Skip to main content

Advertisement

Log in

Enhanced thermal characteristics of paraffin with low mass fraction impregnation of graphene oxide

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This study aimed to develop a technically better and economically affordable phase change material (PCM) for thermal energy storage (TES) applications. In this context, the influence of low mass fraction impregnation of graphene oxide nanoparticles (GONP) in the thermal properties of paraffin has been investigated. GONP has been synthesized by modifying Hummer’s method. The morphological, structural and thermal properties of prepared composite PCM have been analysed by different characterization techniques like XRD, FTIR, scanning electron microscope, thermogravimetric analysis, differential scanning calorimetry and laser flash analyzer (LFA). The average latent heat storage capacity of the prepared paraffin/GONP composite is obtained as ~161.34 J g−1, which shows a 27.2% loss in latent heat compared to pure paraffin (225.50 J g−1). Also, only ~3% loss in latent heat has been noticed after 250 thermal cycles, suggesting excellent thermal durability. On the other hand, LFA results showed a 45% increment in thermal conductivity of the paraffin/GONP composite compared to pure paraffin (0.22 Wm−1 K−1). Moreover, the lower mass fraction paraffin/GONP composite showed equivalent latent heat enthalpy and acceptable enhanced thermal conductivity compared to higher mass fraction impregnation. Therefore, the paraffin/GONP composite PCM could be technically and economically more favourable for TES application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Sari A and Karaipekli A 2007 Appl. Therm. Eng. 27 1271

    Article  CAS  Google Scholar 

  2. Xiao X, Zhang P and Li M 2013 Appl. Energy 112 1357

    Article  CAS  Google Scholar 

  3. Zhong Y, Guo Q, Li S, Shi J and Liu L 2010 Sol. Energy Mater. Sol. Cells 94 1011

    Article  CAS  Google Scholar 

  4. Zhang Z, Zhang N, Peng J, Fang X, Gao X and Fang Y 2012 Appl. Energy 91 426

    Article  CAS  Google Scholar 

  5. Ren W, Cao L and Zhang D 2020 Int. J. Energy Res. 44 242

    Article  CAS  Google Scholar 

  6. Yin Z, Huang Z, Wen R, Zhang X, Tan B, Liu Y G et al 2016 RSC Adv. 6 95085

    Article  CAS  Google Scholar 

  7. Teng T P and Yu C C 2012 Nanoscale Res. Lett. 7 1

    Article  Google Scholar 

  8. Saydam V and Duan X 2019 J. Therm. Anal. Calorim. 135 1135

    Article  CAS  Google Scholar 

  9. Xu Y, Fleischer A S and Feng G 2017 Carbon 114 334

    Article  CAS  Google Scholar 

  10. Liu X and Rao Z 2017 Thermochim. Acta 647 15

    Article  CAS  Google Scholar 

  11. Rufuss D D W, Iniyan S, Suganthi L and Davies P A 2017 Thermochim. Acta 655 226

    Article  Google Scholar 

  12. Li W, Dong Y, Zhang X and Liu X 2019 Process 7 447

    Article  CAS  Google Scholar 

  13. Mills A, Farid M, Selman J R and Al-Hallaj S 2006 Appl. Therm. Eng. 26 1652

    Article  CAS  Google Scholar 

  14. JianShe H, Chao Y, Xu Z, Jiao Z and JinXing D 2019 Energy Sources A Recovery Util. Environ. Eff. 41 86

    Article  Google Scholar 

  15. Li M 2013 Appl. Energy 106 25

    Article  CAS  Google Scholar 

  16. Zaimi N H M, Nawabjan A, Rahman S F A and Hussin S M 2019 in InECCE2019 Springer, Singapore, p 767

  17. Mehrali M, Latibari S T, Mehrali M, Metselaar H S C and Silakhori M 2013 Energy Convers. Manag. 67 275

    Article  CAS  Google Scholar 

  18. Elarem R, Alqahtani T, Mellouli S, El Awadi G A, Algarni S and Kolsi L 2022 Alex. Eng. J. 61 7037

    Article  Google Scholar 

  19. Rawat P S, Srivastava R C, Dixit G and Asokan K 2020 Vacuum 182 109700

    Article  CAS  Google Scholar 

  20. Jianguo S, Xinzhi W and Chang-Tang C 2014 J. Nanomater. 276163 6

    Google Scholar 

  21. Harikrishnan S, Magesh S and Kalaiselvam S 2013 Thermochim. Acta 565 137

    Article  CAS  Google Scholar 

  22. Yuan K, Liu J, Fang X and Zhang Z 2018 J. Mater. Chem. A 6 4535

    Article  CAS  Google Scholar 

  23. Wu T, Hu Y, Rong H and Wang C 2021 Energy 221 119900

    Article  CAS  Google Scholar 

  24. Ossonon B D and Bélanger D 2017 RSC Adv. 7 27224

    Article  CAS  Google Scholar 

  25. Stobinski L, Lesiak B, Malolepszy A, Mazurkiewicz M, Mierzwa B, Zemek J et al 2014 J. Electron Spectrosc. Relat. Phenom. 195 145

    Article  CAS  Google Scholar 

  26. Aulakh J S and Joshi D P 2022 Energy Sources A Recovery Uti. Environ. Eff. 44 986

    Article  CAS  Google Scholar 

  27. Aulakh J S and Joshi D P 2022 Polym. Sci. A 64 308

    Article  Google Scholar 

  28. Yang H, Li H, Zhai J, Sun L and Yu H 2014 Ind. Eng. Chem. Res. 53 17878

    Article  CAS  Google Scholar 

  29. Zhang B, Tian Y, Jin X, Lo T Y and Cui H 2018 Mater. 11 2205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaspreet Singh Aulakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aulakh, J.S., Joshi, D.P. Enhanced thermal characteristics of paraffin with low mass fraction impregnation of graphene oxide. Bull Mater Sci 46, 125 (2023). https://doi.org/10.1007/s12034-023-02969-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-02969-5

Keywords

Navigation