, Bayer TA (2006) Axonopathy in an APP/PS1 transgenic mouse model of Alzheimer’s disease. Acta Neuropathol 111(4):312–319. doi:10.1007/s00401-006-0041-4

    Article  CAS  PubMed  Google Scholar 

  19. Smith KD, Kallhoff V, Zheng H, Pautler RG (2007) In vivo axonal transport rates decrease in a mouse model of Alzheimer’s disease. NeuroImage 35(4):1401–1408. doi:10.1016/j.neuroimage.2007.01.046

    Article  PubMed Central  PubMed  Google Scholar 

  20. Kamal A, Stokin GB, Yang Z, Xia CH, Goldstein LS (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-I. Neuron 28(2):449–459

    Article  CAS  PubMed  Google Scholar 

  21. Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS (2001) Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 414(6864):643–648. doi:10.1038/414643a

    Article  CAS  PubMed  Google Scholar 

  22. Muresan Z, Muresan V (2005) Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J Cell Biol 171(4):615–625. doi:10.1083/jcb.200502043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Kuan YH, Gruebl T, Soba P, Eggert S, Nesic I, Back S, Kirsch J, Beyreuther K, Kins S (2006) PAT1a modulates intracellular transport and processing of amyloid precursor protein (APP), APLP1, and APLP2. J Biol Chem 281(52):40114–40123. doi:10.1074/jbc.M605407200

    Article  CAS  PubMed  Google Scholar 

  24. Araki Y, Kawano T, Taru H, Saito Y, Wada S, Miyamoto K, Kobayashi H, Ishikawa HO, Ohsugi Y, Yamamoto T, Matsuno K, Kinjo M, Suzuki T (2007) The novel cargo Alcadein induces vesicle association of kinesin-1 motor components and activates axonal transport. EMBO J 26(6):1475–1486. doi:10.1038/sj.emboj.7601609

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Vagnoni A, Perkinton MS, Gray EH, Francis PT, Noble W, Miller CC (2012) Calsyntenin-1 mediates axonal transport of the amyloid precursor protein and regulates Abeta production. Hum Mol Genet 21(13):2845–2854. doi:10.1093/hmg/dds109

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Lazarov O, Morfini GA, Lee EB, Farah MH, Szodorai A, DeBoer SR, Koliatsos VE, Kins S, Lee VM, Wong PC, Price DL, Brady ST, Sisodia SS (2005) Axonal transport, amyloid precursor protein, kinesin-1, and the processing apparatus: revisited. J Neurosci Off J Soc Neurosci 25(9):2386–2395. doi:10.1523/JNEUROSCI.3089-04.2005

    Article  CAS  Google Scholar 

  27. Vagnoni A, Glennon EB, Perkinton MS, Gray EH, Noble W, Miller CC (2013) Loss of c-Jun N-terminal kinase-interacting protein-1 does not affect axonal transport of the amyloid precursor protein or Abeta production. Hum Mol Genet 22(22):4646–4652. doi:10.1093/hmg/ddt313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Weaver C, Leidel C, Szpankowski L, Farley NM, Shubeita GT, Goldstein LS (2013) Endogenous GSK-3/shaggy regulates bidirectional axonal transport of the amyloid precursor protein. Traffic 14(3):295–308. doi:10.1111/tra.12037

    Article  CAS  PubMed  Google Scholar 

  29. Rodrigues EM, Weissmiller AM, Goldstein LS (2012) Enhanced beta-secretase processing alters APP axonal transport and leads to axonal defects. Hum Mol Genet 21(21):4587–4601. doi:10.1093/hmg/dds297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Salehi A, Delcroix JD, Belichenko PV, Zhan K, Wu C, Valletta JS, Takimoto-Kimura R, Kleschevnikov AM, Sambamurti K, Chung PP, Xia W, Villar A, Campbell WA, Kulnane LS, Nixon RA, Lamb BT, Epstein CJ, Stokin GB, Goldstein LS, Mobley WC (2006) Increased App expression in a mouse model of Down’s syndrome disrupts NGF transport and causes cholinergic neuron degeneration. Neuron 51(1):29–42. doi:10.1016/j.neuron.2006.05.022

    Article  CAS  PubMed  Google Scholar 

  31. Satpute-Krishnan P, DeGiorgis JA, Conley MP, Jang M, Bearer EL (2006) A peptide zipcode sufficient for anterograde transport within amyloid precursor protein. Proc Natl Acad Sci U S A 103(44):16532–16537. doi:10.1073/pnas.0607527103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Henriques AG, Vieira SI, da Cruz ESEF, da Cruz ESOA (2010) Abeta promotes Alzheimer’s disease-like cytoskeleton abnormalities with consequences to APP processing in neurons. J Neurochem 113(3):761–771. doi:10.1111/j.1471-4159.2010.06643.x

    Article  CAS  PubMed  Google Scholar 

  33. Ding H, Dolan PJ, Johnson GV (2008) Histone deacetylase 6 interacts with the microtubule-associated protein tau. J Neurochem 106(5):2119–2130. doi:10.1111/j.1471-4159.2008.05564.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Hiruma H, Katakura T, Takahashi S, Ichikawa T, Kawakami T (2003) Glutamate and amyloid beta-protein rapidly inhibit fast axonal transport in cultured rat hippocampal neurons by different mechanisms. J Neurosci Off J Soc Neurosci 23(26):8967–8977

    CAS  Google Scholar 

  35. Rui Y, Li R, Liu Y, Zhu S, Yu X, Sheng Z, Xie Z (2006) Acute effect of beta amyloid on synchronized spontaneous Ca2+ oscillations in cultured hippocampal networks. Cell Biol Int 30(9):733–740. doi:10.1016/j.cellbi.2006.05.005

    Article  CAS  PubMed  Google Scholar 

  36. Bomfim TR, Forny-Germano L, Sathler LB, Brito-Moreira J, Houzel JC, Decker H, Silverman MA, Kazi H, Melo HM, McClean PL, Holscher C, Arnold SE, Talbot K, Klein WL, Munoz DP, Ferreira ST, De Felice FG (2012) An anti-diabetes agent protects the mouse brain from defective insulin signaling caused by Alzheimer’s disease- associated Abeta oligomers. J Clin Invest 122(4):1339–1353. doi:10.1172/JCI57256

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Pigino G, Morfini G, Atagi Y, Deshpande A, Yu C, Jungbauer L, LaDu M, Busciglio J, Brady S (2009) Disruption of fast axonal transport is a pathogenic mechanism for intraneuronal amyloid beta. Proc Natl Acad Sci U S A 106(14):5907–5912. doi:10.1073/pnas.0901229106

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Decker H, Lo KY, Unger SM, Ferreira ST, Silverman MA (2010) Amyloid-beta peptide oligomers disrupt axonal transport through an NMDA receptor-dependent mechanism that is mediated by glycogen synthase kinase 3beta in primary cultured hippocampal neurons. J Neurosci Off J Soc Neurosci 30(27):9166–9171. doi:10.1523/JNEUROSCI.1074-10.2010

    Article  CAS  Google Scholar 

  39. Zempel H, Thies E, Mandelkow E, Mandelkow EM (2010) Abeta oligomers cause localized Ca(2+) elevation, missorting of endogenous Tau into dendrites, Tau phosphorylation, and destruction of microtubules and spines. J Neurosci Off J Soc Neurosci 30(36):11938–11950. doi:10.1523/JNEUROSCI.2357-10.2010

    Article  CAS  Google Scholar 

  40. Takashima A, Murayama M, Murayama O, Kohno T, Honda T, Yasutake K, Nihonmatsu N, Mercken M, Yamaguchi H, Sugihara S, Wolozin B (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci U S A 95(16):9637–9641

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Tesco G, Tanzi RE (2000) GSK3 beta forms a tetrameric complex with endogenous PS1-CTF/NTF and beta-catenin. Effects of the D257/D385A and FAD-linked mutations. Ann N Y Acad Sci 920:227–232

    Article  CAS  PubMed  Google Scholar 

  42. Pigino G, Morfini G, Pelsman A, Mattson MP, Brady ST, Busciglio J (2003) Alzheimer’s presenilin 1 mutations impair kinesin-based axonal transport. J Neurosci Off J Soc Neurosci 23(11):4499–4508

    CAS  Google Scholar 

  43. Lazarov O, Morfini GA, Pigino G, Gadadhar A, Chen X, Robinson J, Ho H, Brady ST, Sisodia SS (2007) Impairments in fast axonal transport and motor neuron deficits in transgenic mice expressing familial Alzheimer’s disease-linked mutant presenilin 1. J Neurosci Off J Soc Neurosci 27(26):7011–7020. doi:10.1523/JNEUROSCI.4272-06.2007

    Article  CAS  Google Scholar 

  44. Dolma K, Iacobucci GJ, Hong Zheng K, Shandilya J, Toska E, White JA 2nd, Spina E, Gunawardena S (2014) Presenilin influences glycogen synthase kinase-3 beta (GSK-3beta) for kinesin-1 and dynein function during axonal transport. Hum Mol Genet 23(5):1121–1133. doi:10.1093/hmg/ddt505

    Article  CAS  PubMed  Google Scholar 

  45. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, Wisniewski HM, Alafuzoff I, Winblad B (1986) Defective brain microtubule assembly in Alzheimer’s disease. Lancet 2(8504):421–426

    Article  CAS  PubMed  Google Scholar 

  46. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A 83(13):4913–4917

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM (1993) Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron 10(6):1089–1099

    Article  CAS  PubMed  Google Scholar 

  48. Dayanandan R, Van Slegtenhorst M, Mack TG, Ko L, Yen SH, Leroy K, Brion JP, Anderton BH, Hutton M, Lovestone S (1999) Mutations in tau reduce its microtubule binding properties in intact cells and affect its phosphorylation. FEBS Lett 446(2–3):228–232

    Article  CAS  PubMed  Google Scholar 

  49. Mudher A, Shepherd D, Newman TA, Mildren P, Jukes JP, Squire A, Mears A, Drummond JA, Berg S, MacKay D, Asuni AA, Bhat R, Lovestone S (2004) GSK-3beta inhibition reverses axonal transport defects and behavioural phenotypes in Drosophila. Mol Psychiatry 9(5):522–530. doi:10.1038/sj.mp.4001483

    Article  CAS  PubMed  Google Scholar 

  50. Ishihara T, Hong M, Zhang B, Nakagawa Y, Lee MK, Trojanowski JQ, Lee VM (1999) Age-dependent emergence and progression of a tauopathy in transgenic mice overexpressing the shortest human tau isoform. Neuron 24(3):751–762

    Article  CAS  PubMed  Google Scholar 

  51. Higuchi M, Zhang B, Forman MS, Yoshiyama Y, Trojanowski JQ, Lee VM (2005) Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. J Neurosci Off J Soc Neurosci 25(41):9434–9443. doi:10.1523/JNEUROSCI.2691-05.2005

    Article  CAS  Google Scholar 

  52. Nuydens R, Van Den Kieboom G, Nolten C, Verhulst C, Van Osta P, Spittaels K, Van den Haute C, De Feyter E, Geerts H, Van Leuven F (2002) Coexpression of GSK-3beta corrects phenotypic aberrations of dorsal root ganglion cells, cultured from adult transgenic mice overexpressing human protein tau. Neurobiol Dis 9(1):38–48. doi:10.1006/nbdi.2001.0454

    Article  CAS  PubMed  Google Scholar 

  53. Bull ND, Guidi A, Goedert M, Martin KR, Spillantini MG (2012) Reduced axonal transport and increased excitotoxic retinal ganglion cell degeneration in mice transgenic for human mutant P301S tau. PLoS One 7(4):e34724. doi:10.1371/journal.pone.0034724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Zhang B, Higuchi M, Yoshiyama Y, Ishihara T, Forman MS, Martinez D, Joyce S, Trojanowski JQ, Lee VM (2004) Retarded axonal transport of R406W mutant tau in transgenic mice with a neurodegenerative tauopathy. J Neurosci Off J Soc Neurosci 24(19):4657–4667. doi:10.1523/JNEUROSCI.0797-04.2004

    Article  CAS  Google Scholar 

  55. Seitz A, Kojima H, Oiwa K, Mandelkow EM, Song YH, Mandelkow E (2002) Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J 21(18):4896–4905

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Kanaan NM, Morfini GA, LaPointe NE, Pigino GF, Patterson KR, Song Y, Andreadis A, Fu Y, Brady ST, Binder LI (2011) Pathogenic forms of tau inhibit kinesin-dependent axonal transport through a mechanism involving activation of axonal phosphotransferases. J Neurosci Off J Soc Neurosci 31(27):9858–9868. doi:10.1523/JNEUROSCI.0560-11.2011

    Article  CAS  Google Scholar 

  57. Morfini G, Pigino G, Mizuno N, Kikkawa M, Brady ST (2007) Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res 85(12):2620–2630. doi:10.1002/jnr.21154

    Article  CAS  PubMed  Google Scholar 

  58. LaPointe NE, Morfini G, Pigino G, Gaisina IN, Kozikowski AP, Binder LI, Brady ST (2009) The amino terminus of tau inhibits kinesin-dependent axonal transport: implications for filament toxicity. J Neurosci Res 87(2):440–451. doi:10.1002/jnr.21850

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Magnani E, Fan J, Gasparini L, Golding M, Williams M, Schiavo G, Goedert M, Amos LA, Spillantini MG (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554. doi:10.1038/sj.emboj.7601878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Ittner LM, Ke YD, Gotz J (2009) Phosphorylated Tau interacts with c-Jun N-terminal kinase-interacting protein 1 (JIP1) in Alzheimer disease. J Biol Chem 284(31):20909–20916. doi:10.1074/jbc.M109.014472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Gasparini L, Crowther RA, Martin KR, Berg N, Coleman M, Goedert M, Spillantini MG (2011) Tau inclusions in retinal ganglion cells of human P301S tau transgenic mice: effects on axonal viability. Neurobiol Aging 32(3):419–433. doi:10.1016/j.neurobiolaging.2009.03.002

    Article  CAS  PubMed  Google Scholar 

  62. Yuan A, Kumar A, Sasaki T, Duff K, Nixon RA (2013) Global axonal transport rates are unaltered in htau mice invivo. J Alzheimer’s Dis 37(3):579–586. doi:10.3233/JAD-130671

    Google Scholar 

  63. Onishi T, Matsumoto Y, Hattori M, Obayashi Y, Nakamura K, Yano T, Horiguchi T, Iwashita H (2014) Early-onset cognitive deficits and axonal transport dysfunction in P301S mutant tau transgenic mice. Neurosci Res 80:76–85. doi:10.1016/j.neures.2013.12.006

    Article  CAS  PubMed  Google Scholar 

  64. Tal R, Winter G, Ecker N, Klionsky DJ, Abeliovich H (2007) Aup1p, a yeast mitochondrial protein phosphatase homolog, is required for efficient stationary phase mitophagy and cell survival. J Biol Chem 282(8):5617–5624. doi:10.1074/jbc.M605940200

    Article  CAS  PubMed  Google Scholar 

  65. Wang X, Su B, Lee HG, Li X, Perry G, Smith MA, Zhu X (2009) Impaired balance of mitochondrial fission and fusion in Alzheimer’s disease. J Neurosci Off J Soc Neurosci 29(28):9090–9103. doi:10.1523/JNEUROSCI.1357-09.2009

    Article  CAS  Google Scholar 

  66. Correia SC, Santos RX, Santos MS, Casadesus G, Lamanna JC, Perry G, Smith MA, Moreira PI (2013) Mitochondrial abnormalities in a streptozotocin-induced rat model of sporadic Alzheimer’s disease. Curr Alzheimers Res 10(4):406–419

    Article  CAS  Google Scholar 

  67. Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11(1):29–37

    Article  CAS  PubMed  Google Scholar 

  68. Rui Y, Tiwari P, Xie Z, Zheng JQ (2006) Acute impairment of mitochondrial trafficking by beta-amyloid peptides in hippocampal neurons. J Neurosci Off J Soc Neurosci 26(41):10480–10487. doi:10.1523/JNEUROSCI.3231-06.2006

    Article  CAS  Google Scholar 

  69. Calkins MJ, Reddy PH (2011) Amyloid beta impairs mitochondrial anterograde transport and degenerates synapses in Alzheimer’s disease neurons. Biochim Biophys Acta 1812(4):507–513. doi:10.1016/j.bbadis.2011.01.007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Zhao XL, Wang WA, Tan JX, Huang JK, Zhang X, Zhang BZ, Wang YH, YangCheng HY, Zhu HL, Sun XJ, Huang FD (2010) Expression of beta-amyloid induced age-dependent presynaptic and axonal changes in Drosophila. J Neurosci Off J Soc Neurosci 30(4):1512–1522. doi:10.1523/JNEUROSCI.3699-09.2010

    Article  CAS  Google Scholar 

  71. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci U S A 107(43):18670–18675. doi:10.1073/pnas.1006586107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Kim C, Choi H, Jung ES, Lee W, Oh S, Jeon NL, Mook-Jung I (2012) HDAC6 inhibitor blocks amyloid beta-induced impairment of mitochondrial transport in hippocampal neurons. PLoS One 7(8):e42983. doi:10.1371/journal.pone.0042983

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Devi L, Prabhu BM, Galati DF, Avadhani NG, Anandatheerthavarada HK (2006) Accumulation of amyloid precursor protein in the mitochondrial import channels of human Alzheimer’s disease brain is associated with mitochondrial dysfunction. J Neurosci Off J Soc Neurosci 26(35):9057–9068. doi:10.1523/JNEUROSCI.1469-06.2006

    Article  CAS  Google Scholar 

  74. Du H, Guo L, Fang F, Chen D, Sosunov AA, McKhann GM, Yan Y, Wang C, Zhang H, Molkentin JD, Gunn-Moore FJ, Vonsattel JP, Arancio O, Chen JX, Yan SD (2008) Cyclophilin D deficiency attenuates mitochondrial and neuronal perturbation and ameliorates learning and memory in Alzheimer’s disease. Nat Med 14(10):1097–1105. doi:10.1038/nm.1868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15(9):1437–1449. doi:10.1093/hmg/ddl066

    Article  CAS  PubMed  Google Scholar 

  76. Caspersen C, Wang N, Yao J, Sosunov A, Chen X, Lustbader JW, Xu HW, Stern D, McKhann G, Yan SD (2005) Mitochondrial Abeta: a potential focal point for neuronal metabolic dysfunction in Alzheimer’s disease. FASEB J Off Publ Fed Am Soc Exp Biol 19(14):2040–2041. doi:10.1096/fj.05-3735fje

    CAS  Google Scholar 

  77. Aschrafi A, Natera-Naranjo O, Gioio AE, Kaplan BB (2010) Regulation of axonal trafficking of cytochrome c oxidase IV mRNA. Mol Cell Neurosci 43(4):422–430. doi:10.1016/j.mcn.2010.01.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Young KJ, Bennett JP (2010) The mitochondrial secret(ase) of Alzheimer’s disease. J Alzheimer’s Dis 20(Suppl 2):S381–S400. doi:10.3233/JAD-2010-100360

    Google Scholar 

  79. Massaad CA, Amin SK, Hu L, Mei Y, Klann E, Pautler RG (2010) Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 5(5):e10561. doi:10.1371/journal.pone.0010561

    Article  PubMed Central  PubMed  Google Scholar 

  80. Guo L, Du H, Yan S, Wu X, McKhann GM, Chen JX, Yan SS (2013) Cyclophilin D deficiency rescues axonal mitochondrial transport in Alzheimer’s neurons. PLoS One 8(1):e54914. doi:10.1371/journal.pone.0054914

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  81. Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167(4):661–672. doi:10.1083/jcb.200406038

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Roh SE, Woo JA, Lakshmana MK, Uhlar C, Ankala V, Boggess T, Liu T, Hong YH, Mook-Jung I, Kim SJ, Kang DE (2013) Mitochondrial dysfunction and calcium deregulation by the RanBP9-cofilin pathway. FASEB J Off Publ Fed Am Soc Exp Biol 27(12):4776–4789. doi:10.1096/fj.13-234765

    CAS  Google Scholar 

  83. Misko A, Jiang S, Wegorzewska I, Milbrandt J, Baloh RH (2010) Mitofusin 2 is necessary for transport of axonal mitochondria and interacts with the Miro/Milton complex. J Neurosci Off J Soc Neurosci 30(12):4232–4240. doi:10.1523/JNEUROSCI.6248-09.2010

    Article  CAS  Google Scholar 

  84. Chen Z, Zhong C (2014) Oxidative stress in Alzheimer’s disease. Neurosci Bull 30(2):271–281. doi:10.1007/s12264-013-1423-y

    Article  CAS  PubMed  Google Scholar 

  85. Eckert A, Nisbet R, Grimm A, Gotz J (2013) March separate, strike together—role of phosphorylated TAU in mitochondrial dysfunction in Alzheimer’s disease. Biochim Biophys Acta. doi:10.1016/j.bbadis.2013.08.013

    PubMed Central  Google Scholar 

  86. Nixon RA (2007) Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 120(Pt 23):4081–4091. doi:10.1242/jcs.019265

    Article  CAS  PubMed  Google Scholar 

  87. Yu JT, Tan L, Hardy J (2014) Apolipoprotein E in Alzheimer’s disease: an update. Annu Rev Neurosci 37:79–100. doi:10.1146/annurev-neuro-071013-014300

    Article  CAS  PubMed  Google Scholar 

  88. Yin RH, Yu JT, Tan L (2014) The role of SORL1 in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8742-5

    Google Scholar 

  89. Folwell J, Cowan CM, Ubhi KK, Shiabh H, Newman TA, Shepherd D, Mudher A (2010) Abeta exacerbates the neuronal dysfunction caused by human tau expression in a Drosophila model of Alzheimer’s disease. Exp Neurol 223(2):401–409. doi:10.1016/j.expneurol.2009.09.014

    Article  CAS  PubMed  Google Scholar 

  90. Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L (2010) Tau reduction prevents Abeta-induced defects in axonal transport. Science 330(6001):198. doi:10.1126/science.1194653

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  91. Dawson HN, Cantillana V, Jansen M, Wang H, Vitek MP, Wilcock DM, Lynch JR, Laskowitz DT (2010) Loss of tau elicits axonal degeneration in a mouse model of Alzheimer’s disease. Neuroscience 169(1):516–531. doi:10.1016/j.neuroscience.2010.04.037

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  92. Gunawardena S, Yang G, Goldstein LS (2013) Presenilin controls kinesin-1 and dynein function during APP-vesicle transport invivo. Hum Mol Genet 22(19):3828–3843. doi:10.1093/hmg/ddt237

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  93. Iijima-Ando K, Sekiya M, Maruko-Otake A, Ohtake Y, Suzuki E, Lu B, Iijima KM (2012) Loss of axonal mitochondria promotes tau-mediated neurodegeneration and Alzheimer’s disease-related tau phosphorylation via PAR-1. PLoS Genet 8(8):e1002918. doi:10.1371/journal.pgen.1002918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  94. Falzone TL, Gunawardena S, McCleary D, Reis GF, Goldstein LS (2010) Kinesin-1 transport reductions enhance human tau hyperphosphorylation, aggregation and neurodegeneration in animal models of tauopathies. Hum Mol Genet 19(22):4399–4408. doi:10.1093/hmg/ddq363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Brunden KR, Ballatore C, Lee VM, Smith AB 3rd, Trojanowski JQ (2012) Brain-penetrant microtubule-stabilizing compounds as potential therapeutic agents for tauopathies. Biochem Soc Trans 40(4):661–666. doi:10.1042/BST20120010

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Quraishe S, Cowan CM, Mudher A (2013) NAP (davunetide) rescues neuronal dysfunction in a Drosophila model of tauopathy. Mol Psychiatry 18(7):834–842. doi:10.1038/mp.2013.32

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  97. Bonini SA, Ferrari-Toninelli G, Montinaro M, Memo M (2013) Notch signalling in adult neurons: a potential target for microtubule stabilization. Ther Adv Neurol Disord 6(6):375–385. doi:10.1177/1756285613490051

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  98. Agholme L, Nath S, Domert J, Marcusson J, Kagedal K, Hallbeck M (2014) Proteasome inhibition induces stress kinase dependent transport deficits—implications for Alzheimer’s disease. Mol Cell Neurosci 58:29–39. doi:10.1016/j.mcn.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  99. Shaw JL, Chang KT (2013) Nebula/DSCR1 upregulation delays neurodegeneration and protects against APP-induced axonal transport defects by restoring calcineurin and GSK-3beta signaling. PLoS Genet 9(9):e1003792. doi:10.1371/journal.pgen.1003792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  100. Sun JH, Yu JT, Tan L (2014) The role of cholesterol metabolism in Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-014-8749-y

    PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81000544, 81171209, 81371406) and Shandong Provincial Natural Science Foundation, China (ZR2010HQ004, ZR2011HZ001).

Conflicts of Interest

The authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lan Tan or Jin-Tai Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZX., Tan, L. & Yu, JT. Axonal Transport Defects in Alzheimer’s Disease. Mol Neurobiol 51, 1309–1321 (2015). https://doi.org/10.1007/s12035-014-8810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-014-8810-x

Keywords

Navigation