Skip to main content
Log in

Optical properties of CaAl2SiO6 polycrystals doped with Ce3+ and Nd3+ ions

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The CaAl2SiO6 (CASO) aluminosilicate polycrystals doped with Ce3+ and Nd3+ ions have been synthesized using the sol–gel method. The XRD diffractograms, excitation and emission spectra, as well as the decay time profiles were measured and discussed. The energies of Nd3+ levels in CASO polycrystals were assigned. A series of crystalline powders were divided into two groups, with slightly different crystal symmetry. The CIE chromatic coordinates and colour purity were calculated. Refractive indices and bandgap energies were estimated. The influence of spectroscopic properties, depending on the symmetry and doping ratio, was analysed. Obtained research results explain the influence of doped ions on the spectroscopic properties of CaAl2SiO6 and provide a new perspective on aluminosilicate compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Corma A, Diaz U, Domine M E and Fornés V 2000 J. Am. Chem. Soc. 122 2804

    Article  CAS  Google Scholar 

  2. Serrano D P, Escola J M and Pizarro P 2013 Chem. Soc. Rev. 42 4004

    Article  CAS  PubMed  Google Scholar 

  3. Piriou B, Richard-Plouet M, Parmentier J, Ferey F and Vilminot S 1997 J. Alloys Compd. 262–263 450

    Article  Google Scholar 

  4. Cano N F, Gonsalez-Vasquez A J, Gundu Rao T K, Turpo-Huahuasoncco K V, Canaza-Mamani E A, Lopez-Gonzales A H et al 2022 J. Phys. Chem. Sol. 170 110928

    Article  CAS  Google Scholar 

  5. Nayak M and Kutty T R N 1998 Mater. Chem. Phys. 57 138

    Article  CAS  Google Scholar 

  6. Simperler A, Foster M D, Delgado Friedrichs O, Bell R G, Almeida Paz F A and Klinowski J 2005 Acta Crystallogr. B 61 263

    Article  PubMed  Google Scholar 

  7. White C E, Provis J L, Kearley G J, Riley D P and van Deventer J S J 2011 Dalton Trans. 40 1348

    Article  CAS  PubMed  Google Scholar 

  8. Moore P B 1986 Acta Crystallogr. B 42 524

    Article  Google Scholar 

  9. Cesbron F 1987 Mineral Mag. 51 471

    Article  Google Scholar 

  10. Handke M 2005 Krystalochemia krzemianów (Crystal chemistry of silicates), AGH Uczelniane Wydawnictwa Naukowo-Dydaktyczne (AGH University Scientific and Educational Publishing Houses)

  11. Liebau F 2012 Structural chemistry of silicates: structure, bonding, and classification (Springer Science and Business Media)

    Google Scholar 

  12. Gupta I, Singh S, Bhagwan S and Singh D 2021 Ceram. Int. 47 19282

    Article  CAS  Google Scholar 

  13. Peter Okamura F, Ghose S A, Ohashi H and Ghose S 1974 Structure and crystal chemistry of calcium Tschermak’s Pyroxene, CaAIAISi0 6 vol 59

  14. Steele I M and Pluth J J 1990 Am. Mineral. 75 1186

    CAS  Google Scholar 

  15. Kimura M, Mikouchi T, Suzuki A, Miyahara M, Ohtani E and El Goresy A 2009 Am. Mineral. 94 1479

    Article  CAS  Google Scholar 

  16. Vaniman D T and Bish D L 1990 Am. Mineral. 75 676

    CAS  Google Scholar 

  17. Haselton H T, Hemingway B S and Robie R A 1984 Am. Mineral. 69 481

    CAS  Google Scholar 

  18. Liu-zheng S, Bao-ling W, Hai-dong J and Shr-qing X 2008 J. China Jiliang Univ. 19 372

    Google Scholar 

  19. Lemański K, Walerczyk W and Dereń P J 2016 J. Alloys Compd. 672 595

    Article  Google Scholar 

  20. Veerabhadra Rao K, Ramesh C, Devi S S, Ashok P, Guntu R K, Bhikshamaiah G et al 2022 J. Phys. Chem. Sol. 170 110938

    Article  CAS  Google Scholar 

  21. Lemański K 2023 Solid State Sci. 144 107300

    Article  Google Scholar 

  22. Wang B, Sun L and Ju H 2010 Solid State Commun. 150 1460

    Article  CAS  Google Scholar 

  23. Behrendt D R, Legvold S and Spedding F H 1957 Phys. Rev. 106 723

    Article  CAS  Google Scholar 

  24. Ikesue A, Kinoshita T, Kamata K and Yoshida K 1995 J. Am. Ceram. Soc. 78 1033

    Article  CAS  Google Scholar 

  25. Legendziewicz J, Dereń P, Jeżowska-Trzebiatowska B and Strȩk W 1985 J. Less Common Met. 112 271

    Article  Google Scholar 

  26. Lemański K, Gagor A, Kurnatowska M, Pązik R and Dereń P J 2011 J. Solid State Chem. 184 2713

    Article  Google Scholar 

  27. Lemański K, Dereń P J, Walerczyk W, Strȩk W, Boulesteix R, Epherre R et al 2014 J. Rare Earths 32 265

    Article  Google Scholar 

  28. Lenczewska K, Tomala R and Hreniak D 2017 Opt. Mater. (Amst.) 74 12

    Article  CAS  Google Scholar 

  29. Pidol L, Viana B, Kahn-Harari A, Bessire A and Dorenbos P 2005 Nucl. Instrum. Methods Phys. Res. A 537 125

    Article  CAS  Google Scholar 

  30. Blasse G and Bril A 1967 J. Chem. Phys. 47 5139

    Article  CAS  Google Scholar 

  31. Dorenbos P 2001 Phys. Rev. B 64 125117

    Article  Google Scholar 

  32. Bachmann V, Ronda C and Meijerink A 2009 Chem. Mater. 21 2077

    Article  CAS  Google Scholar 

  33. Smet P F, Parmentier A B and Poelman D 2011 J. Electrochem. Soc. 158 R37

    Article  CAS  Google Scholar 

  34. Dai Z, Boiko V, Grzeszkiewicz K, Markowska M, Ursi F, Hölsä J, Saladino M L et al 2021 Opt. Mater. (Amst) 111 110522

    Article  CAS  Google Scholar 

  35. Setlur A A and Srivastava A M 2007 Opt. Mater. (Amst) 29 1647

    Article  CAS  Google Scholar 

  36. Jacobs R R, Layne C B, Weber M J and Rapp C F 1976 J. Appl. Phys. 47 2020

    Article  CAS  Google Scholar 

  37. Talewar R A, Mahamuda S K, Rao A S, Joshi C P and Moharil S V 2018 J. Lumin. 202 1

    Article  CAS  Google Scholar 

  38. Mareš J A, Nikl M, Pédrini C, Moine B and Blažek K 1992 Mater. Chem. Phys. 32 342

    Article  Google Scholar 

  39. Tai Y, Zheng G, Wang H and Bai J 2015 J. Photochem. Photobiol. A Chem. 303–304 80

    Article  Google Scholar 

  40. Sawala N S and Omanwar S K 2016 Infrared Phys. Technol. 77 480

    Article  CAS  Google Scholar 

  41. Chen J, Liu J, Yin H, Jiang S, Yao H and Yu X 2016 J. Am. Ceram. Soc. 99 141

    Article  CAS  Google Scholar 

  42. Kirkpatrick R J and Steele I M 1973 Am. Mineral. 58 945

    CAS  Google Scholar 

  43. Shannon R D 1976 Acta Cryst. A32 751

    Article  CAS  Google Scholar 

  44. Scherrer P 1918 Gottinger Nachrichten 2 98

    Google Scholar 

  45. Korotkov A S and Atuchin V V 2008 Opt. Commun. 281 2132

    Article  CAS  Google Scholar 

  46. Korotkov A S and Atuchin V V 2008 Prediction of forbidden band gap of oxide crystal by chemical formula (9th International Workshop and Tutorials on Electron Devices and Materials (IEEE)) p 23

  47. Maeng J-H and Choi S-C 2012 J. Opt. Soc. Korea 16 414

    Article  CAS  Google Scholar 

  48. Guo H, Huang X and Zeng Y 2018 J. Alloys Compd. 741 300

    Article  CAS  Google Scholar 

  49. Lu J, Takaichi K, Uematsu T, Shirakawa A, Musha M, Ueda K et al 2002 Appl. Phys. Lett. 81 4324

    Article  CAS  Google Scholar 

  50. Kaminskii AA 1996 Crystalline lasers (CRC Press, Boca Raton, Florida, USA) pp 235–238

    Google Scholar 

  51. Neelima G, Krishnaiah K V, Ravi N, Suresh K, Tyagarajan K and Prasad T J 2019 Scr. Mater. 162 246

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author would like to thank Dr. Wiktoria Walerczyk and Jakub Rosiński for synthesizing the samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol Lemański.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemański, K. Optical properties of CaAl2SiO6 polycrystals doped with Ce3+ and Nd3+ ions. Bull Mater Sci 47, 70 (2024). https://doi.org/10.1007/s12034-024-03179-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-024-03179-3

Keywords

Navigation