Skip to main content
Log in

Reststrahlen Band Studies of RuCrX (X = Si, Ge, Sn) Half Heusler Alloys

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Reststrahlen band measurements in RuCrX (X = Si, Ge, Sn) Half Heusler Alloys (HHAs) for Far Infrared (FIR) spectroscopy are pointed out in this article by using Density Functional Theory (DFT). Generalized Gradient Approximation (GGA) as an exchange–correlation functional in the WIEN2k-package is used for structural optimization while Martin Troullier norm-conserving pseudo-potentials in Quantum ESPRESSO (QE) are used for structural optimization and lattice dynamic study of the alloys. Phonon dispersion curves elucidate dynamical stability and reststrahlen bands of the alloys. It is found that all alloys are dynamically stable in C1b structure and reststrahlen bands for RuCrX (X = Si, Ge, Sn) are 2.92 THz (Δλ = 102.62 μm), 0.96 THz (Δλ = 311.18 μm) and 0.81 THz (Δλ = 366.98 μm) respectively. This predicts RuCrSi HHA has a larger reststrahlen band that corresponds to being more polar in nature than other alloys. The calculated reststrahlen values for all alloys are in the FIR spectral region, so they can be used to manufacture the FIR-devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Manna, Y. Sun, L. Muechler, J. Kübler, and C. Felser, Nat. Rev. Mater. 3, 244 (2018).

    Article  Google Scholar 

  2. T. Graff, S.S.P. Parkin, and C. Felser, IEEE Trans. Magn. 47, 367 (2011).

    Article  Google Scholar 

  3. F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Semicond. Sci. Technol. 27, 063001 (2012).

    Article  Google Scholar 

  4. M. Fox, Optical Properties of Solids, 1st ed., vol. 204 (Oxford: Oxford University Press, 2001).

  5. C.G. Ribbing and E. Wäckelgård, Thin Solid Films 206, 312 (1991).

    Article  Google Scholar 

  6. J.W. Salisbury and D.M. D’Aria, Remote Sens. Environ. 42, 157 (1992).

    Article  Google Scholar 

  7. R.K. Vincent and F. Thomson, J. Geophys. Res. 77, 2465 (1972).

    Article  Google Scholar 

  8. A. Goldberg, P.N. Uppal, and M. Winn, Infrared Phys. Technol. 44, 427 (2003).

    Article  Google Scholar 

  9. A. Mitsuishi, Y. Yamada, and H. Yoshinaga, J. Opt. Soc. Am. 52, 14 (1962).

    Article  Google Scholar 

  10. E.T. Lynk and L.B. Major, Rev. Sci. Instrum. 45, 132 (1974).

    Article  Google Scholar 

  11. T. Chibuye, C.G. Ribbing, and E. Wäckelgård, Appl. Opt. 33, 5975 (1994).

    Article  Google Scholar 

  12. Y. Moğulkoç and Y. Öztekin Çiftçi, Cumhuriyet Sci. 38(2), 312 (2017).

  13. A. Erkisi and G. Surucu, Mater. Res. Express. 4, 066504 (2017).

    Article  Google Scholar 

  14. N.S. Chauhan, B. Gahtori, B. Sivaiah, S.D. Mahanti, A. Dhar, and A. Bhattacharya, Appl. Phys. Lett. 113, 013902 (2018).

    Article  Google Scholar 

  15. H.K. Ozisik, K. Colakoglu, and H.B. Ozisik, Fizika 16, 154 (2011).

    Google Scholar 

  16. D. Shrivastava and S.P. Sanyal, Solid State Commun. 273, 1 (2018).

    Article  Google Scholar 

  17. K. Kaur, R. Kumar, and D.P. Rai, J. Alloys Compd. 763, 1018 (2018).

    Article  Google Scholar 

  18. R.P. Shahri and A. Akhtar, Chin. Phys. B 26, 093107 (2017).

    Article  Google Scholar 

  19. S. Krishnaveni and M. Sundareswari, Int. J. Energy Res. 42, 764 (2017).

    Article  Google Scholar 

  20. M. Rizwan, A. Afaq, and A. Aneeza, Phys. B 537, 225 (2018).

    Article  Google Scholar 

  21. J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, and W.H. Butler, Phys. Rev. B. 95, 024411 (2017).

    Article  Google Scholar 

  22. G. Schreckenbach, P.J. Hay, and R.L. Martin, J. Comput. Chem. 20, 90 (1999).

    Article  Google Scholar 

  23. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  24. S. Baroni, Rev. Mod. Phys. 73, 515 (2001).

    Article  Google Scholar 

  25. K. Parlinski, Z. Li, and Y. Kawazoe, Phys. Rev. Lett. 78, 4063 (1997).

    Article  Google Scholar 

  26. A. Togo, F. Oba, and I. Tanaka, Phys. Rev. B 78, 134106 (2008).

    Article  Google Scholar 

  27. X. Gonze and C. Lee, Phys. Rev. B 55, 10355 (1997).

    Article  Google Scholar 

  28. P. Giannozzi, J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  29. N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).

    Article  Google Scholar 

  30. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 518 (1976).

    Article  Google Scholar 

  31. T. Graf, C. Felser, and S.S. Parkin, Prog. Solid State Chem. 39, 1 (2011).

    Article  Google Scholar 

  32. C. Kittel, Introduction to Solid State Physics, 8th ed. (New York: Willey, 2005).

    Google Scholar 

  33. A. Togo and I. Tanaka, Scr. Mater. 108, 1 (2015).

    Article  Google Scholar 

  34. R.H. Lyddane, R.G. Sachs, and E. Teller, Phys. Rev. 59, 673 (1941).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Afaq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afaq, A., Maaz, H., Bakar, A. et al. Reststrahlen Band Studies of RuCrX (X = Si, Ge, Sn) Half Heusler Alloys. J. Electron. Mater. 48, 5323–5327 (2019). https://doi.org/10.1007/s11664-019-07342-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07342-z

Keywords

Navigation